On the Isbell conjugation adjunction for monad-quantale-enriched categories

Dirk Hofmann

Departamento de Matemática \& CIDMA, Universidade de Aveiro, Portugal http://www.mat.ua.pt/pessoais/dirk/
dirk@ua.pt
hom : $X^{\mathrm{op}} \times X \rightarrow$ Set

$$
\leq: X^{\mathrm{op}} \times X \rightarrow 2
$$

$$
\leq: X^{\mathrm{op}} \times X \rightarrow 2
$$

- Both sides define lax idempotent monads on Ord.
- algebra=(co)complete ordered set.
- complete=cocomplete.
- There is a distributive law.

$$
\leq: X^{\mathrm{op}} \times X \rightarrow 2
$$

- Both sides define lax idempotent monads on Ord.
- algebra=(co)complete ordered set.
- complete=cocomplete.
- There is a distributive law.

How to do this on $\mathbb{T V}$?

$$
\leq: X^{\mathrm{op}} \times X \rightarrow 2
$$

- Both sides define lax idempotent monads on Ord.
- algebra=(co)complete ordered set.
- complete=cocomplete.
- There is a distributive law.

How to do this on $\mathbb{T V}$?
Now we consider: $a: T X \times X \rightarrow V$ with $\left\{\begin{array}{l}1 \times \leq a \cdot e_{X}, \\ a \cdot T a \leq a \cdot m_{X}\end{array}\right.$

$$
\leq: X^{\mathrm{op}} \times X \rightarrow 2
$$

- Both sides define lax idempotent monads on Ord.
- algebra=(co)complete ordered set.
- complete=cocomplete.
- There is a distributive law.

How to do this on $\mathbb{T V}$?
Now we consider: $a:(T X)^{\mathrm{op}} \otimes X \rightarrow \mathrm{~V}$ with $\left\{\begin{array}{l}1 \times \leq a \cdot e_{X}, \\ a \cdot T a \leq a \cdot m_{X}\end{array}\right.$

- \mathbb{T} extends to a monad on V-Cat; $\left(X, a_{0}: X \longrightarrow X\right) \mapsto\left(T X, T a_{0}: T X \longrightarrow T X\right)$.
- \mathbb{T} extends to a monad on V-Cat;

$$
\left(X, a_{0}: X \mapsto X\right) \mapsto\left(T X, T a_{0}: T X \mapsto T X\right)
$$

$$
\text { V-Cat }{ }^{\mathbb{T}} \frac{K}{M}(\mathbb{T}, \mathrm{~V}) \text {-Cat, }\left\{\begin{array}{l}
K\left(X, a_{0}, \alpha\right)=\left(X, a_{0} \cdot \alpha: T V \mapsto V\right), \\
M(X, a)=\left(T X, T a \cdot m_{X}, m_{X}\right)
\end{array}\right.
$$

- \mathbb{T} extends to a monad on V-Cat;

$$
\left(X, a_{0}: X \mapsto X\right) \mapsto\left(T X, T a_{0}: T X \mapsto T X\right)
$$

$$
\mathrm{V}-\mathrm{Cat}^{\mathbb{T}} \frac{K}{\frac{T}{M}}(\mathbb{T}, \mathrm{~V}) \text {-Cat, }\left\{\begin{array}{l}
K\left(X, a_{0}, \alpha\right)=\left(X, a_{0} \cdot \alpha: T V \mapsto V\right) \\
M(X, a)=\left(T X, T a \cdot m_{X}, m_{X}\right)
\end{array}\right.
$$

- induces lax idem. monad \mathbb{T} on (\mathbb{T}, V)-Cat, $\mathrm{V}-\mathrm{Cat}^{\mathbb{T}} \simeq(\mathbb{T}, \mathrm{V})$-Cat ${ }^{\mathbb{T}}$.
- \mathbb{T} extends to a monad on V-Cat;

$$
\left(X, a_{0}: X \mapsto X\right) \mapsto\left(T X, T a_{0}: T X \mapsto T X\right)
$$

$$
\mathrm{V}-\mathrm{Cat}^{\mathbb{T}} \frac{K}{M}(\mathbb{T}, \mathrm{~V}) \text {-Cat, }\left\{\begin{array}{l}
K\left(X, a_{0}, \alpha\right)=\left(X, a_{0} \cdot \alpha: T V \mapsto V\right), \\
M(X, a)=\left(T X, T a \cdot m_{X}, m_{X}\right)
\end{array}\right.
$$

- induces lax idem. monad \mathbb{T} on (\mathbb{T}, V)-Cat, V -Cat ${ }^{\mathbb{T}} \simeq(\mathbb{T}, \mathrm{V})$-Cat ${ }^{\mathbb{T}}$.
- (X, a) is called representable if $X \frac{e_{X}}{\frac{T}{\alpha}} T X$. Then $a=a_{0} \cdot \alpha$.
- \mathbb{T} extends to a monad on V -Cat;

$$
\left(X, a_{0}: X \mapsto X\right) \mapsto\left(T X, T a_{0}: T X \mapsto T X\right)
$$

$$
\mathrm{V}-\mathrm{Cat}^{\mathbb{T}} \frac{K}{M}(\mathbb{T}, \mathrm{~V}) \text {-Cat, }\left\{\begin{array}{l}
K\left(X, a_{0}, \alpha\right)=\left(X, a_{0} \cdot \alpha: T V \mapsto V\right), \\
M(X, a)=\left(T X, T a \cdot m_{X}, m_{X}\right)
\end{array}\right.
$$

- induces lax idem. monad \mathbb{T} on (\mathbb{T}, V)-Cat, $\mathrm{V}-\mathrm{Cat}^{\mathbb{T}} \simeq(\mathbb{T}, \mathrm{V})$-Cat ${ }^{\mathbb{T}}$.
- (X, a) is called representable if $X \frac{e_{X}}{\frac{T}{\alpha}} T X$. Then $a=a_{0} \cdot \alpha$.
- For $X=(X, a)$ representable: $\quad X^{\mathrm{op}}=\left(X, a_{0}^{\circ} \cdot \alpha\right)$.
- \mathbb{T} extends to a monad on V-Cat;

$$
\left(X, a_{0}: X \mapsto X\right) \mapsto\left(T X, T a_{0}: T X \longrightarrow T X\right)
$$

$$
\text { V-Cat }{ }^{T} \frac{K}{M}(\mathbb{T}, V) \text {-Cat, }\left\{\begin{array}{l}
K\left(X, a_{0}, \alpha\right)=\left(X, a_{0} \cdot \alpha: T V \mapsto V\right) \\
M(X, a)=\left(T X, T a \cdot m_{X}, m_{X}\right)
\end{array}\right.
$$

- induces lax idem. monad \mathbb{T} on (\mathbb{T}, V)-Cat, $\mathrm{V}-\mathrm{Cat}^{\mathbb{T}} \simeq(\mathbb{T}, \mathrm{V})$-Cat ${ }^{\mathbb{T}}$.
- (X, a) is called representable if $X \underset{\alpha}{\frac{e_{X}}{T}} T X$. Then $a=a_{0} \cdot \alpha$.
- For $X=(X, a)$ representable: $\quad X^{\mathrm{op}}=\left(X, a_{0}^{\circ} \cdot \alpha\right)$.
- $X=(X, a)$ representable $\Rightarrow a \cdot T a=a \cdot m_{X} \Rightarrow X \otimes$-exponentiable.
- X injective $\Rightarrow X$ representable.
- X injective $\Rightarrow X$ representable.
- X inj. $\Longleftrightarrow X$ totally cocomplete, i.e. $X \underset{\text { Sup }}{\frac{y_{X}}{T}} \mathrm{~V}^{(T X)^{\mathrm{op}}}$.
- X injective $\Rightarrow X$ representable.
- X inj. $\Longleftrightarrow X$ totally cocomplete, i.e. $X \underset{\text { Sup }}{\frac{y_{X}}{T}} \mathrm{~V}^{(T X)^{\text {op }}}$.
- $f: X \rightarrow Y$ left adjoint, $(X, a),(Y, b)$ representable $\Rightarrow f$ homom.
- X injective $\Rightarrow X$ representable.

- $f: X \rightarrow Y$ left adjoint, $(X, a),(Y, b)$ representable $\Rightarrow f$ homom.
- For $f: X \rightarrow Y$ and $(X, a),(Y, b)$ representable:

$$
f \text { is }(\mathbb{T}, \mathrm{V}) \text {-functor } \Longleftrightarrow\left\{\begin{array}{l}
f \text { is } V \text {-functor } \\
f(\alpha(\mathfrak{x})) \geq \beta(\operatorname{Uf}(\mathfrak{x}))
\end{array}\right.
$$

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.
$(T X)^{\mathrm{op}} \xrightarrow{\wedge_{X}} \mathrm{~V}^{X}$

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.
$(T X)^{\mathrm{op}} \xrightarrow{\wedge_{X}} \mathrm{~V}^{X}$

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.
$(T X)^{\mathrm{op}} \xrightarrow{\Lambda_{X}} \mathrm{~V}^{X}$

- λ_{X} is fully faithful.

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.
$(T X)^{\mathrm{op}} \xrightarrow{\wedge_{X}} \mathrm{~V}^{X}$

- λ_{X} is fully faithful.
- X representable $\Rightarrow \lambda_{X}$ homomorphism.

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.
$(T X)^{\mathrm{op}} \xrightarrow{\Lambda_{x}} \mathrm{~V}^{X}$

- λ_{X} is fully faithful.
- X representable $\Rightarrow \lambda_{X}$ homomorphism.
- Q is actually a functor; f homomorphism $\Rightarrow Q f$ homomorphism.

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.
$(T X)^{\mathrm{op}} \xrightarrow{\wedge_{X}} \mathrm{~V}^{X}$

- λ_{X} is fully faithful.
- X representable $\Rightarrow \lambda_{X}$ homomorphism.
- Q is actually a functor; f homomorphism $\Rightarrow Q f$ homomorphism.
- $X \otimes(Q Q X)^{\mathrm{op}} \xrightarrow{\lambda_{x} \otimes 1} Q X \otimes V^{Q X} \xrightarrow{\text { ev }} V$ gives

$$
\omega_{X}^{\mathrm{op}}:(Q Q X)^{\mathrm{op}} \rightarrow(Q X)^{\mathrm{op}}
$$

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.
$(T X)^{\mathrm{op}} \xrightarrow{\Lambda_{X}} \mathrm{~V}^{X}$

- λ_{X} is fully faithful.
- X representable $\Rightarrow \lambda_{X}$ homomorphism.
- Q is actually a functor; f homomorphism $\Rightarrow Q f$ homomorphism.
- $X \otimes(Q Q X)^{\mathrm{op}} \xrightarrow{\lambda_{x} \otimes 1} Q X \otimes V^{Q X} \xrightarrow{\text { ev }} V$ gives

$$
\omega_{X}^{\mathrm{op}}:(Q Q X)^{\mathrm{op}} \rightarrow(Q X)^{\mathrm{op}}, \quad \omega_{X}^{\mathrm{op}} \dashv \lambda_{Q X}^{\mathrm{op}} .
$$

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.
$(T X)^{\mathrm{op}} \xrightarrow{\Lambda_{x}} \mathrm{~V}^{X}$

- λ_{X} is fully faithful.
- X representable $\Rightarrow \lambda_{X}$ homomorphism.
- Q is actually a functor; f homomorphism $\Rightarrow Q f$ homomorphism.
- $X \otimes(Q Q X)^{\mathrm{op}} \xrightarrow{\lambda_{x} \otimes 1} Q X \otimes V^{Q X} \xrightarrow{\text { ev }} V$ gives

$$
\omega_{X}^{\mathrm{op}}:(Q Q X)^{\mathrm{op}} \rightarrow(Q X)^{\mathrm{op}}, \quad \omega_{X}^{\mathrm{op}} \dashv \lambda_{Q X}^{\mathrm{op}} .
$$

- $\omega=\left(\omega_{X}\right)$ is a nat. transform. when restricted to repres. cat's.

Assume $T 1=1, X=(X, a)$ with $a \cdot T a=a \cdot m_{X}$.
$(T X)^{\mathrm{op}} \xrightarrow{\wedge_{X}} \mathrm{~V}^{X}$

- λ_{X} is fully faithful.
- X representable $\Rightarrow \lambda_{X}$ homomorphism.
- Q is actually a functor; f homomorphism $\Rightarrow Q f$ homomorphism.
- $X \otimes(Q Q X)^{\mathrm{op}} \xrightarrow{\lambda_{x} \otimes 1} Q X \otimes V^{Q X} \xrightarrow{\text { ev }} V$ gives

$$
\omega_{X}^{\mathrm{op}}:(Q Q X)^{\mathrm{op}} \rightarrow(Q X)^{\mathrm{op}}, \quad \omega_{X}^{\mathrm{op}} \dashv \lambda_{Q X}^{\mathrm{op}} .
$$

- $\omega=\left(\omega_{X}\right)$ is a nat. transform. when restricted to repres. cat's.
- $\mathbb{Q}=(Q, \omega, \lambda)$ is a lax idemp. monad on $\mathrm{V}-\mathrm{Cat}^{\mathbb{T}} \simeq(\mathbb{T}, \mathrm{V})-\mathrm{Cat}{ }^{\mathbb{T}}$.

Let X be a (\mathbb{T}, V)-category. Then X is

Let X be a (\mathbb{T}, V)-category. Then X is

- cocomplete whenever "all weighted colimits exist"
$\Longleftrightarrow X \underset{y_{X}}{\left.\frac{\text { Sup }}{\stackrel{1}{2}} V^{(T X}\right)^{\text {op }}}$ in V-Cat.

Let X be a (\mathbb{T}, V)-category. Then X is

- cocomplete whenever "all weighted colimits exist"

$$
\Longleftrightarrow X \underset{y_{X}}{\left.\frac{\text { Sup }}{\perp} V^{(T X}\right)^{\text {op }}} \text { in V-Cat. }
$$

- totally cocomplete whenever $x \stackrel{\text { Sup }}{y_{X}} V^{(T X)^{\text {op }}}$ in (\mathbb{T}, V)-Cat.

Let X be a (\mathbb{T}, V)-category. Then X is

- cocomplete whenever "all weighted colimits exist"

$$
\Longleftrightarrow X \underset{y_{X}}{\left.\frac{\text { Sup }}{\perp} V^{(T X}\right)^{\text {op }}} \text { in V-Cat. }
$$

- totally cocomplete whenever $X \xrightarrow[y_{X}]{\stackrel{\text { Sup }}{\perp}} \mathrm{V}^{(T X)^{\text {op }}}$ in (T, V)-Cat.

Let X be a representable (\mathbb{T}, V)-category. Then X is

- complete whenever "all weighted limits exist"

Let X be a (\mathbb{T}, V)-category. Then X is

- cocomplete whenever "all weighted colimits exist"

$$
\Longleftrightarrow X \underset{y_{X}}{\left.\frac{\text { Sup }}{\perp} V^{(T X}\right)^{\text {op }}} \text { in V-Cat. }
$$

- totally cocomplete whenever $x \xrightarrow[y_{X}]{\stackrel{\text { Sup }}{\perp}} \mathrm{V}^{(T X)^{\text {op }}}$ in (\mathbb{T}, V)-Cat.

Let X be a representable (\mathbb{T}, V)-category. Then X is

- complete whenever "all weighted limits exist"

$$
\Longleftrightarrow X \underset{\lambda_{X}}{\frac{\operatorname{lnf}}{T}}\left(V^{X}\right)^{\mathrm{op}} \text { in }(\mathbb{T}, \mathrm{V}) \text {-Cat. }
$$

Let X be a (\mathbb{T}, V)-category. Then X is

- cocomplete whenever "all weighted colimits exist"
$\Longleftrightarrow X \xlongequal[y_{X}]{\left.\frac{\text { Sup }}{\perp} V^{(T X}\right)^{\text {op }}}$ in V-Cat.
- totally cocomplete whenever $x \xrightarrow[y_{X}]{\stackrel{\text { Sup }}{\perp}} \mathrm{V}^{(T X)^{\text {op }}}$ in ($\left.\mathbb{T}, \mathrm{V}\right)$-Cat.

Let X be a representable (\mathbb{T}, V)-category. Then X is

- complete whenever "all weighted limits exist"

\Longleftrightarrow the V-category X_{0} is complete.

Let X be a (\mathbb{T}, V)-category. Then X is

- cocomplete whenever "all weighted colimits exist"

$$
\Longleftrightarrow X \underset{y_{X}}{\left.\frac{\text { Sup }}{\perp} V^{(T X}\right)^{\text {op }}} \text { in V-Cat. }
$$

- totally cocomplete whenever $x \xrightarrow[y_{X}]{\stackrel{\text { Sup }}{\perp}} V^{(T X)^{\text {op }}}$ in ($\left.\mathbb{T}, \mathrm{V}\right)$-Cat.

Let X be a representable (\mathbb{T}, V)-category. Then X is

- complete whenever "all weighted limits exist"

\Longleftrightarrow the V-category X_{0} is complete.
- totally complete if $x \xrightarrow[\lambda_{x}]{\stackrel{\operatorname{lnf}}{T}}\left(V^{X}\right)^{\mathrm{op}}$ in V -Cat ${ }^{\mathbb{T}}$.
- We have

in V-Cat.
- We have

in V-Cat.
- $(-)^{-}$is even a (\mathbb{T}, V)-functor, but $(-)^{+}$in general not.
- We have

in V-Cat.
- $(-)^{-}$is even a (\mathbb{T}, V)-functor, but $(-)^{+}$in general not.
- For X repres.: X cocomplete $\Longleftrightarrow X$ complete.
- We have

in V-Cat.
- $(-)^{-}$is even a (\mathbb{T}, V)-functor, but $(-)^{+}$in general not.
- For X repres.: X cocomplete $\Longleftrightarrow X$ complete.
- However: $[0, \infty]^{\text {op }}$ (in $(\mathbb{U},[0, \infty])$-Cat) is totally complete but not totally cocomplete.

Consider $f: X \rightarrow Y$ with $(X, a),(Y, b)$ representable. TFAE:
(1) Qf: QX \rightarrow QY has a left adjoint (in ($\mathbb{T}, \mathrm{V})$-Cat).

Consider $f: X \rightarrow Y$ with $(X, a),(Y, b)$ representable. TFAE:
(1) Qf: QX \rightarrow QY has a left adjoint (in (\mathbb{T}, V)-Cat).
(1) $\mathrm{V}^{f}: \mathrm{V}^{Y} \rightarrow \mathrm{~V}^{X}$ is a homomorphism.

Consider $f: X \rightarrow Y$ with $(X, a),(Y, b)$ representable. TFAE:
(1) Qf: QX \rightarrow QY has a left adjoint (in (\mathbb{T}, V)-Cat).
(1) $\mathrm{V}^{f}: \mathrm{V}^{Y} \rightarrow \mathrm{~V}^{X}$ is a homomorphism.
(1) f is weakly open, i.e. $f^{\circ} \cdot b \leq a \cdot T f^{\circ} \cdot T b_{0}$.

In Top: $\mathfrak{x}_{1} \cdots \cdots \cdots \cdots \cdots \mathfrak{y}^{\prime} \leq \mathfrak{y}$

Consider $f: X \rightarrow Y$ with $(X, a),(Y, b)$ representable. TFAE:
(1) Qf: $Q X \rightarrow Q Y$ has a left adjoint (in ($\mathbb{T}, \mathrm{V})$-Cat).
(1) $\mathrm{V}^{f}: \mathrm{V}^{Y} \rightarrow \mathrm{~V}^{X}$ is a homomorphism.
(1) f is weakly open, i.e. $f^{\circ} \cdot b \leq a \cdot T f^{\circ} \cdot T b_{0}$.

In Top: $\mathfrak{x}_{1} \quad \cdots \quad>\mathfrak{y}^{\prime} \leq \mathfrak{y}$

Hence, for $f: X \rightarrow Y(\mathbb{T}, \mathrm{~V})$-functor with X, Y totally complete:
f is right adjoint in (\mathbb{T}, V)-Cat $\Longleftrightarrow\left\{\begin{array}{l}f \text { preserves infima } \\ \text { and is "weakly open". }\end{array}\right.$

Let $X=(X, a), Y=(Y, b)$ be repr., $a=a_{0} \cdot \alpha, b=b_{0} \cdot \alpha$.

Let $X=(X, a), Y=(Y, b)$ be repr., $a=a_{0} \cdot \alpha, b=b_{0} \cdot \alpha$.

Hence $\left(\text { V-Cat }{ }^{\mathbb{T}}\right)_{\mathbb{Q}} \simeq \mathbb{Q}$-Mod.

Let $X=(X, a), Y=(Y, b)$ be repr., $a=a_{0} \cdot \alpha, b=b_{0} \cdot \alpha$.

$$
\varphi: X \rightarrow Q Y \text { in V-Cat }{ }^{\mathbb{T}}=\left\{\begin{array}{cc}
\text { V-module } \varphi: X \longrightarrow Y \text { where } \\
T X \xrightarrow{T \varphi}> & T Y \\
\alpha_{*} \phi_{0} & \phi_{\beta_{*}} \\
\forall \xrightarrow[\varphi]{\circ}> & Y^{*}
\end{array}\right.
$$

Hence $\left(\mathrm{V}-\mathrm{Cat}^{\mathbb{T}}\right)_{\mathbb{Q}} \simeq \mathbb{Q}$-Mod.
For Top:

Let $X=(X, a), Y=(Y, b)$ be repr., $a=a_{0} \cdot \alpha, b=b_{0} \cdot \alpha$.

Hence $\left(\mathrm{V}-\mathrm{Cat}^{\mathbb{T}}\right)_{\mathbb{Q}} \simeq \mathbb{Q}$-Mod.
For Top:

- hom $(-, 1)$ is induced by a monad morphism δ.

Let $X=(X, a), Y=(Y, b)$ be repr., $a=a_{0} \cdot \alpha, b=b_{0} \cdot \alpha$.

Hence $\left(\mathrm{V} \text {-Cat }{ }^{\mathbb{T}}\right)_{\mathbb{Q}} \simeq \mathbb{Q}$-Mod.
For Top:

- hom $(-, 1)$ is induced by a monad morphism δ.
- δ_{X} iso $\Longleftrightarrow X$ is Priestley. (Hence: X Priestley $\Rightarrow Q X$ Priestley)

Let $X=(X, a), Y=(Y, b)$ be repr., $a=a_{0} \cdot \alpha, b=b_{0} \cdot \alpha$.

$$
\varphi: X \rightarrow Q Y \text { in V-Cat }{ }^{\mathbb{T}}=\left\{\begin{array}{cc}
\text { V-module } \varphi: X \rightarrow Y \text { where } \\
T X \xrightarrow{T \varphi} & T Y \\
\alpha_{*} \phi & \phi_{\beta_{*}} \\
\forall & \downarrow \\
X \underset{\varphi}{\bullet} & Y
\end{array}\right.
$$

Hence $\left(\mathrm{V} \text {-Cat }{ }^{\mathbb{T}}\right)_{\mathbb{Q}} \simeq \mathbb{Q}$-Mod.
For Top:

- hom $(-, 1)$ is induced by a monad morphism δ.
- δ_{X} iso $\Longleftrightarrow X$ is Priestley. (Hence: X Priestley $\Rightarrow Q X$ Priestley)
- Priest $_{\mathbb{Q}} \simeq$ DLat $_{\mathrm{V}, \perp}^{\mathrm{op}}$. $\left(\right.$ Hence: Stone ${ }_{\mathbb{V}} \simeq$ Bool $\left._{\mathrm{V}, \perp}^{\mathrm{op}}\right)$

