Towards Noncommutative Gel'fand Duality

Category Theory 2011 Vancouver 18. July 2011

Andreas Döring

Department of Computer Science University of Oxford

andreas.doering@cs.ox.ac.uk

Andreas Döring (Oxford)

"Those who do not understand the nature of sin and virtue are attached to duality; they wander around deluded."

Sri Guru Granth Sahib

글 > - + 글 >

3

- 4 週 ト - 4 三 ト - 4 三 ト

This is mostly a programmatic talk. We don't have noncommutative Gel'fand-Naimark duality yet.

- 4 目 ト - 4 日 ト - 4 日 ト

This is mostly a programmatic talk. We don't have noncommutative Gel'fand-Naimark duality yet.

But why would it be interesting?

This is mostly a programmatic talk. We don't have noncommutative Gel'fand-Naimark duality yet.

But why would it be interesting?

• Gel'fand-Naimark duality (1943) is an equivalence between the category of unital commutative C^* -algebras and the category of compact Hausdorff spaces,

UnitCommC*
$$\xrightarrow{\Sigma}$$
 KHausSp^{op}.

This is mostly a programmatic talk. We don't have noncommutative Gel'fand-Naimark duality yet.

But why would it be interesting?

• Gel'fand-Naimark duality (1943) is an equivalence between the category of unital commutative C^* -algebras and the category of compact Hausdorff spaces,

UnitCommC*
$$\xrightarrow{\Sigma}$$
 KHausSp^{op}.

 To each commutative algebra A, the set of algebra homomorphisms λ : A → C is assigned. Conversely, to each compact Hausdorff space X, the algebra of continuous functions f : X → C is assigned.

・ロト ・ 同ト ・ ヨト ・ ヨト

• This gives an enormously useful bridge between algebra and topology. E.g.: maximal ideals in algebra $\mathcal{A} = \text{points}$ of Gel'fand spectrum $\Sigma(\mathcal{A})$.

- 4 同 6 4 日 6 4 日 6

- This gives an enormously useful bridge between algebra and topology. E.g.: maximal ideals in algebra $\mathcal{A} = \text{points}$ of Gel'fand spectrum $\Sigma(\mathcal{A})$.
- All this is for *commutative* algebras, but in quantum theory and many mathematical situations we need *noncommutative* algebras.

・ 何 ト ・ ヨ ト ・ ヨ ト

- This gives an enormously useful bridge between algebra and topology. E.g.: maximal ideals in algebra $\mathcal{A} = \text{points}$ of Gel'fand spectrum $\Sigma(\mathcal{A})$.
- All this is for *commutative* algebras, but in quantum theory and many mathematical situations we need *noncommutative* algebras.
- A good, general notion of spectrum of a noncommutative (operator) algebra is still lacking.

- This gives an enormously useful bridge between algebra and topology. E.g.: maximal ideals in algebra $\mathcal{A} = \text{points}$ of Gel'fand spectrum $\Sigma(\mathcal{A})$.
- All this is for *commutative* algebras, but in quantum theory and many mathematical situations we need *noncommutative* algebras.
- A good, general notion of spectrum of a noncommutative (operator) algebra is still lacking.
- Noncommutative Geometry is based on the idea that many topological and geometric constructions have algebraic counterparts. Geometry is done algebraically.

- This gives an enormously useful bridge between algebra and topology. E.g.: maximal ideals in algebra $\mathcal{A} = \text{points}$ of Gel'fand spectrum $\Sigma(\mathcal{A})$.
- All this is for *commutative* algebras, but in quantum theory and many mathematical situations we need *noncommutative* algebras.
- A good, general notion of spectrum of a noncommutative (operator) algebra is still lacking.
- Noncommutative Geometry is based on the idea that many topological and geometric constructions have algebraic counterparts. Geometry is done algebraically.

Big aim: generalise Gel'fand-Naimark duality to noncommutative operator algebras, provide spatial counterparts to algebraic constructions.

・ロト ・四ト ・ヨト ・ヨトー

In this talk, I will sketch how some ideas from

- noncommutative operator algebras,
- topos theory,
- geometric model theory,
- and quantum physics

may help to get closer to a solution. Many open questions remain.

The topos approach and Jordan and Lie structures

Categories of algebras

We will consider operator algebras in **Set**, as in standard functional analysis.

Categories of algebras

We will consider operator algebras in **Set**, as in standard functional analysis.

In particular, we will use the category **vNA** of von Neumann algebras (on separable Hilbert spaces). Appropriate morphisms are ultraweakly continuous, unital *-homomorphisms.

Categories of algebras

We will consider operator algebras in **Set**, as in standard functional analysis.

In particular, we will use the category **vNA** of von Neumann algebras (on separable Hilbert spaces). Appropriate morphisms are ultraweakly continuous, unital *-homomorphisms.

More generally, one can think of **UnitC**^{*}, the category of unital C^* -algebras and unital *-homomorphisms.

In the topos approach to quantum theory, we associate with each NC operator algebra (C^* - or von Neumann algebra; here mostly the latter) a topos and a distinguished spectral object in the topos.

In the topos approach to quantum theory, we associate with each NC operator algebra (C^* - or von Neumann algebra; here mostly the latter) a topos and a distinguished spectral object in the topos.

The base category of the topos is the poset V(N) of commutative von Neumann subalgebras of N (which share the unit element with N). The topos itself is Set^{V(N)^{op}}, presheaves over V(N).

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

In the topos approach to quantum theory, we associate with each NC operator algebra (C^* - or von Neumann algebra; here mostly the latter) a topos and a distinguished spectral object in the topos.

- The base category of the topos is the poset V(N) of commutative von Neumann subalgebras of N (which share the unit element with N). The topos itself is Set^{V(N)^{op}}, presheaves over V(N).
- The spectral object in the topos is called the spectral presheaf ∑. It is built from the Gel'fand spectra of the commutative subalgebras in the 'obvious' way.

In the topos approach to quantum theory, we associate with each NC operator algebra (C^* - or von Neumann algebra; here mostly the latter) a topos and a distinguished spectral object in the topos.

- The base category of the topos is the poset V(N) of commutative von Neumann subalgebras of N (which share the unit element with N). The topos itself is Set^{V(N)^{op}}, presheaves over V(N).
- The spectral object in the topos is called the spectral presheaf ∑. It is built from the Gel'fand spectra of the commutative subalgebras in the 'obvious' way.

Question: Is $\underline{\Sigma}$ anything like the spectrum of \mathcal{N} ?

・ロン ・聞と ・ヨン ・ヨン … ヨ

How much information about the algebra \mathcal{N} is contained in the poset $\mathcal{V}(\mathcal{N})$ of its commutative subalgebras?

・ 同 ト ・ ヨ ト ・ ヨ ト

How much information about the algebra \mathcal{N} is contained in the poset $\mathcal{V}(\mathcal{N})$ of its commutative subalgebras?

Obviously, we can reconstruct \mathcal{N} as a partial algebra, where only operations between commuting operators exist. (This needs more than the poset structure alone.)

How much information about the algebra \mathcal{N} is contained in the poset $\mathcal{V}(\mathcal{N})$ of its commutative subalgebras?

Obviously, we can reconstruct ${\cal N}$ as a partial algebra, where only operations between commuting operators exist. (This needs more than the poset structure alone.)

But we can do better:

Theorem

(J. Harding, AD '10): There is a bijection between the set of order automorphisms of $\mathcal{V}(\mathcal{N})$ and the Jordan automorphisms of \mathcal{N} .

How much information about the algebra \mathcal{N} is contained in the poset $\mathcal{V}(\mathcal{N})$ of its commutative subalgebras?

Obviously, we can reconstruct ${\cal N}$ as a partial algebra, where only operations between commuting operators exist. (This needs more than the poset structure alone.)

But we can do better:

Theorem

(J. Harding, AD '10): There is a bijection between the set of order automorphisms of $\mathcal{V}(\mathcal{N})$ and the Jordan automorphisms of \mathcal{N} .

Here, we consider ${\cal N}$ as a Jordan algebra, replacing the noncommutative product with the commutative, but nonassociative symmetrised product

$$\forall \hat{A}, \hat{B} \in \mathcal{N} : \hat{A} \circ \hat{B} := \frac{1}{2} (\hat{A}\hat{B} + \hat{B}\hat{A}).$$

Automorphisms

Let $\phi:\mathcal{N}\to\mathcal{N}$ be an ultraweakly continuous Jordan automorphism. This induces

$$\begin{split} \tilde{\phi} : \mathcal{V}(\mathcal{N}) \longrightarrow \mathcal{V}(\mathcal{N}) \\ V \longmapsto \phi(V), \end{split}$$

which gives a geometric automorphism $\Phi : \mathbf{Set}^{\mathcal{V}(\mathcal{N})^{\mathsf{op}}} \to \mathbf{Set}^{\mathcal{V}(\mathcal{N})^{\mathsf{op}}}$. One can use the inverse image part to pull back $\underline{\Sigma}$,

$$\forall V \in \mathcal{V}(\mathcal{N}) : (\Phi^*(\underline{\Sigma}))_V = \underline{\Sigma}_{\tilde{\phi}(V)}.$$

Automorphisms

Let $\phi:\mathcal{N}\to\mathcal{N}$ be an ultraweakly continuous Jordan automorphism. This induces

$$\begin{split} \tilde{\phi} : \mathcal{V}(\mathcal{N}) \longrightarrow \mathcal{V}(\mathcal{N}) \\ V \longmapsto \phi(V), \end{split}$$

which gives a geometric automorphism $\Phi : \mathbf{Set}^{\mathcal{V}(\mathcal{N})^{\mathsf{op}}} \to \mathbf{Set}^{\mathcal{V}(\mathcal{N})^{\mathsf{op}}}$. One can use the inverse image part to pull back $\underline{\Sigma}$,

$$\forall V \in \mathcal{V}(\mathcal{N}) : (\Phi^*(\underline{\Sigma}))_V = \underline{\Sigma}_{\tilde{\phi}(V)}.$$

For each $V \in \mathcal{V}(\mathcal{N})$, we have an isomorphism $\phi|_V : V \to \phi(V)$, such that by Gel'fand duality we get an isomorphism

$$\mathcal{G}_V: (\Phi^*(\underline{\Sigma}))_V \longrightarrow \underline{\Sigma}_V.$$

Automorphisms

Let $\phi:\mathcal{N}\to\mathcal{N}$ be an ultraweakly continuous Jordan automorphism. This induces

$$\begin{split} \tilde{\phi} : \mathcal{V}(\mathcal{N}) \longrightarrow \mathcal{V}(\mathcal{N}) \\ V \longmapsto \phi(V), \end{split}$$

which gives a geometric automorphism $\Phi : \mathbf{Set}^{\mathcal{V}(\mathcal{N})^{\mathsf{op}}} \to \mathbf{Set}^{\mathcal{V}(\mathcal{N})^{\mathsf{op}}}$. One can use the inverse image part to pull back $\underline{\Sigma}$,

$$\forall V \in \mathcal{V}(\mathcal{N}) : (\Phi^*(\underline{\Sigma}))_V = \underline{\Sigma}_{\tilde{\phi}(V)}.$$

For each $V \in \mathcal{V}(\mathcal{N})$, we have an isomorphism $\phi|_V : V \to \phi(V)$, such that by Gel'fand duality we get an isomorphism

$$\mathcal{G}_V: (\Phi^*(\underline{\Sigma}))_V \longrightarrow \underline{\Sigma}_V.$$

The \mathcal{G}_V are the components of a natural transformation $\mathcal{G} : \Phi^*(\underline{\Sigma}) \to \underline{\Sigma}$, so we get an invertible map (automorphism)

$$\mathcal{G} \circ \Phi^* : \underline{\Sigma} \longrightarrow \underline{\Sigma}.$$

▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ ● ● ● ●

Observation: In order to reconstruct \mathcal{N} , we need not just the symmetrised product (Jordan structure), but also the antisymmetrised product (Lie structure). This 'decomposition' of the noncommutative product also has a good physical motivation.

Observation: In order to reconstruct \mathcal{N} , we need not just the symmetrised product (Jordan structure), but also the antisymmetrised product (Lie structure). This 'decomposition' of the noncommutative product also has a good physical motivation.

The Lie structure is closely related to the unitary group $\mathcal{U}(\mathcal{N})$ acting on \mathcal{N} : by Stone's theorem, $\hat{U}_t = e^{it\hat{A}}$ for $\hat{A} \in \mathcal{N}_{sa}$, and we have

$$\forall \hat{B} \in \mathcal{N}_{sa} : \frac{d}{dt} (\hat{U}_t \hat{B} \hat{U}_{-t})|_{t=0} = i [\hat{A}, \hat{B}].$$

Observation: In order to reconstruct \mathcal{N} , we need not just the symmetrised product (Jordan structure), but also the antisymmetrised product (Lie structure). This 'decomposition' of the noncommutative product also has a good physical motivation.

The Lie structure is closely related to the unitary group $\mathcal{U}(\mathcal{N})$ acting on \mathcal{N} : by Stone's theorem, $\hat{U}_t = e^{it\hat{A}}$ for $\hat{A} \in \mathcal{N}_{sa}$, and we have

$$\forall \hat{B} \in \mathcal{N}_{sa} : \frac{d}{dt} (\hat{U}_t \hat{B} \hat{U}_{-t})|_{t=0} = i [\hat{A}, \hat{B}].$$

Every unitary operator gives a Jordan automorphism $\phi_{\hat{U}} : \mathcal{N} \to \mathcal{N}$, $\hat{A} \mapsto \hat{U}\hat{A}\hat{U}^*$, and hence an automorphism $\mathcal{G} \circ \Phi_{\hat{U}} : \underline{\Sigma} \to \underline{\Sigma}$.

Observation: In order to reconstruct \mathcal{N} , we need not just the symmetrised product (Jordan structure), but also the antisymmetrised product (Lie structure). This 'decomposition' of the noncommutative product also has a good physical motivation.

The Lie structure is closely related to the unitary group $\mathcal{U}(\mathcal{N})$ acting on \mathcal{N} : by Stone's theorem, $\hat{U}_t = e^{it\hat{A}}$ for $\hat{A} \in \mathcal{N}_{sa}$, and we have

$$\forall \hat{B} \in \mathcal{N}_{sa} : \frac{d}{dt} (\hat{U}_t \hat{B} \hat{U}_{-t})|_{t=0} = i [\hat{A}, \hat{B}].$$

Every unitary operator gives a Jordan automorphism $\phi_{\hat{U}} : \mathcal{N} \to \mathcal{N}$, $\hat{A} \mapsto \hat{U}\hat{A}\hat{U}^*$, and hence an automorphism $\mathcal{G} \circ \Phi_{\hat{U}} : \underline{\Sigma} \to \underline{\Sigma}$.

Aim: Identify these 'good' automorphisms among all automorphisms of $\underline{\Sigma}$. This will help to reconstruct $\mathcal{U}(\mathcal{N})$ and hence the noncommutative von Neumann algebra \mathcal{N} .

Morphisms between different algebras

Up to now, we considered only (Jordan) automorphisms of von Neumann algebras. More generally, an ultraweakly continuous unital Jordan morphism

$$\phi:\mathcal{N}_1\longrightarrow\mathcal{N}_2$$

preserves commutativity and hence induces a geometric morphism $\Phi: \mathbf{Set}^{\mathcal{V}(\mathcal{N}_1)^{\mathsf{op}}} \to \mathbf{Set}^{\mathcal{V}(\mathcal{N}_2)^{\mathsf{op}}}$ and a morphism

$$\mathcal{G} \circ \Phi^* : \underline{\Sigma}_{\mathcal{N}_2} \longrightarrow \underline{\Sigma}_{\mathcal{N}_1}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Morphisms between different algebras

Up to now, we considered only (Jordan) automorphisms of von Neumann algebras. More generally, an ultraweakly continuous unital Jordan morphism

$$\phi:\mathcal{N}_1\longrightarrow\mathcal{N}_2$$

preserves commutativity and hence induces a geometric morphism $\Phi: \textbf{Set}^{\mathcal{V}(\mathcal{N}_1)^{op}} \to \textbf{Set}^{\mathcal{V}(\mathcal{N}_2)^{op}}$ and a morphism

$$\mathcal{G} \circ \Phi^* : \underline{\Sigma}_{\mathcal{N}_2} \longrightarrow \underline{\Sigma}_{\mathcal{N}_1}.$$

Every Jordan morphism $\phi : \mathcal{N}_1 \to \mathcal{N}_2$ acts as a *-homomorphism on one direct summand of \mathcal{N}_1 , and as a *-antihomomorphism on the other direct summand. Either direct summand may be empty.

Morphisms between different algebras

Up to now, we considered only (Jordan) automorphisms of von Neumann algebras. More generally, an ultraweakly continuous unital Jordan morphism

$$\phi:\mathcal{N}_1\longrightarrow\mathcal{N}_2$$

preserves commutativity and hence induces a geometric morphism $\Phi: \textbf{Set}^{\mathcal{V}(\mathcal{N}_1)^{op}} \to \textbf{Set}^{\mathcal{V}(\mathcal{N}_2)^{op}}$ and a morphism

$$\mathcal{G} \circ \Phi^* : \underline{\Sigma}_{\mathcal{N}_2} \longrightarrow \underline{\Sigma}_{\mathcal{N}_1}.$$

Every Jordan morphism $\phi : \mathcal{N}_1 \to \mathcal{N}_2$ acts as a *-homomorphism on one direct summand of \mathcal{N}_1 , and as a *-antihomomorphism on the other direct summand. Either direct summand may be empty.

The open task is to identify which of the morphisms $\mathcal{G} \circ \Phi : \underline{\Sigma}_{\mathcal{N}_2} \to \underline{\Sigma}_{\mathcal{N}_1}$ come from (ultraweakly continuous) *-homomorphisms $\phi : \mathcal{N}_1 \to \mathcal{N}_2$, i.e., the arrows in **vNA**.

Zariski geometries

Andreas Döring (Oxford)

B. Zilber, E. Hrushovski '96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

B. Zilber, E. Hrushovski '96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

• Soon observed: non-standard examples with noncommuting coordinate functions. These are spaces associated with NC algebras.

B. Zilber, E. Hrushovski '96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

- Soon observed: non-standard examples with noncommuting coordinate functions. These are spaces associated with NC algebras.
- In some cases, the NC algebra can be reconstructed from the Zariski geometry (Zilber).

B. Zilber, E. Hrushovski '96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

- Soon observed: non-standard examples with noncommuting coordinate functions. These are spaces associated with NC algebras.
- In some cases, the NC algebra can be reconstructed from the Zariski geometry (Zilber).
- Works (roughly speaking) because Lie algebra aspects are built in. The Lie group elements act as vector fields on the Zariski geometries.

B. Zilber, E. Hrushovski '96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

- Soon observed: non-standard examples with noncommuting coordinate functions. These are spaces associated with NC algebras.
- In some cases, the NC algebra can be reconstructed from the Zariski geometry (Zilber).
- Works (roughly speaking) because Lie algebra aspects are built in. The Lie group elements act as vector fields on the Zariski geometries.

Recently, a connection between the topos approach and Zariski geometries has shown up: the spectral presheaf $\underline{\Sigma}$ is a Zariski geometry if \mathcal{N} is a matrix algebra (V. Solanki; presumably a more general result holds).

・ロト ・ 一 ・ ・ ヨト ・ ヨト

B. Zilber, E. Hrushovski '96: model-theoretic axiomatisation of algebraic varieties, called Zariski geometries. These are topological structures (in the model-theoretic sense) with a good notion of dimension.

- Soon observed: non-standard examples with noncommuting coordinate functions. These are spaces associated with NC algebras.
- In some cases, the NC algebra can be reconstructed from the Zariski geometry (Zilber).
- Works (roughly speaking) because Lie algebra aspects are built in. The Lie group elements act as vector fields on the Zariski geometries.

Recently, a connection between the topos approach and Zariski geometries has shown up: the spectral presheaf $\underline{\Sigma}$ is a Zariski geometry if \mathcal{N} is a matrix algebra (V. Solanki; presumably a more general result holds).

But Lie algebra aspects are not built in yet.

・ロト ・四ト ・ヨト ・ヨト

There are more connections: one can associate a presheaf (over commutative subalgebras) of Zariski structures with a NC *-algebra, see B. Zilber, *Finitary presheaf associated with a non-commutative algebra*, preprint, available from

http://people.maths.ox.ac.uk/zilber/sheaf.pdf (2011).

Zariski geometries (2)

There are more connections: one can associate a presheaf (over commutative subalgebras) of Zariski structures with a NC *-algebra, see B. Zilber, *Finitary presheaf associated with a non-commutative algebra*, preprint, available from

http://people.maths.ox.ac.uk/zilber/sheaf.pdf (2011).

Instead of identifying good automorphisms, here a presheaf with richer structure is defined which incorporates Lie algebra aspects.

For details, please see Zilber's website!

Covariant and contravariant

Andreas Döring (Oxford)

Towards Noncommutative Gel'fand Duality

The covariant topos

There also is another variant of the topos approach using covariant functors over $\mathcal{V}(\mathcal{N})$, by C. Heunen, N. Landsman and B. Spitters. This allows to define a canonical internal commutative algebra $\overline{\mathcal{N}}$ from an external noncommutative algebra \mathcal{N} (which can be a C^* -algebra).

The covariant topos

There also is another variant of the topos approach using covariant functors over $\mathcal{V}(\mathcal{N})$, by C. Heunen, N. Landsman and B. Spitters. This allows to define a canonical internal commutative algebra $\overline{\mathcal{N}}$ from an external noncommutative algebra \mathcal{N} (which can be a C^* -algebra).

The internal commutative algebra, given initially as the tautological functor over $\mathcal{V}(\mathcal{N})$, is basically the partial algebra obtained by forgetting all algebraic operations between noncommuting operators in \mathcal{N} .

The covariant topos

There also is another variant of the topos approach using covariant functors over $\mathcal{V}(\mathcal{N})$, by C. Heunen, N. Landsman and B. Spitters. This allows to define a canonical internal commutative algebra $\overline{\mathcal{N}}$ from an external noncommutative algebra \mathcal{N} (which can be a C^* -algebra).

The internal commutative algebra, given initially as the tautological functor over $\mathcal{V}(\mathcal{N})$, is basically the partial algebra obtained by forgetting all algebraic operations between noncommuting operators in \mathcal{N} .

By constructive Gel'fand duality (B. Banaschewski/C. Mulvey), the internal algebra has a Gel'fand spectrum $\overline{\Sigma}$ in the topos **Set**^{$\mathcal{V}(\mathcal{N})$}.

- 4 週 ト - 4 三 ト - 4 三 ト -

We observe:

• The covariant topos $\mathbf{Set}^{\mathcal{V}(\mathcal{N})}$ comes with a canonical internal algebra $\overline{\mathcal{N}}$. The construction of the spectrum $\overline{\Sigma}$ is quite involved.

We observe:

- The covariant topos $\mathbf{Set}^{\mathcal{V}(\mathcal{N})}$ comes with a canonical internal algebra $\overline{\mathcal{N}}$. The construction of the spectrum $\overline{\Sigma}$ is quite involved.
- The contravariant topos Set^{V(N)^{op}} comes with a canonical internal spectral object <u>Σ</u>. There is a candidate for a noncommutative internal algebra (not shown here).

We observe:

- The covariant topos $\mathbf{Set}^{\mathcal{V}(\mathcal{N})}$ comes with a canonical internal algebra $\overline{\mathcal{N}}$. The construction of the spectrum $\overline{\Sigma}$ is quite involved.
- The contravariant topos Set^{V(N)^{op}} comes with a canonical internal spectral object <u>Σ</u>. There is a candidate for a noncommutative internal algebra (not shown here).

Question (suggested by J. Funk): Is there a duality between the pair

$$(\mathsf{Set}^{\mathcal{V}(\mathcal{N})}, \overline{\mathcal{N}}), \ (\mathsf{Set}^{\mathcal{V}(\mathcal{N})^{\mathsf{op}}}, \underline{\Sigma})$$

for each von Neumann algebra (or C^* -algebra) \mathcal{N} ?

We observe:

- The covariant topos $\mathbf{Set}^{\mathcal{V}(\mathcal{N})}$ comes with a canonical internal algebra $\overline{\mathcal{N}}$. The construction of the spectrum $\overline{\Sigma}$ is quite involved.
- The contravariant topos Set^{V(N)^{op}} comes with a canonical internal spectral object <u>Σ</u>. There is a candidate for a noncommutative internal algebra (not shown here).

Question (suggested by J. Funk): Is there a duality between the pair

$$(\mathsf{Set}^{\mathcal{V}(\mathcal{N})},\overline{\mathcal{N}}),\ (\mathsf{Set}^{\mathcal{V}(\mathcal{N})^{\mathsf{op}}},\underline{\Sigma})$$

for each von Neumann algebra (or C^* -algebra) \mathcal{N} ?

If so, this would at least cover the partial (commutative) algebra aspect of ${\cal N},$ and presumably also the Jordan algebra aspect.

Thanks for listening!

Andreas Döring (Oxford)

Towards Noncommutative Gel'fand Duality

20 / 20

・ 何 ト ・ ヨ ト ・ ヨ ト