
Towards Noncommutative Gel’fand Duality

Category Theory 2011
Vancouver

18. July 2011

Andreas Döring
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“Those who do not understand the nature of sin and virtue are attached
to duality; they wander around deluded.”

Sri Guru Granth Sahib
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Introduction

Introduction

This is mostly a programmatic talk. We don’t have noncommutative
Gel’fand-Naimark duality yet.

But why would it be interesting?

Gel’fand-Naimark duality (1943) is an equivalence between the
category of unital commutative C∗-algebras and the category of
compact Hausdorff spaces,

UnitCommC∗
Σ //
� KHausSpop.

C(−)
oo

To each commutative algebra A, the set of algebra homomorphisms
λ ∶ A→ C is assigned. Conversely, to each compact Hausdorff space
X , the algebra of continuous functions f ∶ X → C is assigned.
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Introduction (2)

This gives an enormously useful bridge between algebra and topology.
E.g.: maximal ideals in algebra A = points of Gel’fand spectrum
Σ(A).

All this is for commutative algebras, but in quantum theory and many
mathematical situations we need noncommutative algebras.

A good, general notion of spectrum of a noncommutative (operator)
algebra is still lacking.

Noncommutative Geometry is based on the idea that many
topological and geometric constructions have algebraic counterparts.
Geometry is done algebraically.

Big aim: generalise Gel’fand-Naimark duality to noncommutative operator
algebras, provide spatial counterparts to algebraic constructions.
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Introduction (3)

In this talk, I will sketch how some ideas from

noncommutative operator algebras,

topos theory,

geometric model theory,

and quantum physics

may help to get closer to a solution. Many open questions remain.
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The topos approach and Jordan and Lie structures

The topos approach and
Jordan and Lie structures
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The topos approach and Jordan and Lie structures

Categories of algebras

We will consider operator algebras in Set, as in standard functional
analysis.

In particular, we will use the category vNA of von Neumann algebras (on
separable Hilbert spaces). Appropriate morphisms are ultraweakly
continuous, unital ∗-homomorphisms.

More generally, one can think of UnitC∗, the category of unital
C∗-algebras and unital ∗-homomorphisms.
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The topos approach and Jordan and Lie structures

The topos approach to quantum theory

In the topos approach to quantum theory, we associate with each NC
operator algebra (C∗- or von Neumann algebra; here mostly the latter) a
topos and a distinguished spectral object in the topos.

The base category of the topos is the poset V(N ) of commutative
von Neumann subalgebras of N (which share the unit element with

N ). The topos itself is SetV(N )
op

, presheaves over V(N ).

The spectral object in the topos is called the spectral presheaf Σ. It is
built from the Gel’fand spectra of the commutative subalgebras in the
‘obvious’ way.

Question: Is Σ anything like the spectrum of N ?
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The topos approach and Jordan and Lie structures

The poset V(N ) and Jordan structure

How much information about the algebra N is contained in the poset
V(N ) of its commutative subalgebras?

Obviously, we can reconstruct N as a partial algebra, where only
operations between commuting operators exist. (This needs more than the
poset structure alone.)

But we can do better:

Theorem

(J. Harding, AD ’10): There is a bijection between the set of order
automorphisms of V(N ) and the Jordan automorphisms of N .

Here, we consider N as a Jordan algebra, replacing the noncommutative
product with the commutative, but nonassociative symmetrised product

∀Â, B̂ ∈ N ∶ Â ○ B̂ ∶=
1

2
(ÂB̂ + B̂Â).
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The topos approach and Jordan and Lie structures

Automorphisms

Let φ ∶ N → N be an ultraweakly continuous Jordan automorphism. This
induces

φ̃ ∶ V(N )Ð→ V(N )

V z→ φ(V ),

which gives a geometric automorphism Φ ∶ SetV(N )
op

→ SetV(N )
op

. One
can use the inverse image part to pull back Σ,

∀V ∈ V(N ) ∶ (Φ∗
(Σ))V = Σφ̃(V ).

For each V ∈ V(N ), we have an isomorphism φ∣V ∶ V → φ(V ), such that
by Gel’fand duality we get an isomorphism

GV ∶ (Φ∗
(Σ))V Ð→ ΣV .

The GV are the components of a natural transformation G ∶ Φ∗
(Σ)→ Σ,

so we get an invertible map (automorphism)

G ○Φ∗
∶ ΣÐ→ Σ.
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The topos approach and Jordan and Lie structures

Good automorphisms

Observation: In order to reconstruct N , we need not just the
symmetrised product (Jordan structure), but also the antisymmetrised
product (Lie structure). This ’decomposition’ of the noncommutative
product also has a good physical motivation.

The Lie structure is closely related to the unitary group U(N ) acting on

N : by Stone’s theorem, Ût = e itÂ for Â ∈ Nsa, and we have

∀B̂ ∈ Nsa ∶
d

dt
(ÛtB̂Û−t)∣t=0 = i[Â, B̂].

Every unitary operator gives a Jordan automorphism φÛ ∶ N → N ,

Â↦ ÛÂÛ∗, and hence an automorphism G ○ΦÛ ∶ Σ→ Σ.

Aim: Identify these ’good’ automorphisms among all automorphisms of Σ.
This will help to reconstruct U(N ) and hence the noncommutative von
Neumann algebra N .
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The topos approach and Jordan and Lie structures

Morphisms between different algebras

Up to now, we considered only (Jordan) automorphisms of von Neumann
algebras. More generally, an ultraweakly continuous unital Jordan
morphism

φ ∶ N1 Ð→ N2

preserves commutativity and hence induces a geometric morphism
Φ ∶ SetV(N1)

op

→ SetV(N2)
op

and a morphism

G ○Φ∗
∶ Σ
N2
Ð→ Σ

N1
.

Every Jordan morphism φ ∶ N1 → N2 acts as a ∗-homomorphism on one
direct summand of N1, and as a ∗-antihomomorphism on the other direct
summand. Either direct summand may be empty.

The open task is to identify which of the morphisms G ○Φ ∶ Σ
N2
→ Σ

N1

come from (ultraweakly continuous) ∗-homomorphisms φ ∶ N1 → N2, i.e.,
the arrows in vNA.
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Zariski geometries

Zariski geometries

B. Zilber, E. Hrushovski ’96: model-theoretic axiomatisation of algebraic
varieties, called Zariski geometries. These are topological structures (in
the model-theoretic sense) with a good notion of dimension.

Soon observed: non-standard examples with noncommuting
coordinate functions. These are spaces associated with NC algebras.

In some cases, the NC algebra can be reconstructed from the Zariski
geometry (Zilber).

Works (roughly speaking) because Lie algebra aspects are built in.
The Lie group elements act as vector fields on the Zariski geometries.

Recently, a connection between the topos approach and Zariski geometries
has shown up: the spectral presheaf Σ is a Zariski geometry if N is a
matrix algebra (V. Solanki; presumably a more general result holds).

But Lie algebra aspects are not built in yet.
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Zariski geometries

Zariski geometries (2)

There are more connections: one can associate a presheaf (over
commutative subalgebras) of Zariski structures with a NC ∗-algebra, see
B. Zilber, Finitary presheaf associated with a non-commutative algebra,
preprint, available from

http://people.maths.ox.ac.uk/zilber/sheaf.pdf (2011).

Instead of identifying good automorphisms, here a presheaf with richer
structure is defined which incorporates Lie algebra aspects.

For details, please see Zilber’s website!
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Covariant and contravariant

The covariant topos

There also is another variant of the topos approach using covariant
functors over V(N ), by C. Heunen, N. Landsman and B. Spitters. This
allows to define a canonical internal commutative algebra N from an
external noncommutative algebra N (which can be a C∗-algebra).

The internal commutative algebra, given initially as the tautological
functor over V(N ), is basically the partial algebra obtained by forgetting
all algebraic operations between noncommuting operators in N .

By constructive Gel’fand duality (B. Banaschewski/C. Mulvey), the
internal algebra has a Gel’fand spectrum Σ in the topos SetV(N ).
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Covariant and contravariant

Combining the two variants?

We observe:

The covariant topos SetV(N ) comes with a canonical internal algebra
N . The construction of the spectrum Σ is quite involved.

The contravariant topos SetV(N )
op

comes with a canonical internal
spectral object Σ. There is a candidate for a noncommutative internal
algebra (not shown here).

Question (suggested by J. Funk): Is there a duality between the pair

(SetV(N ),N ), (SetV(N )
op

,Σ)

for each von Neumann algebra (or C∗-algebra) N ?

If so, this would at least cover the partial (commutative) algebra aspect of
N , and presumably also the Jordan algebra aspect.
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Covariant and contravariant

Thanks for listening!
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