Higer Categories from Type Theories

Peter LeFanu Lumsdaine

Dalhousie University Halifax, Nova Scotia

CT2011, Vancouver

Setting

(Martin-Löf) Dependent Type Theory: highly expressive constructive theory, potential foundation for maths.

Central concepts: types, and terms of types.

 $\vdash \mathbb{N}$ type $\vdash 0: \mathbb{N}$

Both can be *dependent* on (typed) variables:

 $n: \mathbb{N} \vdash \mathbb{R}^n$ type

"For each *n* in \mathbb{N} , \mathbb{R}^n is a type," or " \mathbb{R}^n is a type, dependent on $n : \mathbb{N}$."

$$n:\mathbb{N}\vdash\mathbf{0}_n:\mathbb{R}^n$$

"For each *n* in \mathbb{N} , $\mathbf{0}_n$ is an element of \mathbb{R}^n ."

$$\vdash \mathbf{0} : \prod_{n} \mathbb{R}^{n}$$

Identity types

Logic: via Curry-Howard, predicates as dependent types. Predicate of equality, identity:

 $x, y : A \vdash \mathrm{Id}_A(x, y)$ type

Can derive e.g. "transitivity of equality",

 $x, y, z: A, u: \operatorname{Id}(x, y), v: \operatorname{Id}(y, z) \vdash c(u, v): \operatorname{Id}(x, z)$

"functions respect equality",

$$\frac{x:A \vdash f(x):B}{x, y:A, \ u: \mathrm{Id}(x, y) \vdash f^*u: \mathrm{Id}(f(x), f(y))}$$

and much more...

Identity types

Logic: via Curry-Howard, predicates as dependent types. Predicate of equality, identity:

 $x, y : A \vdash \mathrm{Id}_A(x, y)$ type

Can derive e.g. "transitivity of equality",

 $x, y, z: A, u: Id(x, y), v: Id(y, z) \vdash c(u, v): Id(x, z)$

"functions respect equality",

$$\frac{x:A \vdash f(x):B}{x,y:A, \ u: \mathrm{Id}(x,y) \vdash f^*u: \mathrm{Id}(f(x), f(y))}$$

and much more...

Question: How much more?

Higher Categories from Types

Two subtleties:

- Identity types may be non-trivial types: not all identity proofs equal.
- Identity types have higher identity types in turn:

 $x, y: A, u, v: \mathrm{Id}_A(x, y) \vdash \mathrm{Id}_{\mathrm{Id}_A(x, y)}(u, v).$

Compositions of propositional equalities over a single type:

Theorem (Garner-van den Berg, PLL)

For any DTT **T** with Id-types, and any type A of **T**, A and its tower of identity types form an internal ω -groupoid in **T**.

(All ω -categories: weak, globular operadic à la Batanin/Leinster.)

Higher Categories from Type Theories

Across all types of a theory?

Definition

Given **T**, define globular set $\mathcal{C}\!\ell^{\text{ty}}_{\omega}(\mathbf{T})$ by:

- 0-cells: closed types $\vdash A$ type;
- ▶ 1-cells: terms $x : A \vdash f(x) : B$;
- ► 2-cells: terms $x : A \vdash \alpha(x) : Id_B(f(x), g(x));$
- ▶ etc...

Similarly, $\mathcal{C}\ell_{\omega}(\mathbf{T})$: same but with contexts, not just types, as 0-cells.

1-skeleton of this underlies the classifying category $\mathcal{C}\!\ell(\textbf{T}).$

Theorem (PLL)

For any **T** with Id-types and extensional Π -types, $\mathcal{C}\ell_{\omega}(\mathbf{T})$ underlies an ω -category, groupoidal in dimensions ≥ 2 .

Three formal devices allow one to isolate the proof-theoretic content. None new, but all could be better-known:

- 1. Type theories form a category.
- 2. Contexts are just like types.
- 3. Conservativity is a lifting property.

Categories of Type Theories

Definition

A *type system* Φ is, informally, a collection of constructors and rules, e.g. "Id-types and extensional Π -types".

Formally: an essentially algebraic theory extending the theory of contextual categories, with the same sorts.

Given such Φ , write **DTT**_{Φ} for the category of type theories given by the constructors of Φ plus possibly further *algebraic* axioms, and translations between such theories preserving the constructors of Φ .

As models of an essentially algebraic theory, each DTT_{Φ} is locally presentable; in particular, co-complete.

For extension of type systems $\Phi \longrightarrow \Xi$, have evident adjunction

$$\mathsf{DTT}_\Phi$$
 $\overset{\frown}{=}$ DTT_Ξ .

From contexts to types

For many nice type systems Φ , all the constructors/rules lift from types to contexts, so have a functor

$$(-)^{\operatorname{cxt}} : \operatorname{\mathbf{DTT}}_{\Phi} \longrightarrow \operatorname{\mathbf{DTT}}_{\Phi}$$

where \mathbf{T}^{cxt} is the theory whose types are the contexts of \mathbf{T} .

Then $\mathcal{C}\ell_{\omega}(\mathbf{T}) \cong \mathcal{C}\ell_{\omega}^{ty}(\mathbf{T}^{cxt})$, so to construct algebraic structure on $\mathcal{C}\ell_{\omega}$, it's enough to construct it on $\mathcal{C}\ell_{\omega}^{ty}$.

(Typically, $(-)^{cxt}$ is nearly but not quite a monad: its multiplication "map" fails to preserve constructors on the nose.)

The type-theoretic globes

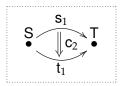
Fix Φ . Define theories **g**_{*n*} over Φ by axioms:

 $\mathbf{g}_0: \qquad \qquad \vdash \mathsf{C} \text{ type}$

$$\mathbf{g}_1: \qquad egin{array}{cc} dots \ \mathbf{S}, \mathsf{T} \ \mathsf{type} \ x: \mathbf{S} dots \mathbf{c}_1(x): \mathsf{T} \end{array}$$

$$\begin{array}{l} \vdash \mathbf{S}, \mathsf{T} \text{ type} \\ \mathbf{g}_2: \quad x: \mathsf{S} \vdash \mathbf{s}_1(x), \mathsf{t}_1(x): \mathsf{T} \\ x: \mathsf{S} \vdash \mathbf{c}_2(x): \mathrm{Id}_\mathsf{T}(\mathbf{s}_1(x), \mathsf{t}_1(x)) \end{array}$$

С

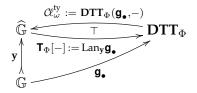


etc.

These form a *coglobular theory*: $\mathbf{g}_{\bullet} : \mathbb{G} \longrightarrow \mathbf{DTT}_{\Phi}.$ In fact, \mathbf{g}_{\bullet} represents $\mathcal{C}_{\omega}^{\text{ty}}$: $\mathbf{DTT}_{\Phi}(\mathbf{g}_n, \mathbf{T}) \cong \mathcal{C}_{\omega}^{\text{ty}}(\mathbf{T})_n.$

Representability

Induced Kan situation:



The left Kan extension $\mathbf{T}_{\Phi}[-] := \operatorname{Lan}_{\mathbf{y}} \mathbf{g}_{\bullet}$ gives *logical realisations* of globular sets as theories over Φ .

To put a natural ω -category structure on $\mathcal{C}^{ty}_{\omega}$, equivalent to put a co- ω -category structure on **g**.

So: want to find *contractible globular operad* P acting on \mathbf{g}_{\bullet} ; that is, with a map $P \longrightarrow \text{End}(\mathbf{g}_{\bullet})$, implementing elements of P as *composition co-operations* on \mathbf{g}_{\bullet} .

Composition co-operations

What is a composition co-operation on **g** for a pasting diagram π , and how does it induce a composition operation for π on $\mathcal{Cl}_{\omega}^{\text{ty}}$?

Might first expect: a map $\mathbf{g}_n \longrightarrow \mathbf{T}[\hat{\pi}]$, from the *n*-globe into the realisation of π , inducing operation by precomposition.

$$\mathsf{T}\Big[\bullet \fbox{\bullet}\Big] \to \mathsf{T}\Big[\bullet \r{\bullet}\Big] \to \mathsf{T}\Big[\bullet \r{\bullet}\Big] \to \mathsf{T}\Big[\bullet \r{\bullet}\Big]$$

Composition co-operations

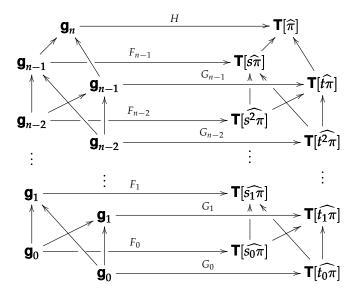
What is a composition co-operation on **g** for a pasting diagram π , and how does it induce a composition operation for π on $\mathcal{Cl}_{\omega}^{\text{ty}}$?

Might first expect: a map $\mathbf{g}_n \longrightarrow \mathbf{T}[\hat{\pi}]$, from the *n*-globe into the realisation of π , inducing operation by precomposition.

$$\mathsf{T}\Big[\bullet \fbox{\bullet}\Big] \to \mathsf{T}\Big[\bullet \fbox{\bullet}\Big] \to \mathsf{T}\Big[\bullet \r{\bullet}\Big] \to \mathsf{T}\Big[\bullet \r{\bullet}\Big]$$

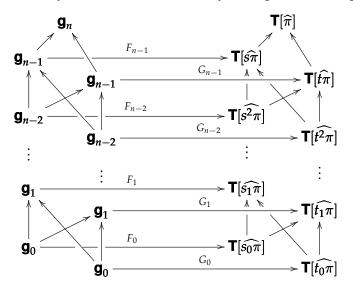
Roughly right... but need also to specify how it acts in lower dimensions.

Composition co-operations



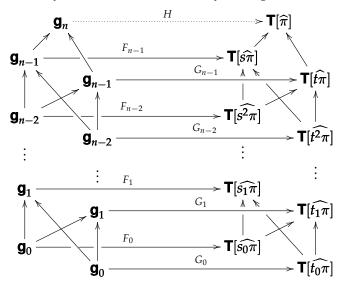
Contractibility for co-operations

Contractibility in $End(\mathbf{g}_{\bullet})$ means always being able to fill apex:



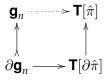
Contractibility for co-operations

Contractibility in $End(\mathbf{g}_{\bullet})$ means always being able to fill apex:



A contractible sub-operad

Simplifying the picture, need to fill certain 'triangles':



"Given co-operations for composing the boundary of π , need to complete to a co-operation for π ."

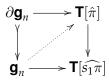
Let $P \subseteq \text{End}(\mathbf{g}_{\bullet})$ be the sub-operad of co-operations which 'do the obvious thing' on dimensions ≤ 1 .

Goal

The sub-operad P is contractible.

Contractibility to contractibility

For co-operations in *P*, the triangle problem above fits into a square-filling problem:



(Here $s_1\pi$ denotes the 1-dimensional source/target of π ; the square commutes by definition of *P*.)

So contractibility of *P* reduces to "contractibility" — a right lifting property — for maps of theories

$$\mathbf{T}[\hat{\pi}] \longrightarrow \mathbf{T}[\widehat{s_1\pi}].$$

$$\mathbf{T}\left[\bullet \underbrace{\Downarrow}_{\psi} \bullet \underbrace{\Downarrow}_{\psi} \bullet \right] \longrightarrow \mathbf{T}\left[\bullet \longrightarrow \bullet \longrightarrow \bullet\right]$$

Contractibility as conservativity

Concretely, the desired right lifting property

is a *conservativity* principle: given some type in **T**, inhabited in the extension **S**, want to lift this inhabitant to **T**.

So, reduced to proof-theoretic crux:

Lemma

If the maps $\mathbf{T}[\hat{\pi}] \longrightarrow \mathbf{T}[\widehat{s_1\pi}]$ are conservative, then *P* is a contractible sub-operad of End(\mathbf{g}_{\bullet}), and hence $\mathcal{C}\ell_{\omega}$ carries a natural ω -category structure.

Main theorem

Corollary

If Φ contains Id-types and extensional Π -types, then these maps are conservative, so $C\ell_{\omega}$ is naturally an ω -category, as desired.

Conjecture

If Φ consists of just Id-types, these maps are again conservative. Hence, for any Ξ containing at least Id-types, $\mathcal{C}\ell_{\omega}$ carries the desired ω -category structure, via the adjunction $\mathbf{DTT}_{\mathrm{Id}} \underbrace{ }_{\perp} \underbrace{ }_{\perp} \mathbf{DTT}_{\Xi}$.

Main theorem

Corollary

If Φ contains Id-types and extensional Π -types, then these maps are conservative, so $C\ell_{\omega}$ is naturally an ω -category, as desired.

Conjecture

If Φ consists of just Id-types, these maps are again conservative. Hence, for any Ξ containing at least Id-types, $\mathcal{C}\ell_{\omega}$ carries the desired ω -category structure, via the adjunction $\mathbf{DTT}_{\mathrm{Id}} \stackrel{\frown}{=} \mathbf{DTT}_{\Xi}$.

Take-home points, again:

- 1. Type theories form a category.
- 2. Contexts are just like types.
- 3. Conservativity is a lifting property.

Thank you!

These slides, plus thesis (containing details omitted here), available from:

http://www.mathstat.dal.ca/~p.l.lumsdaine