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While the higher category lexicon is printed in more and more
dictionaries, its paradigm seldomly transcends Dolan and Baez’s
globular setting. These slides are meant to convince you that there
are much to gain to shift this paradigm to the cubical setting. This
is a small account of the beauty I encountered.
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Internalization
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Internal Categories

Definition

An internal category in a category C with pullbacks consists of :

C

b aı
πb

bπ

◦
s

t
b2

s − source ı− identity
t − target ◦ −composition

Two objects
Morphisms
Relations
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Internal Categories

Where bn is a chosen limit of :

bb b

a

t s t s

b

a

t s

n-1 times
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Internal Categories

and gives unique maps denoted by the symbol “p” :

πb′b′π

t’ s’

b′2

b’b’

a’

b

gf
f pg
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Internal Categories

together with :

1bptı

1b

◦

b b

b b

bπ/πb

◦

s/t

s/t

1b

sıp1b

1b

◦

b b2

b b

1b

ı

1a

t/s

a b

a a

1a

b2 b

b a

(bπ◦)pπb

bπp(πb◦)

◦

◦

b3 b2

b2 b
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Internal Functors

Definition

An internal functor between two internal categories consists of :

C
F1

F0

F2

Two morphisms
Relations
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Internal Functors

The relations are commutative squares:

F1

F0

s’

b b’

a a’

s

F1

F0

t’

b b’

a a’

t

F1

F0

ı′

b b’

a a’

ı

F2

F0

◦′

b2 b′2

a a’

◦
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Internal Functors

The relations are commutative squares:

F1

F0

s’

b b’

a a’

s

F1

F0

t’

b b’

a a’

t

F1

F0

ı′

b b’

a a’

ı

F2

F0

◦′

b2 b′2

a a’

◦
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Internal Functors

The relations are commutative squares:

F1

F0

s’

b b’

a a’

s

F1

F0

t’

b b’

a a’

t

F1

F0

ı′

b b’

a a’

ı

F2

F0

◦′

b2 b′2
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◦
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Internal Functors

Starting with Set, one gets (small) categories.

What happens if one starts with Cat ?
What happens if one repeats this process iteratively ?
We will see that it adds one dimension to the objects. It yields
things called Cubical categories or N-tuple categories.
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Internal Functors

Starting with Set, one gets (small) categories.
What happens if one starts with Cat ?
What happens if one repeats this process iteratively ?
We will see that it adds one dimension to the objects. It yields
things called Cubical categories or N-tuple categories.
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Internal Functors

But we would just be playing Lego would it just be for that.
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Internal Natural Transformations

Definition

An internal natural transformation between two internal
functors consists of :

CF1

F0

G1

G0

ω

A morphism
Relations
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Internal Natural Transformations

The relations are commutative squares:

ω

F0

s

b’

a’

ω

G0

t

b’

a’

F1ptω

◦′

◦′

b b′2

b′2 b’

sωpG1

a
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Iteration

For a fixed category C, the collection of internal categories,
internal functors and internal natural transformations forms a
2-category, i.e. something of the form :

IntCat(C)
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Iteration

In a 2-category, the list of previous list of internal objects becomes :
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Iteration

In a 2-category, the list of previous list of internal objects becomes :
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Iteration

The collection of such internal entities forms a “rugby” category :

IntCat(C)
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Iteration

If C is a “rugby” category, the list of internal objects becomes :

X2
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Iteration

This process goes on, adding layers every time. Homsets look like
hypercubes, giving 2-categories for n=1 (segment), “rugby”
categories for n=2 (square) etc...
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Npl Categories
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Double Categories

Definition

A (small) double category is an internal category in Cat.

A general element in a double category is a square :

And it composes associatively in two directions, with two different
units.
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Double Categories

Moreover the two compositions interchange , i.e. the following
diagram has a unique composition :
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Double Categories

Definition

A double functor is an internal functor in Cat

It maps squares to squares respecting boundaries, units and
composition.

a b

c

g g ′

d

f

f ′

A

F (a) F (b)

F (c)

F (g) F (g ′)

F (d)

F (f )

F (f ′)

F (A)
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Double Categories

Definition

A horizontal double natural transformation is an internal
natural transformation in Cat

It associates squares to vertical morphisms :

f

a

b

F (a) G (a)

F (b)

F (f ) G (f )

G (b)

ω(a)

ω(b)

ω(f )
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Double Categories

Definition

A horizontal double natural transformation is an internal
natural transformation in Cat

It associates squares to vertical morphisms :

f

a

b

F (a) G (a)

F (b)

F (f ) G (f )

G (b)

ω(a)

ω(b)

ω(f )
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Double Categories

In such a way that it intertwines functors horizontally :

F (c) G (c)

F (d)

F (g) G (g)

G (d)

ω(c)

ω(d)

ω(g)

F (a)

F (b)

F (f ) F (A)

F (h)

F (k)

G (c)F (a)

G (d)

G (g)
F (f )

G (d)

ω(c)

ω(b)

ω(f )

G (a)

F (b)

G (f ) G (A)

G (h)

G (k)

=
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Double Categories

Definition

A vertical double natural transformation is an internal natural
cell in Cat

It associates squares to horizontal morphisms :

F (a) F (b)

G (a)

ω(b)

G (b)

F (f )

G (f )

ω(f )

a bf

ω(a)
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Double Categories

Definition

A vertical double natural transformation is an internal natural
cell in Cat

It associates squares to horizontal morphisms :

F (a) F (b)

G (a)

ω(b)

G (b)

F (f )

G (f )

ω(f )

a bf

ω(a)
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Double Categories

In such a way that it intertwines functors vertically :

F (c)

G (c)

F (d) F (g)

G (g)
G (d)

ω(c)ω(d) ω(g)

F (a)F (a) F (f )

F (A) F (h)F (k)

G (c)

F (a)

G (d) G (g)

F (f )

G (d)

ω(c)ω(b) ω(f )

G (a)

F (b)

G (f )

G (A) G (h)G (k)

=
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Double Categories

Definition

A double comparison is an internal comparison in Cat.

It associates squares to objects :

a

F (a) G (a)

J(a)

∆(a) δ(a)

H(a)

ω(a)

Ω(a)

�(a)
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Double Categories

Definition

A double comparison is an internal comparison in Cat.

It associates squares to objects :

a

F (a) G (a)

J(a)

∆(a) δ(a)

H(a)

ω(a)

Ω(a)

�(a)
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Double Categories

In such a way that all the following are equal :

F (A) ω

∆ �

ω G (A)

� δ

� δ

Ω H(A)

∆ �

J(A) Ω
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Triple Categories

Definition

A (small) triple category is an internal category in dbCat.

A general element in a double category is a cube :

And it composes associatively in three directions, with three
different units.
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A general element in a double category is a cube :
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different units.
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Triple Categories

A triple functor associates cubes to cubes.
A triple natural transformation associates cubes to squares.
A triple comparisons associates cubes to arrows.
The new entity associates cubes to objects.
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Closure Theorem

Theorem

The categories of (strict) n-tuple categories are closed.

Which means, as we saw, that there is an internal Hom functor.
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Closure Theorem

The investigation of double categories is at its infancy but
interesting examples emerge already. R.Brown used it to define
non-commutative homotopy and though fairly unknown, some
constructions in quantum groups known as Drinfeld’ doubles are
related to them as well. In the fully invertible situation, “double
groups” have as famous special cases, crossed and bicrossed
products of groups. Triple categories is as close as I got to virgin
land.
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Degeneracies
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As there are 2 degenerate versions of a segment, there are 2
degenerate forms of categories :

non degenerate degenerate

Category monoid set
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As there are 7 degenerate squares, there are 7 degenerate forms of
double categories, only 4 of which are new :

non degenerate degenerate

Double category

2-Category Category

Set

MonoidMonoidal
Category

Symmetric
MonoidDouble

Monoid
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As there are 7 degenerate squares, there are 7 degenerate forms of
double categories, only 4 of which are new :

non degenerate degenerate

Double category

2-Category Category

Set

MonoidMonoidal
Category

Symmetric
MonoidDouble

Monoid
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Weakening
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ω internal category

Definition

A weak internal category in a 2-category with pullbacks consists
of :

C

b ab2

b3

α

ρ

λ

α - Assiciativity
ρ - Right unit
λ - Left unit

Objects
Morphisms
2-Cells
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ω internal category

Commutative diagrams for arrows :

bπ/πb

◦

s/t

s/t

ı

ida

t/s

a b

a a

ida
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ω internal category

Commutative diagrams for cells :

b4

b3

b3

b3 b2

b2

b2

b

11◦

1◦

1◦

1◦

◦1

◦1

◦1

◦

◦

◦1
◦

1

◦11

idpα α

id

α

αp
id

α
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ω internal category

Commutative diagrams for cells :

b3

b2

1ı1

b2

b2

b2 b2

b

◦1

1◦

◦

◦
◦

α

ρ1

id
id

id

1λ
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ω internal functor

Definition

A weak internal functor between two weak internal categories
consists of :

C
F1

F0

C
F1

F0

F2
µ

ε

Morphisms

2-Cells
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ω internal functor

Definition

A weak internal functor between two weak internal categories
consists of :

C
F1

F0

C
F1

F0

F2
µ

ε

Morphisms
2-Cells
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ω internal functor

A set of commutative diagrams for arrows:

F1

F0

s’/t’

b b’

a a’

s/t

F2

F1

b′π/πb′

b2 b′2

b b’

bπ/πb



Introduction Internalization Npl Categories Degeneracies Weakening Conclusion References

ω internal functor

A set of commutative diagrams for cells :

b3

b2

b2

b
α

◦◦1

◦
1◦b3

b2

b2

b

b′3 b′2

b′2 b’

F2

F
2

F
1

F
3 µ1 µ

µ

1µ

b′3 b′2

b′2 b’◦′

◦′1
1◦
′

◦′

α′

b

b2

b

b
ρ

◦
1p

(tı
)

b

b2

b

b

b′ b′2

b′ b′

F1

F
2

F
1

F
1 id id

µ

idp
(tε

)

b′ b′2

b′ b′1p
(t
′ ı′ ) ◦′

ρ′

And a corresponding cube for λ.
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ω internal functor

A set of commutative diagrams for cells :

b3

b2

b2

b
α

◦◦1

◦
1◦

b3

b2

b2

b

b′3 b′2

b′2 b’

F2

F
2

F
1

F
3 µ1 µ

µ

1µ

b′3 b′2

b′2 b’◦′

◦′1
1◦
′

◦′

α′

b

b2

b

b
ρ

◦
1p

(tı
)

b

b2

b

b

b′ b′2

b′ b′

F1

F
2

F
1

F
1 id id

µ

idp
(tε

)

b′ b′2

b′ b′1p
(t
′ ı′ ) ◦′

ρ′

And a corresponding cube for λ.
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ω internal functor

A set of commutative diagrams for cells :

b3

b2

b2

b
α

◦◦1

◦
1◦

b3

b2

b2

b

b′3 b′2

b′2 b’

F2

F
2

F
1

F
3 µ1 µ

µ

1µ

b′3 b′2

b′2 b’◦′

◦′1
1◦
′

◦′

α′

b

b2

b

b
ρ

◦
1p

(tı
)

b

b2

b

b

b′ b′2

b′ b′

F1

F
2

F
1

F
1 id id

µ

idp
(tε

)

b′ b′2

b′ b′1p
(t
′ ı′ ) ◦′

ρ′

And a corresponding cube for λ.
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ω internal functor
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b
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F
2

F
1

F
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µ
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b

b
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F
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F
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F
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b
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And a corresponding cube for λ.
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ω internal functor

A set of commutative diagrams for cells :

b3

b2

b2

b
α

◦◦1

◦
1◦b3

b2

b2

b

b′3 b′2

b′2 b’

F2

F
2

F
1

F
3 µ1 µ

µ

1µ

b′3 b′2

b′2 b’◦′

◦′1
1◦
′

◦′

α′

b

b2

b

b
ρ

◦
1p

(tı
)

b

b2

b

b

b′ b′2

b′ b′

F1

F
2

F
1

F
1 id id

µ

idp
(tε

)

b′ b′2

b′ b′1p
(t
′ ı′ ) ◦′

ρ′

And a corresponding cube for λ.
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ω internal functor

a

b

b2

a’ a’

b’

a

a’

s

F
1

ı′
s’

F
0

ı

F
0

F
0

id id

id

id
ε

id

+ same with targets instead of sources

b2

b

b

a’ a’

b’

a

a’

s

F
1

πb
′

s’

F
1 pF

1

πb

F
1

F
0

s

s’

µ
id

id

id
id

id

◦

◦′

+ same with targets instead of sources
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ω internal transformations

Definition

A weak internal natural transformation between two weak
internal functors consists of :

F1ptω

◦′

◦′

b b′2

b′2 b’

sω
pG

1

η

A morphism

A 2-Cell
Relations



Introduction Internalization Npl Categories Degeneracies Weakening Conclusion References

ω internal transformations

Definition

A weak internal natural transformation between two weak
internal functors consists of :

F1ptω

◦′

◦′

b b′2

b′2 b’

sω
pG

1

η A morphism
A 2-Cell

Relations
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ω internal transformations

Definition

A weak internal natural transformation between two weak
internal functors consists of :

F1ptω

◦′

◦′

b b′2

b′2 b’

sω
pG

1

η A morphism
A 2-Cell
Relations
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ω internal transformations

The relations are :

ω

sωpG2

F1ptωpG1F
2pω

◦

F
1pω

sωpG1

ω

◦′1

1◦′

◦′1

◦′

◦′

◦′1
1◦′

1◦′

α′

α′
α′

µFp1

1pµG
ηp1

1pη
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ω internal transformations

The relations are :

ω

sωpG2

F1ptωpG1F
2pω

◦

F
1pω

sωpG1

ω

◦′1

1◦′

◦′1

◦′

◦′

◦′1
1◦′

1◦′

α′

α′
α′

µFp1

1pµG
ηp1

1pη
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ω internal cells

Definition

A weak internal natural cell between two weak internal functors
consists of :

F1

G1

F0

G0

ω0

ω1

2-Cells
Relations
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ω internal cells

Definition

A weak internal natural cell between two weak internal functors
consists of :

F1

G1

F0

G0

ω0

ω1
2-Cells

Relations



Introduction Internalization Npl Categories Degeneracies Weakening Conclusion References

ω internal cells

Definition

A weak internal natural cell between two weak internal functors
consists of :

F1

G1

F0

G0

ω0

ω1
2-Cells
Relations
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ω internal cells

Contrary to the natural transformation case, the relations are very
easy to visualize :

F0

G0

F1

ı′

ı

ω1

ω0

εGεF

a

a’

b

b’

G1

F2

◦′

◦

ω2

µGµF

a

a’

b2

b′2

G2
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Closure Conjecture

Conjecture (Majard ’10)

The categories of weak n-tuple categories are weakly enriched over
themselves.
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Conclusion
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A systematic description of weak n-tuple categories is needed.
Although the case of weak double categories is fully understood,
very little work has been done on the other versions of fully weak
n-tuple categories.
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Thank you
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