
Higer Categories from Type Theories
(bis)

Peter LeFanu Lumsdaine

Dalhousie University
Halifax, Nova Scotia

CT2011, Vancouver

Setting
(Martin-Löf) Dependent Type Theory: highly expressive
constructive theory, potential foundation for maths.

Central concepts: types, and terms of types.

` N type ` 0 : N

Both can be dependent on (typed) variables:

n : N ` Rn type

“For each n in N, Rn is a type,” or “Rn is a type, dependent on
n : N.”

n : N ` 0n : Rn

“For each n in N, 0n is an element of Rn.”

` 0 :
∏

n

Rn

Identity types
Logic: via Curry-Howard, predicates as dependent types.

Predicate of equality, identity:

x, y : A ` IdA(x, y) type

Can derive e.g. “transitivity of equality”,

x, y, z : A, u : Id(x, y), v : Id(y, z) ` c(u, v) : Id(x, z)

“functions respect equality”,

x : A ` f (x) : B
x, y : A, u : Id(x, y) ` f ∗u : Id(f (x), f (y))

and much more. . .

Question: How much more?

Identity types
Logic: via Curry-Howard, predicates as dependent types.

Predicate of equality, identity:

x, y : A ` IdA(x, y) type

Can derive e.g. “transitivity of equality”,

x, y, z : A, u : Id(x, y), v : Id(y, z) ` c(u, v) : Id(x, z)

“functions respect equality”,

x : A ` f (x) : B
x, y : A, u : Id(x, y) ` f ∗u : Id(f (x), f (y))

and much more. . .

Question: How much more?

Higher Categories from Types

Two subtleties:
I Identity types may be non-trivial types: not all identity

proofs equal.
I Identity types have higher identity types in turn:

x, y : A, u, v : IdA(x, y) ` IdIdA(x,y)(u, v).

Compositions of propositional equalities over a single type:

Theorem (Garner-van den Berg, PLL)

For any DTT T with Id-types, and any type A of T, A and its tower of
identity types form an internal ω-groupoid in T.

(All ω-categories: weak, globular operadic à la
Batanin/Leinster.)

Higher Categories from Type Theories
Across all types of a theory?

Definition
Given T, define globular set C̀ ty

ω (T) by:
I 0-cells: closed types ` A type;
I 1-cells: terms x : A ` f (x) : B;
I 2-cells: terms x : A ` α(x) : IdB(f (x), g(x));
I etc. . .

Similarly, C̀ ω(T): same but with contexts, not just types, as
0-cells.

1-skeleton of this underlies the classifying category C̀ (T).

Theorem (PLL)

For any T with Id-types and extensional Π-types, C̀ ω(T) underlies
an ω-category, groupoidal in dimensions ≥ 2.

Take-home points

Three formal devices allow one to isolate the proof-theoretic
content. None new, but all could be better-known:

1. Type theories form a category.

2. Contexts are just like types.

3. Conservativity is a lifting property.

Categories of Type Theories

Definition
A type system Φ is, informally, a collection of constructors and
rules, e.g. “Id-types and extensional Π-types”.

Formally: an essentially algebraic theory extending the theory of contextual
categories, with the same sorts.

Given such Φ, write DTTΦ for the category of type theories
given by the constructors of Φ plus possibly further algebraic
axioms, and translations between such theories preserving the
constructors of Φ.

As models of an essentially algebraic theory, each DTTΦ is
locally presentable; in particular, co-complete.

For extension of type systems Φ //Ξ, have evident adjunction

DTTΦ
,,

⊥ DTTΞll .

From contexts to types

For many nice type systems Φ, all the constructors/rules lift
from types to contexts, so have a functor

(−)cxt : DTTΦ
//DTTΦ

where Tcxt is the theory whose types are the contexts of T.

Then C̀ ω(T) ∼= C̀ ty
ω (Tcxt), so to construct algebraic structure on

C̀ ω, it’s enough to construct it on C̀ ty
ω .

(Typically, (−)cxt is nearly but not quite a monad: its
multiplication “map” fails to preserve constructors on the
nose.)

The type-theoretic globes

Fix Φ. Define theories gn over Φ by axioms:

g0 : ` C type •C

g1 :
` S,T type
x : S ` c1(x) : T •S •T//

c1

g2 :
` S,T type
x : S ` s1(x), t1(x) : T
x : S ` c2(x) : IdT(s1(x), t1(x))

•S •T##;;��

s1

t1

c2

etc.

These form a coglobular theory: g• : G //DTTΦ.

In fact, g• represents C̀ ty
ω : DTTΦ(gn,T) ∼= C̀ ty

ω (T)n.

Representability

Induced Kan situation:

Ĝ
TΦ[−] := Lanyg•

11> DTTΦ

C̀ ty
ω := DTTΦ(g•,−)

rr

G
OO

y

OO

g•

88

The left Kan extension TΦ[−] := Lanyg• gives logical realisations
of globular sets as theories over Φ.

To put a natural ω-category structure on C̀ ty
ω , equivalent to put

a co-ω-category structure on g•.

So: want to find contractible globular operad P acting on g•; that
is, with a map P // End(g•), implementing elements of P as
composition co-operations on g•.

Composition co-operations

What is a composition co-operation on g• for a pasting diagram
π, and how does it induce a composition operation for π on
C̀ ty

ω ?

Might first expect: a map gn
// T[π̂], from the n-globe into the

realisation of π, inducing operation by precomposition.

T
[
• •

""
<<��

]
−→ T

 • •
��
//
CC

��

��

•
""
<<��

 −→ T

Roughly right. . . but need also to specify how it acts in lower
dimensions.

Composition co-operations

What is a composition co-operation on g• for a pasting diagram
π, and how does it induce a composition operation for π on
C̀ ty

ω ?

Might first expect: a map gn
// T[π̂], from the n-globe into the

realisation of π, inducing operation by precomposition.

T
[
• •

""
<<��

]
−→ T

 • •
��
//
CC

��

��

•
""
<<��

 −→ T

Roughly right. . . but need also to specify how it acts in lower
dimensions.

Composition co-operations

Contractibility in End(g•) means always being able to fill apex:

gn−1

gn??

gn−1

gn YY

gn−2

gn−1OO

gn−2

gn−1̂̂

gn−2

gn−177

gn−2

gn−1OO

g1

gn−2

...

g1

gn−2

...

g0

g1OO

g0

g1 ^^

g0

g177

g0

g1OO

T[ŝπ]

T[π̂]
??

T[t̂π]

T[π̂]
YY

T[ŝ2π]

T[ŝπ]
OO

T[t̂2π]

T[ŝπ]
^^

T[ŝ2π]

T[t̂π]77

T[t̂2π]

T[t̂π]
OO

T[ŝ1π]

T[ŝ2π]

...

T[t̂1π]

T[t̂2π]

...

T[ŝ0π]

T[ŝ1π]
OO

T[t̂0π]

T[ŝ1π]
^^

T[ŝ0π]

T[t̂1π]
77

T[t̂0π]

T[t̂1π]
OO

gn T[π̂]
H //

gn−1 T[ŝπ]
Fn−1 //

gn−1 T[t̂π]
Gn−1 //

gn−2 T[ŝ2π]
Fn−2 //

gn−2 T[t̂2π]
Gn−2 //

g1 T[ŝ1π]
F1 //

g1 T[t̂1π]
G1 //

g0 T[ŝ0π]
F0 //

g0 T[t̂0π]
G0 //

Contractibility for co-operations
Contractibility in End(g•) means always being able to fill apex:

gn−1

gn??

gn−1

gn YY

gn−2

gn−1OO

gn−2

gn−1̂̂

gn−2

gn−177

gn−2

gn−1OO

g1

gn−2

...

g1

gn−2

...

g0

g1OO

g0

g1 ^^

g0

g177

g0

g1OO

T[ŝπ]

T[π̂]
??

T[t̂π]

T[π̂]
YY

T[ŝ2π]

T[ŝπ]
OO

T[t̂2π]

T[ŝπ]
^^

T[ŝ2π]

T[t̂π]77

T[t̂2π]

T[t̂π]
OO

T[ŝ1π]

T[ŝ2π]

...

T[t̂1π]

T[t̂2π]

...

T[ŝ0π]

T[ŝ1π]
OO

T[t̂0π]

T[ŝ1π]
^^

T[ŝ0π]

T[t̂1π]
77

T[t̂0π]

T[t̂1π]
OO

gn T[π̂]

gn−1 T[ŝπ]
Fn−1 //

gn−1 T[t̂π]
Gn−1 //

gn−2 T[ŝ2π]
Fn−2 //

gn−2 T[t̂2π]
Gn−2 //

g1 T[ŝ1π]
F1 //

g1 T[t̂1π]
G1 //

g0 T[ŝ0π]
F0 //

g0 T[t̂0π]
G0 //

Contractibility for co-operations
Contractibility in End(g•) means always being able to fill apex:

gn−1

gn??

gn−1

gn YY

gn−2

gn−1OO

gn−2

gn−1̂̂

gn−2

gn−177

gn−2

gn−1OO

g1

gn−2

...

g1

gn−2

...

g0

g1OO

g0

g1 ^^

g0

g177

g0

g1OO

T[ŝπ]

T[π̂]
??

T[t̂π]

T[π̂]
YY

T[ŝ2π]

T[ŝπ]
OO

T[t̂2π]

T[ŝπ]
^^

T[ŝ2π]

T[t̂π]77

T[t̂2π]

T[t̂π]
OO

T[ŝ1π]

T[ŝ2π]

...

T[t̂1π]

T[t̂2π]

...

T[ŝ0π]

T[ŝ1π]
OO

T[t̂0π]

T[ŝ1π]
^^

T[ŝ0π]

T[t̂1π]
77

T[t̂0π]

T[t̂1π]
OO

gn T[π̂]
H //

gn−1 T[ŝπ]
Fn−1 //

gn−1 T[t̂π]
Gn−1 //

gn−2 T[ŝ2π]
Fn−2 //

gn−2 T[t̂2π]
Gn−2 //

g1 T[ŝ1π]
F1 //

g1 T[t̂1π]
G1 //

g0 T[ŝ0π]
F0 //

g0 T[t̂0π]
G0 //

A contractible sub-operad

Simplifying the picture, need to fill certain ‘triangles’:

gn
// T[π̂]

∂gn

OO

OO

// T[∂π̂]

OO

“Given co-operations for composing the boundary of π, need to
complete to a co-operation for π.”

Let P ⊆ End(g•) be the sub-operad of co-operations which ‘do
the obvious thing’ on dimensions ≤ 1.

Goal
The sub-operad P is contractible.

Contractibility to contractibility
For co-operations in P, the triangle problem above fits into a
square-filling problem:

∂gn
��

��

// T[π̂]

��
gn

;;

// T[ŝ1π]

(Here s1π denotes the 1-dimensional source/target of π; the
square commutes by definition of P.)

So contractibility of P reduces to “contractibility” — a right
lifting property — for maps of theories

T[π̂] −→ T[ŝ1π].

T

[
• •

��
//
FF

��

��
•
��
@@��

]
−→ T [• • •// //]

Contractibility as conservativity

Concretely, the desired right lifting property

∂gn
��

��

// T

��
gn

>>

// S

is a conservativity principle: given some type in T, inhabited in
the extension S, want to lift this inhabitant to T.

So, reduced to proof-theoretic crux:

Lemma
If the maps T[π̂] // T[ŝ1π] are conservative, then P is a contractible
sub-operad of End(g•), and hence C̀ ω carries a natural ω-category
structure.

Main theorem

Corollary

If Φ contains Id-types and extensional Π-types, then these maps are
conservative, so C̀ ω is naturally an ω-category, as desired.

Conjecture

If Φ consists of just Id-types, these maps are again conservative.
Hence, for any Ξ containing at least Id-types, C̀ ω carries the desired
ω-category structure, via the adjunction DTTId

,,
⊥ DTTΞmm .

Take-home points, again:
1. Type theories form a category.
2. Contexts are just like types.
3. Conservativity is a lifting property.

Main theorem

Corollary

If Φ contains Id-types and extensional Π-types, then these maps are
conservative, so C̀ ω is naturally an ω-category, as desired.

Conjecture

If Φ consists of just Id-types, these maps are again conservative.
Hence, for any Ξ containing at least Id-types, C̀ ω carries the desired
ω-category structure, via the adjunction DTTId

,,
⊥ DTTΞmm .

Take-home points, again:
1. Type theories form a category.
2. Contexts are just like types.
3. Conservativity is a lifting property.

Thank you!

These slides, plus thesis (containing details omitted here),
available from:

http://www.mathstat.dal.ca/˜p.l.lumsdaine

http://www.mathstat.dal.ca/~p.l.lumsdaine

