Notions of Möbius inversion

Tom Leinster

Glasgow/EPSRC

Prelude:

How important is composition in a category?

How important is the topology of a topological space?

How important is the topology of a topological space?

• A cell complex is a gluing of balls:

How important is the topology of a topological space?

- A cell complex is a gluing of balls:
- Its topology depends entirely on how they are glued.

How important is the topology of a topological space?

- A cell complex is a gluing of balls:
- Its topology depends entirely on how they are glued.
- But its Euler characteristic does not.

How important is the topology of a topological space?

- A cell complex is a gluing of balls:
- Its topology depends entirely on how they are glued.
- But its Euler characteristic does not.

Let **A** be a small category. Write $|\mathbf{A}| = |N\mathbf{A}|$ for its classifying space.

How important is the topology of a topological space?

- A cell complex is a gluing of balls:
- Its topology depends entirely on how they are glued.
- But its Euler characteristic does not.

Let **A** be a small category. Write $|\mathbf{A}| = |N\mathbf{A}|$ for its classifying space.

Suppose that **A** is suitably finite, so that $\chi(|\mathbf{A}|)$ is defined.

How important is the topology of a topological space?

- A cell complex is a gluing of balls:
- Its topology depends entirely on how they are glued.
- But its Euler characteristic does not.

Let **A** be a small category. Write $|\mathbf{A}| = |N\mathbf{A}|$ for its classifying space.

Suppose that **A** is suitably finite, so that $\chi(|\mathbf{A}|)$ is defined.

Theorem

 $\chi(|\mathbf{A}|)$ is independent of the composition and identities in \mathbf{A} .

Prelude:

How important is composition in a category?

How important is the topology of a topological space?

- A cell complex is a gluing of balls:
- Its topology depends entirely on how they are glued.
- But its Euler characteristic does not.

Let **A** be a small category. Write $|\mathbf{A}| = |N\mathbf{A}|$ for its classifying space.

Suppose that **A** is suitably finite, so that $\chi(|\mathbf{A}|)$ is defined.

Theorem

 $\chi(|\mathbf{A}|)$ is independent of the composition and identities in \mathbf{A} .

That is, if **A** and **A**' have the same underlying graph then $\chi(|\mathbf{A}|) = \chi(|\mathbf{A}'|)$.

1. A simplified history of Möbius inversion

- 1. A simplified history of Möbius inversion
- 2. Fine vs. coarse Möbius inversion

- 1. A simplified history of Möbius inversion
- 2. Fine vs. coarse Möbius inversion
- 3. How important is composition in a category?

1. A simplified history of Möbius inversion

Number-theoretic Möbius inversion (Möbius 1832)

Number-theoretic Möbius inversion (Möbius 1832)

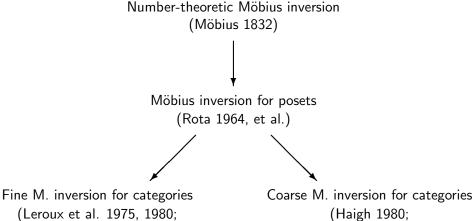
Möbius inversion for posets (Rota 1964, et al.)

Number-theoretic Möbius inversion (Möbius 1832)

4...

Möbius inversion for posets (Rota 1964, et al.)

Fine M. inversion for categories (Leroux et al. 1975, 1980; Haigh 1980)



Leinster 2008)

Haigh 1980)

For $\alpha, \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$, define $\alpha * \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$ by

$$(\alpha * \beta)(n) = \sum_{k} \alpha(k)\beta(m).$$

For $\alpha, \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$, define $\alpha * \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$ by

$$(\alpha * \beta)(n) = \sum_{k} \alpha(k)\beta(m).$$

The unit for the product * is δ : $\mathbb{Z}^+ \to \mathbb{Z}$, given by

$$\delta(\textit{n}) = egin{cases} 1 & ext{if } \textit{n} = 1 \ 0 & ext{otherwise}. \end{cases}$$

For $\alpha, \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$, define $\alpha * \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$ by

$$(\alpha * \beta)(n) = \sum_{k} \alpha(k)\beta(m).$$

The unit for the product * is δ : $\mathbb{Z}^+ \to \mathbb{Z}$, given by

$$\delta(n) = egin{cases} 1 & ext{if } n=1 \ 0 & ext{otherwise}. \end{cases}$$

Define
$$\zeta \colon \mathbb{Z}^+ \to \mathbb{Z}$$
 by $\zeta(n) = 1$ for all n .

For $\alpha, \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$, define $\alpha * \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$ by

$$(\alpha * \beta)(n) = \sum_{k} \alpha(k)\beta(m).$$

The unit for the product * is δ : $\mathbb{Z}^+ \to \mathbb{Z}$, given by

$$\delta(\textit{n}) = egin{cases} 1 & ext{if } \textit{n} = 1 \ 0 & ext{otherwise}. \end{cases}$$

Define
$$\zeta \colon \mathbb{Z}^+ \to \mathbb{Z}$$
 by $\zeta(n) = 1$ for all n .

The Möbius function $\mu \colon \mathbb{Z}^+ \to \mathbb{Z}$ is the inverse ζ^{-1} of ζ .

For $\alpha, \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$, define $\alpha * \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$ by

$$(\alpha * \beta)(n) = \sum_{k} \alpha(k)\beta(m).$$

The unit for the product * is $\delta: \mathbb{Z}^+ \to \mathbb{Z}$, given by

$$\delta(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta: \mathbb{Z}^+ \to \mathbb{Z}$ by $\zeta(n) = 1$ for all n.

The Möbius function $\mu \colon \mathbb{Z}^+ \to \mathbb{Z}$ is the inverse ζ^{-1} of ζ . Explicitly,

$$\mu(n) = \begin{cases} (-1)^r & \text{if } n \text{ is a product of } r \text{ distinct primes} \\ 0 & \text{if } n \text{ is divisible by a square.} \end{cases}$$

For $\alpha, \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$, define $\alpha * \beta \colon \mathbb{Z}^+ \to \mathbb{Z}$ by

$$(\alpha * \beta)(n) = \sum_{k=-\infty} \alpha(k)\beta(m).$$

The unit for the product * is $\delta: \mathbb{Z}^+ \to \mathbb{Z}$, given by

$$\delta(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta: \mathbb{Z}^+ \to \mathbb{Z}$ by $\zeta(n) = 1$ for all n.

The Möbius function $\mu: \mathbb{Z}^+ \to \mathbb{Z}$ is the inverse ζ^{-1} of ζ . Explicitly,

$$\mu(n) = \begin{cases} (-1)^r & \text{if } n \text{ is a product of } r \text{ distinct primes} \\ 0 & \text{if } n \text{ is divisible by a square.} \end{cases}$$

Important in number theory, e.g.

$$1/\sum \frac{1}{n^s} = \sum \frac{\mu(n)}{n^s}.$$

Let A be a suitably finite poset. Let k be a (commutative) ring.

Let A be a suitably finite poset. Let k be a (commutative) ring.

The incidence algebra kA is the set of functions

$$\{(a,b)\in A\times A\mid a\leq b\}\to k,$$

Let A be a suitably finite poset. Let k be a (commutative) ring.

The incidence algebra kA is the set of functions

$$\{(a,b)\in A\times A\mid a\leq b\}\to k,$$

with multiplication * defined by

$$(\alpha * \beta)(a,c) = \sum_{b: a < b < c} \alpha(a,b) \beta(b,c)$$

$$(\alpha, \beta \in kA)$$
,

Let A be a suitably finite poset. Let k be a (commutative) ring.

The incidence algebra kA is the set of functions

$$\{(a,b)\in A\times A\mid a\leq b\}\to k,$$

with multiplication * defined by

$$(\alpha * \beta)(a,c) = \sum_{b: a \le b \le c} \alpha(a,b) \beta(b,c)$$

 $(\alpha, \beta \in kA)$, and unit δ given by

$$\delta(a,b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Let A be a suitably finite poset. Let k be a (commutative) ring.

The incidence algebra kA is the set of functions

$$\{(a,b)\in A\times A\mid a\leq b\}\to k,$$

with multiplication * defined by

$$(\alpha * \beta)(a,c) = \sum_{b: a \le b \le c} \alpha(a,b) \beta(b,c)$$

$$(\alpha, \beta \in kA)$$
, and unit δ given by

$$\delta(a,b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in kA$ by $\zeta(a, b) = 1$ for all a, b.

Let A be a suitably finite poset. Let k be a (commutative) ring.

The incidence algebra kA is the set of functions

$$\{(a,b)\in A\times A\mid a\leq b\}\to k,$$

with multiplication * defined by

$$(\alpha * \beta)(a, c) = \sum_{b: a \le b \le c} \alpha(a, b) \beta(b, c)$$

 $(\alpha, \beta \in kA)$, and unit δ given by

$$\delta(a,b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in kA$ by $\zeta(a,b) = 1$ for all a,b.

The Möbius function μ is ζ^{-1} . (It always exists.)

Let A be a suitably finite poset. Let k be a (commutative) ring.

The incidence algebra kA is the set of functions

$$\{(a,b)\in A\times A\mid a\leq b\}\to k,$$

with multiplication * defined by

$$(\alpha * \beta)(a, c) = \sum_{b: a \le b \le c} \alpha(a, b) \beta(b, c)$$

 $(\alpha, \beta \in kA)$, and unit δ given by

$$\delta(a,b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in kA$ by $\zeta(a, b) = 1$ for all a, b.

The Möbius function μ is ζ^{-1} . (It always exists.) Explicitly,

$$\mu(a,b) = \sum (-1)^n |\{ \text{chains } a = a_0 < \dots < a_n = b \}|.$$

Let A be a suitably finite poset. Let k be a (commutative) ring.

The incidence algebra kA is the set of functions

$$\{(a,b)\in A\times A\mid a\leq b\}\to k,$$

with multiplication * defined by

$$(\alpha * \beta)(a, c) = \sum_{b: a \leq b \leq c} \alpha(a, b) \beta(b, c)$$

$$(\alpha, \beta \in kA)$$
, and unit δ given by

$$\delta(a,b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in kA$ by $\zeta(a, b) = 1$ for all a, b.

The Möbius function
$$\mu$$
 is ζ^{-1} . (It always exists.) Explicitly,
$$\mu(a,b) = \sum (-1)^n |\{\text{chains } a = a_0 < \dots < a_n = b\}|.$$

E.g.:
$$(A, \leq) = (\mathbb{Z}^+, |)$$
: then $\mu(a, b) = \mu_{\mathsf{classical}}(b/a)$.

Let A be a suitably finite category. Let k be a ring.

Let A be a suitably finite category. Let k be a ring.

The fine incidence algebra $k\mathbf{A}$ is the set of functions

$$arr(\mathbf{A}) \rightarrow k$$
,

Let A be a suitably finite category. Let k be a ring.

The fine incidence algebra $k\mathbf{A}$ is the set of functions

$$arr(\mathbf{A}) \rightarrow k$$
,

with multiplication * defined by

$$(\alpha * \beta)(f) = \sum_{g,h: hg=f} \alpha(g)\beta(h)$$

$$(\alpha, \beta \in k\mathbf{A}),$$

Let A be a suitably finite category. Let k be a ring.

The fine incidence algebra $k\mathbf{A}$ is the set of functions

$$arr(\mathbf{A}) \rightarrow k$$
,

with multiplication * defined by

$$(\alpha * \beta)(f) = \sum_{g,h: hg=f} \alpha(g)\beta(h)$$

 $(\alpha, \beta \in k\mathbf{A})$, and unit δ given by

$$\delta(f) = \begin{cases} 1 & \text{if } f \text{ is an identity} \\ 0 & \text{otherwise.} \end{cases}$$

Let A be a suitably finite category. Let k be a ring.

The fine incidence algebra $k\mathbf{A}$ is the set of functions

$$arr(\mathbf{A}) \rightarrow k$$
,

with multiplication * defined by

$$(\alpha * \beta)(f) = \sum_{g,h: hg=f} \alpha(g)\beta(h)$$

 $(\alpha, \beta \in k\mathbf{A})$, and unit δ given by

$$\delta(f) = \begin{cases} 1 & \text{if } f \text{ is an identity} \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k\mathbf{A}$ by $\zeta(f) = 1$ for all f.

Let A be a suitably finite category. Let k be a ring.

The fine incidence algebra $k\mathbf{A}$ is the set of functions

$$arr(\mathbf{A}) \rightarrow k$$
,

with multiplication * defined by

$$(\alpha * \beta)(f) = \sum_{g,h: hg=f} \alpha(g)\beta(h)$$

 $(\alpha, \beta \in k\mathbf{A})$, and unit δ given by

$$\delta(f) = \begin{cases} 1 & \text{if } f \text{ is an identity} \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k\mathbf{A}$ by $\zeta(f) = 1$ for all f.

The fine Möbius function μ is ζ^{-1} , if it exists. Then **A** has fine Möbius inversion.

Let A be a suitably finite category. Let k be a ring.

The fine incidence algebra $k\mathbf{A}$ is the set of functions

$$arr(\mathbf{A}) \rightarrow k$$
,

with multiplication * defined by

$$(\alpha * \beta)(f) = \sum_{g,h: hg=f} \alpha(g)\beta(h)$$

 $(\alpha, \beta \in k\mathbf{A})$, and unit δ given by

$$\delta(f) = \begin{cases} 1 & \text{if } f \text{ is an identity} \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k\mathbf{A}$ by $\zeta(f) = 1$ for all f.

The fine Möbius function μ is ζ^{-1} , if it exists. Then **A** has fine Möbius inversion.

E.g.: **A** = (A, \leq) .

Let A be a suitably finite category. Let k be a ring.

The fine incidence algebra $k\mathbf{A}$ is the set of functions

$$arr(\mathbf{A}) \rightarrow k$$
,

with multiplication * defined by

$$(\alpha * \beta)(f) = \sum_{g,h: hg=f} \alpha(g)\beta(h)$$

 $(\alpha, \beta \in k\mathbf{A})$, and unit δ given by

$$\delta(f) = \begin{cases} 1 & \text{if } f \text{ is an identity} \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k\mathbf{A}$ by $\zeta(f) = 1$ for all f.

The fine Möbius function μ is ζ^{-1} , if it exists. Then **A** has fine Möbius inversion.

Let A be a suitably finite category. Let k be a ring.

The fine incidence algebra $k\mathbf{A}$ is the set of functions

$$arr(\mathbf{A}) \rightarrow k$$
,

with multiplication * defined by

$$(\alpha * \beta)(f) = \sum_{g,h: hg=f} \alpha(g)\beta(h)$$

 $(\alpha, \beta \in k\mathbf{A})$, and unit δ given by

$$\delta(f) = \begin{cases} 1 & \text{if } f \text{ is an identity} \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k\mathbf{A}$ by $\zeta(f) = 1$ for all f.

The fine Möbius function μ is ζ^{-1} , if it exists. Then **A** has fine Möbius inversion.

Let A be a suitably finite category. Let k be a ring.

The fine incidence algebra kA is the set of functions

$$arr(\mathbf{A}) \rightarrow k$$
,

with multiplication * defined by

$$(\alpha * \beta)(f) = \sum_{g,h: hg=f} \alpha(g)\beta(h)$$

 $(\alpha, \beta \in k\mathbf{A})$, and unit δ given by

$$\delta(f) = \begin{cases} 1 & \text{if } f \text{ is an identity} \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k\mathbf{A}$ by $\zeta(f) = 1$ for all f.

The fine Möbius function μ is ζ^{-1} , if it exists. Then **A** has fine Möbius inversion.

Let A be a suitably finite category. Let k be a ring.

The coarse incidence algebra $k_c \mathbf{A}$ is the set of functions

$$\mathsf{ob}(\mathbf{A}) \times \mathsf{ob}(\mathbf{A}) \to k,$$

with multiplication * defined by

$$(\alpha * \beta)(f) = \sum_{g,h: hg=f} \alpha(g)\beta(h)$$

 $(\alpha, \beta \in k\mathbf{A})$, and unit δ given by

$$\delta(f) = \begin{cases} 1 & \text{if } f \text{ is an identity} \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k\mathbf{A}$ by $\zeta(f) = 1$ for all f.

The fine Möbius function μ is ζ^{-1} , if it exists. Then **A** has fine Möbius inversion.

Let A be a suitably finite category. Let k be a ring.

The coarse incidence algebra $k_c \mathbf{A}$ is the set of functions

$$ob(\mathbf{A}) \times ob(\mathbf{A}) \rightarrow k$$

with multiplication * defined by

$$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b) \beta(b, c)$$

$$(\alpha, \beta \in k_c \mathbf{A})$$
, and unit $\boldsymbol{\delta}$ given by

$$\delta(f) = \begin{cases} 1 & \text{if } f \text{ is an identity} \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k\mathbf{A}$ by $\zeta(f) = 1$ for all f.

The fine Möbius function μ is ζ^{-1} , if it exists. Then **A** has fine Möbius inversion.

Let A be a suitably finite category. Let k be a ring.

The coarse incidence algebra $k_c \mathbf{A}$ is the set of functions

$$\mathsf{ob}(\mathbf{A}) \times \mathsf{ob}(\mathbf{A}) \to k$$

with multiplication * defined by

$$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b) \beta(b, c)$$

$$(\alpha, \beta \in k_c \mathbf{A})$$
, and unit $\boldsymbol{\delta}$ given by

$$\delta(a,b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k\mathbf{A}$ by $\zeta(f) = 1$ for all f.

The fine Möbius function μ is ζ^{-1} , if it exists. Then **A** has fine Möbius inversion.

Let A be a suitably finite category. Let k be a ring.

The coarse incidence algebra $k_c \mathbf{A}$ is the set of functions

$$ob(\mathbf{A}) \times ob(\mathbf{A}) \rightarrow k$$

with multiplication * defined by

$$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b) \beta(b, c)$$

 $(\alpha, \beta \in k_c \mathbf{A})$, and unit δ given by

$$\delta(a,b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k_c \mathbf{A}$ by $\zeta(a, b) = |\text{Hom}(a, b)|$.

The fine Möbius function μ is ζ^{-1} , if it exists. Then **A** has fine Möbius inversion.

Let A be a suitably finite category. Let k be a ring.

The coarse incidence algebra $k_c \mathbf{A}$ is the set of functions

$$ob(\mathbf{A}) \times ob(\mathbf{A}) \rightarrow k$$

with multiplication * defined by

$$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b) \beta(b, c)$$

 $(\alpha, \beta \in k_c \mathbf{A})$, and unit δ given by

$$\delta(a,b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k_c \mathbf{A}$ by $\zeta(a, b) = |\mathsf{Hom}(a, b)|$.

The coarse Möbius function μ is ζ^{-1} , if it exists. Then **A** has coarse Möbius inversion.

Let A be a suitably finite category. Let k be a ring.

The coarse incidence algebra $k_c \mathbf{A}$ is the set of functions

$$\mathsf{ob}(\mathbf{A}) \times \mathsf{ob}(\mathbf{A}) \to k$$

with multiplication * defined by

$$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b) \beta(b, c)$$

 $(\alpha, \beta \in k_c \mathbf{A})$, and unit $\boldsymbol{\delta}$ given by

$$\delta(a,b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{otherwise.} \end{cases}$$

Define $\zeta \in k_c \mathbf{A}$ by $\zeta(a, b) = |\mathsf{Hom}(a, b)|$.

The coarse Möbius function μ is ζ^{-1} , if it exists. Then **A** has coarse Möbius inversion.

Fine	Coarse

	Fine	Coarse
Incidence algebra	$k\mathbf{A} = \{fns\;arr(\mathbf{A}) o k\}$	$k_{c}\mathbf{A} = \{fns\;ob(\mathbf{A}) imes ob(\mathbf{A}) o k\}$

	Fine	Coarse
Incidence algebra	$k\mathbf{A} = \{ fns \; arr(\mathbf{A}) \to k \}$	$k_{c}\mathbf{A} = \{fns\;ob(\mathbf{A}) imes ob(\mathbf{A}) o k\}$
Multiplication	$(\alpha * \beta)(f) = \sum_{hg=f} \alpha(g)\beta(h)$	$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b)\beta(b, c)$

	Fine	Coarse
Incidence algebra	$k\mathbf{A} = \{fns\;arr(\mathbf{A}) o k\}$	$k_{c}\mathbf{A} = \{fns\;ob(\mathbf{A})\timesob(\mathbf{A}) o k\}$
Multiplication	$(\alpha * \beta)(f) = \sum_{hg=f} \alpha(g)\beta(h)$	$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b)\beta(b, c)$
Zeta function	$\zeta(f)\equiv 1$	$\zeta(a,b) = Hom(a,b) $

	Fine	Coarse
Incidence algebra	$k\mathbf{A} = \{fns\;arr(\mathbf{A}) o k\}$	$k_{c}\mathbf{A} = \{fns\;ob(\mathbf{A}) imesob(\mathbf{A}) o k\}$
Multiplication	$(\alpha * \beta)(f) = \sum_{hg=f} \alpha(g)\beta(h)$	$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b) \beta(b, c)$
Zeta function	$\zeta(f)\equiv 1$	$\zeta(a,b) = Hom(a,b) $
Inverse of ζ	fine Möbius function μ	coarse Möbius function μ

	Fine	Coarse
Incidence algebra	$k\mathbf{A} = \{ fns \; arr(\mathbf{A}) \to k \}$	$k_{c}\mathbf{A} = \{fns\;ob(\mathbf{A})\timesob(\mathbf{A}) o k\}$
Multiplication	$(\alpha * \beta)(f) = \sum_{hg=f} \alpha(g)\beta(h)$	$(\alpha * \beta)(a, c) = \sum_b \alpha(a, b)\beta(b, c)$
Zeta function	$\zeta(f)\equiv 1$	$\zeta(a,b) = Hom(a,b) $
Inverse of ζ	fine Möbius function μ	coarse Möbius function μ
Have M. inv. for:		

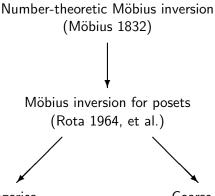
	Fine	Coarse
Incidence algebra	$k\mathbf{A} = \{fns\;arr(\mathbf{A}) o k\}$	$k_{c}\mathbf{A} = \{fns\;ob(\mathbf{A})\timesob(\mathbf{A})\to k\}$
Multiplication	$(\alpha * \beta)(f) = \sum_{hg=f} \alpha(g)\beta(h)$	$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b) \beta(b, c)$
Zeta function	$\zeta(f)\equiv 1$	$\zeta(a,b) = Hom(a,b) $
Inverse of ζ	fine Möbius function μ	coarse Möbius function μ
Have M. inv. for: posets?	✓	✓

	Fine	Coarse
Incidence algebra	$k\mathbf{A} = \{fns\;arr(\mathbf{A}) o k\}$	$k_{c}\mathbf{A} = \{fns\;ob(\mathbf{A})\timesob(\mathbf{A})\to k\}$
Multiplication	$(\alpha * \beta)(f) = \sum_{hg=f} \alpha(g)\beta(h)$	$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b) \beta(b, c)$
Zeta function	$\zeta(f)\equiv 1$	$\zeta(a,b) = Hom(a,b) $
Inverse of ζ	fine Möbius function μ	coarse Möbius function μ
Have M. inv. for: posets? monoids?	×	✓ ✓

	Fine	Coarse
Incidence algebra	$k\mathbf{A} = \{fns\;arr(\mathbf{A}) o k\}$	$k_{c}\mathbf{A} = \{fns\;ob(\mathbf{A})\timesob(\mathbf{A}) o k\}$
Multiplication	$(\alpha * \beta)(f) = \sum_{hg=f} \alpha(g)\beta(h)$	$(\alpha * \beta)(a, c) = \sum_{b} \alpha(a, b) \beta(b, c)$
Zeta function	$\zeta(f)\equiv 1$	$\zeta(a,b) = Hom(a,b) $
Inverse of ζ	fine Möbius function μ	coarse Möbius function μ
Have M. inv. for: posets? monoids? groupoids?	✓ × ×	✓ ✓ ✓

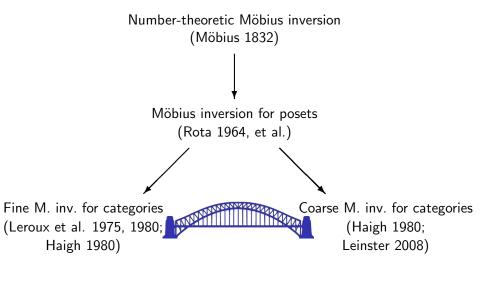
2. Fine vs. coarse Möbius inversion

Overview



Fine M. inv. for categories (Leroux et al. 1975, 1980; Haigh 1980) Coarse M. inv. for categories (Haigh 1980; Leinster 2008)

Overview



Let $F : \mathbf{A} \to \mathbf{B}$ be a suitably finite functor.

Let $F : \mathbf{A} \to \mathbf{B}$ be a suitably finite functor.

There is an induced linear map

$$F_!$$
: $k\mathbf{A} \rightarrow k\mathbf{B}$
 $\alpha \mapsto F_!\alpha$

Let $F : \mathbf{A} \to \mathbf{B}$ be a suitably finite functor.

There is an induced linear map

$$F_!$$
: $kA \rightarrow kB$
 $\alpha \mapsto F_!\alpha$

defined by

$$(F_!\alpha)(g) = \sum_{f \colon F(f)=g} \alpha(f)$$

$$(g \in \operatorname{arr}(\mathbf{B})).$$

Let $F : \mathbf{A} \to \mathbf{B}$ be a suitably finite functor.

There is an induced linear map

$$F_!$$
: $k\mathbf{A} \rightarrow k\mathbf{B}$
 $\alpha \mapsto F_!\alpha$

defined by

$$(F_!\alpha)(g) = \sum_{f \colon F(f)=g} \alpha(f)$$

$$(g \in arr(\mathbf{B})).$$

Proposition

 F_1 is an algebra homomorphism for all $k \iff$

Let $F : \mathbf{A} \to \mathbf{B}$ be a suitably finite functor.

There is an induced linear map

$$F_!$$
: $kA \rightarrow kB$
 $\alpha \mapsto F_!\alpha$

defined by

$$(F_!\alpha)(g) = \sum_{f \colon F(f)=g} \alpha(f)$$

 $(g \in arr(\mathbf{B})).$

Proposition

 $F_!$ is an algebra homomorphism for all $k \iff F$ is bijective on objects.

Let A be a suitably finite category. Let k be a ring.

Let A be a suitably finite category. Let k be a ring.

Write **CA** for the codiscrete category with the same objects as **A**.

Let A be a suitably finite category. Let k be a ring.

Write **CA** for the codiscrete category with the same objects as **A**. Then:

• $k(CA) = k_cA$

Let A be a suitably finite category. Let k be a ring.

Write **CA** for the codiscrete category with the same objects as **A**. Then:

- $k(CA) = k_cA$
- the identity-on-objects functor $F : \mathbf{A} \to C\mathbf{A}$ induces a homomorphism

$$\Sigma = F_! : k \mathbf{A} \to k_c \mathbf{A}$$

Let A be a suitably finite category. Let k be a ring.

Write **CA** for the codiscrete category with the same objects as **A**. Then:

- $k(CA) = k_cA$
- the identity-on-objects functor $F : \mathbf{A} \to C\mathbf{A}$ induces a homomorphism

$$\boldsymbol{\Sigma} = \textbf{\textit{F}}_! \colon \textbf{\textit{k}} \boldsymbol{A} \to \textbf{\textit{k}}_c \boldsymbol{A},$$

given by

$$(\Sigma \alpha)(a,b) = \sum_{f: a \to b} \alpha(f).$$

Let \mathbf{A} be a suitably finite category. Let k be a ring.

Write **CA** for the codiscrete category with the same objects as **A**. Then:

- $k(CA) = k_cA$
- the identity-on-objects functor $F : \mathbf{A} \to C\mathbf{A}$ induces a homomorphism

$$\boldsymbol{\Sigma} = \textbf{\textit{F}}_! \colon \textbf{\textit{k}} \boldsymbol{\mathsf{A}} \to \textbf{\textit{k}}_c \boldsymbol{\mathsf{A}},$$

given by

$$(\Sigma \alpha)(a,b) = \sum_{f: a \to b} \alpha(f).$$

For example, $\zeta_{\text{coarse}} = \Sigma \zeta_{\text{fine}}$.

Let A be a suitably finite category. Let k be a ring.

Write CA for the codiscrete category with the same objects as A. Then:

- $k(CA) = k_cA$
- the identity-on-objects functor $F : \mathbf{A} \to C\mathbf{A}$ induces a homomorphism

$$\Sigma = F_! : k\mathbf{A} \to k_c\mathbf{A},$$

given by

$$(\Sigma \alpha)(a,b) = \sum_{f: a \to b} \alpha(f).$$

For example, $\zeta_{\text{coarse}} = \Sigma \zeta_{\text{fine}}$.

Proposition (Haigh)

If A has fine Möbius inversion then A has coarse Möbius inversion

Let A be a suitably finite category. Let k be a ring.

Write **CA** for the codiscrete category with the same objects as **A**. Then:

- $k(CA) = k_cA$
- the identity-on-objects functor $F : \mathbf{A} \to C\mathbf{A}$ induces a homomorphism

$$\Sigma = F_! : k\mathbf{A} \to k_c\mathbf{A},$$

given by

$$(\Sigma \alpha)(a,b) = \sum_{f: a \to b} \alpha(f).$$

For example, $\zeta_{\text{coarse}} = \Sigma \zeta_{\text{fine}}$.

Proposition (Haigh)

If A has fine Möbius inversion then A has coarse Möbius inversion, with

$$\mu_{coarse}(a,b) = \sum_{f: a \to b} \mu_{fine}(f).$$

Let A be a suitably finite category. Let k be a ring.

Write **CA** for the codiscrete category with the same objects as **A**. Then:

- $k(CA) = k_cA$
- the identity-on-objects functor $F: \mathbf{A} \to C\mathbf{A}$ induces a homomorphism

$$\Sigma = F_! : k\mathbf{A} \to k_c\mathbf{A},$$

given by

$$(\Sigma \alpha)(a,b) = \sum_{f: a \to b} \alpha(f).$$

For example, $\zeta_{\text{coarse}} = \Sigma \zeta_{\text{fine}}$.

Proposition (Haigh)

If A has fine Möbius inversion then A has coarse Möbius inversion, with

$$\mu_{coarse}(a,b) = \sum_{f: a \rightarrow b} \mu_{fine}(f).$$

Proof This says $\mu_{\text{coarse}} = \Sigma \mu_{\text{fine}}$

Let A be a suitably finite category. Let k be a ring.

Write **CA** for the codiscrete category with the same objects as **A**. Then:

- $k(CA) = k_cA$
- the identity-on-objects functor $F : \mathbf{A} \to C\mathbf{A}$ induces a homomorphism

$$\Sigma = \textit{F}_! \colon \textit{k}\textbf{A} \to \textit{k}_c\textbf{A},$$

given by

$$(\Sigma \alpha)(a,b) = \sum_{f: a \to b} \alpha(f).$$

For example, $\zeta_{\text{coarse}} = \Sigma \zeta_{\text{fine}}$.

Proposition (Haigh)

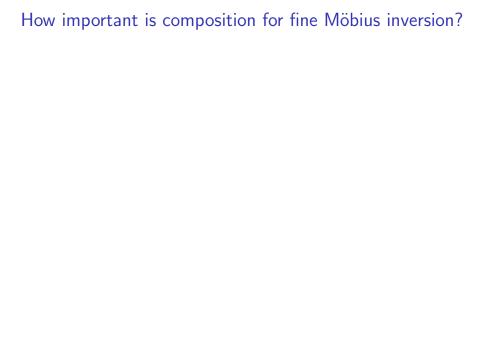
If A has fine Möbius inversion then A has coarse Möbius inversion, with

$$\mu_{coarse}(a,b) = \sum_{f: a \to b} \mu_{fine}(f).$$

Proof This says $\mu_{\mathsf{coarse}} = \Sigma \mu_{\mathsf{fine}}$: true as Σ is an algebra homomorphism.

3. How important is

composition in a category?



How important is composition for fine Möbius inversion?

Proposition (Haigh) If A has fine M. inv. then A has coarse M. inv., with

$$\mu_{coarse}(a,b) = \sum_{f : a \in F} \mu_{fine}(f).$$

How important is composition for fine Möbius inversion?

Proposition (Haigh) If A has fine M. inv. then A has coarse M. inv., with

$$\mu_{coarse}(a, b) = \sum_{f: a \rightarrow b} \mu_{fine}(f).$$

Corollary (Menni) If **A** has fine Möbius inversion then, for all $a, b \in \mathbf{A}$,

$$\sum_{f\colon a\to b}\mu(f)$$

is independent of the composition and identities in A.

How important is composition for fine Möbius inversion?

Proposition (Haigh) If **A** has fine M. inv. then **A** has coarse M. inv., with

$$\mu_{coarse}(a,b) = \sum_{f: a \rightarrow b} \mu_{fine}(f).$$

Corollary (Menni) If **A** has fine Möbius inversion then, for all $a, b \in \mathbf{A}$,

$$\sum_{\mathit{f} \colon \mathit{a} \to \mathit{b}} \mu(\mathit{f})$$

is independent of the composition and identities in **A**.

Corollary If A has fine Möbius inversion then

$$\sum_{f \in \mathsf{arr}(\mathbf{A})} \mu(f)$$

is independent of the composition and identities in ${\bf A}.$

Let **A** be a suitably finite category with coarse Möbius inversion over \mathbb{Q} .

Let ${\bf A}$ be a suitably finite category with coarse Möbius inversion over ${\mathbb Q}.$

The Euler characteristic of A is

$$\chi(\mathbf{A}) = \sum_{a,b} \mu(a,b) \in \mathbb{Q}.$$

Let **A** be a suitably finite category with coarse Möbius inversion over \mathbb{Q} .

The Euler characteristic of A is

$$\chi(\mathbf{A}) = \sum_{a,b} \mu(a,b) \in \mathbb{Q}.$$

Theorem
$$\chi(\mathbf{A}) = \chi(|\mathbf{A}|)$$
.

Let **A** be a suitably finite category with coarse Möbius inversion over \mathbb{Q} .

The Euler characteristic of **A** is

$$\chi(\mathbf{A}) = \sum_{a,b} \mu(a,b) \in \mathbb{Q}.$$

Theorem $\chi(\mathbf{A}) = \chi(|\mathbf{A}|)$.

Corollary $\chi(|\mathbf{A}|)$ is independent of the composition and identities in \mathbf{A} .

Let **A** be a suitably finite category with coarse Möbius inversion over \mathbb{Q} .

The Euler characteristic of A is

$$\chi(\mathbf{A}) = \sum_{a,b} \mu(a,b) \in \mathbb{Q}.$$

Theorem $\chi(\mathbf{A}) = \chi(|\mathbf{A}|)$.

Corollary $\chi(|\mathbf{A}|)$ is independent of the composition and identities in \mathbf{A} .

Corollary If A has fine Möbius inversion then

$$\sum_{f \in \operatorname{arr}(\mathbf{A})} \mu(f) = \chi(|\mathbf{A}|).$$

• Number-theoretic M. inversion is generalized by M. inversion for posets

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - o Fine Möbius inversion:

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - Fine Möbius inversion:
 - · depends on the composition in the category

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - o Fine Möbius inversion:
 - · depends on the composition in the category
 - · does not exist for many categories

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - Fine Möbius inversion:
 - · depends on the composition in the category
 - · does not exist for many categories
 - o Coarse Möbius inversion:

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - Fine Möbius inversion:
 - · depends on the composition in the category
 - · does not exist for many categories
 - Coarse Möbius inversion:
 - · does not depend on the composition in the category

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - Fine Möbius inversion:
 - · depends on the composition in the category
 - · does not exist for many categories
 - Coarse Möbius inversion:
 - · does not depend on the composition in the category
 - · exists for most (skeletal) categories

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - Fine Möbius inversion:
 - depends on the composition in the category
 - · does not exist for many categories
 - Coarse Möbius inversion:
 - · does not depend on the composition in the category
 - exists for most (skeletal) categories
- If you know the fine Möbius function, you know the coarse one

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - Fine Möbius inversion:
 - depends on the composition in the category
 - · does not exist for many categories
 - Coarse Möbius inversion:
 - · does not depend on the composition in the category
 - · exists for most (skeletal) categories
- If you know the fine Möbius function, you know the coarse one
- The Euler characteristic of a category A:

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - Fine Möbius inversion:
 - depends on the composition in the category
 - does not exist for many categories
 - Coarse Möbius inversion:
 - · does not depend on the composition in the category
 - · exists for most (skeletal) categories
- If you know the fine Möbius function, you know the coarse one
- The Euler characteristic of a category A:

$$\circ$$
 is $\chi(|\mathbf{A}|) = \sum_{a,b} \mu(a,b) = \sum_{f} \mu(f)$

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - Fine Möbius inversion:
 - · depends on the composition in the category
 - does not exist for many categories
 - Coarse Möbius inversion:
 - does not depend on the composition in the category
 - · exists for most (skeletal) categories
- If you know the fine Möbius function, you know the coarse one
- The Euler characteristic of a category A:

$$\circ$$
 is $\chi(|\mathbf{A}|) = \sum_{a,b} \mu(a,b) = \sum_{f} \mu(f)$

o does not depend on the composition

- Number-theoretic M. inversion is generalized by M. inversion for posets
- M. inversion for posets can be generalized to categories in two ways:
 - Fine Möbius inversion:
 - · depends on the composition in the category
 - · does not exist for many categories
 - Coarse Möbius inversion:
 - · does not depend on the composition in the category
 - · exists for most (skeletal) categories
- If you know the fine Möbius function, you know the coarse one
- The Euler characteristic of a category A:

$$\circ$$
 is $\chi(|\mathbf{A}|) = \sum_{a,b} \mu(a,b) = \sum_{f} \mu(f)$

- o does not depend on the composition
- Throwing away the composition of a category is extravagant...
 but it's surprising how much remains.

References

- Mireille Content, François Lemay, Pierre Leroux, Catégories de Möbius et fonctorialités: un cadre général pour l'inversion de Möbius. *Journal* of Combinatorial Theory, Series A 28 (1980), 169–190.
- John Haigh, On the Möbius algebra and the Grothendieck ring of a finite category. Journal of the London Mathematical Society (2) 21 (1980), 81–92.
- Tom Leinster, The Euler characteristic of a category. *Documenta Mathematica* 13 (2008), 21–49.
- Pierre Leroux, Les catégories de Möbius. Cahiers de Topologie et Géométrie Différentielle Catégoriques 16 (1975), 280–282.
- Gian-Carlo Rota, On the foundations of combinatorial theory I: theory of Möbius functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368.
- Stephen H. Schanuel, Negative sets have Euler characteristic and dimension. *Category Theory (Como, 1990)*, 379–385, Lecture Notes in Mathematics 1488, Springer, 1991.