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Weak morphisms
If we look at categories internal to the category Grp of groups, we
have that:

I since Grp is a Mal’cev category, any internal category

G = G1

d //

c
// G0eoo is actually (in a unique way) a groupoid

I any internal groupoid has a monoidal structure, making it a strict
2-group.

This means that, if we want to consider morphisms between internal
categories in Grp, we have (at least) two possibilities:

1. internal functors, that in this case means functors F : H→ G
which preserve strictly the monoidal structure:

F (x ⊗ y) = Fx ⊗ Fy x , y ∈ H0

2. monoidal functors, which preserve the monoidal structure up to a
given coherent family of isomorphisms:

F x,y : Fx ⊗ Fy → F (x ⊗ y) x , y ∈ H0
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Both notions of monoidal functor and internal functor are relevant as
morphisms of groupoids in groups:

I as special case, monoidal functors give group extensions
I in the same case internal functors give group split extensions

So the question of expressing in an internal way monoidal functors
arises.
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The situation is completely analogous in the category of Lie algebras
over a field:

I any internal category is actually a groupoid
I any internal groupoid has a strict Lie 2-algebra structure.

1. internal functors
F : H→ G

are functors in Vect which preserve strictly the structure:

F ([x , y ]) = [Fx ,Fy ] x , y ∈ H0

2. homomorphisms are functors in Vect which preserve Lie
structure up to a given natural, bilinear antisymmetric family :

F x,y : [Fx + Fy ]→ F [x , y ] x , y ∈ H0

satisfying the Jacobi condition.
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The examples above represent two instances of what we could call
weak morphisms, since these functors preserve weakly the
algebraic structure.
What could be a definition of weak morphism unifying the above
examples (and many others)?

While in the strict case the notion of internal functor between
groupoids in a Mal’cev category is very easy to be given, since it
coincides with a morphism of the underlying reflexive graphs, the
situation for the weak case is not so plain.

Recently, two main progresses have been accomplished in this
direction.
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From one side, E.M. Vitale in [Vit10] proved that monoidal functors
between groupoids in Grp are fractions of internal functors with
respect to weak equivalences, i.e. fully faithful and essentially
surjective on objects.
The same result holds replacing groups with Lie algebras and
monoidal functors with homomorphisms of strict Lie 2-algebras.

On the other hand, B. Noohi in [Noohi05] and in [Noohi09] describes
weak morphisms both in Grp and in Lie in the same way by using
what he calls butterflies. This way relies on the existence both in Grp
and in Lie of an equivalence between groupoids and crossed
modules.
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Recall that, given a group homomorphism ∂ : G→ G0 with an action
• of G0 on G,

G ×G
χG //

∂×1G

��
(PFF )

G

1G

G0 ×G • //

1G0×∂
��

(PCM)

G

∂

��
G0 ×G0 χG0

// G0.

(1)

axiom (PCM) gives to the triple (G0,G, ∂) a precrossed module
structure; (PCM) + (PFF ), the so called Peiffer identity, make
(G0,G, ∂) a crossed module.



Given a groupoid G, the kernel of d composed with c gives a
morphism ∂ : G→ G0, which turns out to have a crossed module
structure.

G1

d //

c
// G0eoo  G

∂

66
ker d // G1

c // G0

This process is called the normalization of the groupoid.

On the other hand, given a crossed module ∂ : G→ G0, the
semi-direct product G o G0 gives rise to a groupoid by taking as
d = πG0 , c(g, x) = ∂(g) + x and e = 〈0,1〉

G ∂ // G0  G o G0

d //

c
// G0eoo

These two processes induce an equivalence between groupoids and
crossed modules.
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Let G and H be crossed modules. A butterfly from H to G is given by
a commutative diagram of the form

H
κ

��
∂

��

G

∂

��

��
ι

��
E

δ���� γ ��
H0 G0

such that
i. κ · γ = 0, i.e. (κ, γ) is a complex
ii. ι = ker δ and δ = coker ι, i.e. (ι, δ) is an extension

iii. ι(γ(x) • g) = xι(g)x−1, for any x ∈ E and any g ∈ G
iv. κ(δ(x) • h) = xκ(h)x−1, for any x ∈ E and any h ∈ H
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B. Noohi gives a definition also for butterflies between crossed
modules of Lie algebras, which differs from the one given before in
the conditions about the compatibility with actions of γ and δ. But if
we put things in a right context, it is possible to give an internal
definition of butterfly.

First of all, we need to find a contest where groupoids can be
equivalently described by a suitable notion of internal crossed
modules.

This has been done for any semi-abelian category by G. Janelidze in
[Jan03], by using a notion of internal action given by algebras
ξ : G0[G→ G for a certain monad:

G0[− : C → C

.
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If we typographically turn diagrams of (1) into internal ones:

G[G
χG //

∂[1G

��
(PFF )

G

1G

Go[G
ξ //

1G0 [∂

��
(PCM)

G

∂

��
G0[G0 χG0

// G0.

(2)

while axiom (PCM) still gives reflexive graphs, adding the Peiffer
axiom in general is not sufficient to characterize groupoids (as shown
by M., Metere in [MM10]).

Recently in [MFVdL10] it is proved that this is true exactly when in the
semi-abelian category the condition Huq=Smith holds (and this
happens in most of the known examples). And this is the context
where we decide to work in.
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An internal butterfly between (H, ∂, ξ) and (G, ∂, ξ) is given by

H
κ

��
∂

��

G

∂

��

��
ι

��
E

δ���� γ ��
H0 G0

with

i. κ · γ = 0
ii. ι = ker δ and δ = coker ι

iii. The action of E on H induced by ξ via δ makes κ : H → E a
(pre)crossed module

iv. The action of E on G induced by ξ via γ makes ι : g → E a
(pre)crossed module.
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An arrow between two parallel butterflies is given by a morphism
f : E → E ′ s.t. all the following diagrams commute:

H
κ

&&
κ′

��
∂

��

G

∂

��

ι

xx
ι′

��

E

f
��

δ

��

γ

��

E ′

δ′
xx

γ′
&&

H0 G0

By the five lemma, any such f is an iso.
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By using the following composition:

Q

sγ′

��

rδ

��

E ×γ,δ′ E ′

q

OO

r

��

s

��

H

〈κ,0〉
66

∂

��

κ

  

G

〈ι,κ′〉

OO

ι
zz κ′

%%
∂

��

K

〈0,ι′〉
ii

ι′

~~
∂

��

E

δ~~ γ
$$

E ′

δ′zz γ′
  

H0 G0 K0

we can show that there is a bicategory B(C) with internal crossed
modules as objects, butterflies as 1-cells, and morphisms of
butterflies as 2-cells.
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But what is the relation between butterflies and internal functors of
groupoids?
In the equivalence between Grpd(C) and XMod(C), an internal functor
F between groupoids is associated to a morphism of crossed
modules:

H

∂

��

f // G

∂

��
H0 f0

// G0

with (f , f0) equivariant w.r.t. the actions.

In [EKVdL05] it is proved that

F : H→ G is a weak equivalence⇔ the corresponding morphism
(f , f0) induces isomorphisms on kernels and cokernels of ∂ and such
a pair is called a weak equivalence of crossed modules.



But what is the relation between butterflies and internal functors of
groupoids?
In the equivalence between Grpd(C) and XMod(C), an internal functor
F between groupoids is associated to a morphism of crossed
modules:

H

∂

��

f // G

∂

��
H0 f0

// G0

with (f , f0) equivariant w.r.t. the actions.

In [EKVdL05] it is proved that

F : H→ G is a weak equivalence⇔ the corresponding morphism
(f , f0) induces isomorphisms on kernels and cokernels of ∂ and such
a pair is called a weak equivalence of crossed modules.



But what is the relation between butterflies and internal functors of
groupoids?
In the equivalence between Grpd(C) and XMod(C), an internal functor
F between groupoids is associated to a morphism of crossed
modules:

H

∂

��

f // G

∂

��
H0 f0

// G0

with (f , f0) equivariant w.r.t. the actions.

In [EKVdL05] it is proved that

F : H→ G is a weak equivalence⇔ the corresponding morphism
(f , f0) induces isomorphisms on kernels and cokernels of ∂ and such
a pair is called a weak equivalence of crossed modules.



We prove that there is a way to associate to any morphism (f , f0) a
split butterfly:
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This is the first step to construct a homomorphism of bicategories

F : XMod(C)→ B(C),

which is the identity on objects and it is suitable defined on 2-cells.
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I F sends weak equivalences in flippable butterflies (both the
diagonals are extensions )

I flippable butterflies are equivalences in B(C), with quasi-inverses
obtained by twisting the wings.

I in any butterfly κ and ι cooperate in E and the cooperator ϕ
gives rise to a crossed module, so that we can turn a butterfly
into a fraction

H ×G
πH
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πG

&&
ϕ
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H
κ
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∂
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G
ι

xx
∂

��

E

δyy γ &&
H0 G0

The above properties allow us to apply a Theorem of D. Pronk about
bicategories of fractions with respect to a class Σ with right calculus
(see [Pronk96]) and we obtain

Theorem
B(C) is the bicategory of fractions of Grpd(C) with respect to the class
Σ of weak equivalences.
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What happens if we “denormalize” butterflies, i.e. we go back to
groupoids via the equivalence between Grpd(C) and XMod(C)? We
obtain a situation like this:
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where
1. (δ, δ) and (γ, γ) are discrete fibrations
2. γ coequalizes dH, cH

3. the NE-SW fork is an exact fork.
We call them fractors and we can define them in any category C with
finite limits.
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Since (δ, δ) and (γ, γ) are discrete fibrations between groupoids, they
may represent respectively a right action dH of H on E and a left
action cG of G on E .
These two actions actually commute, as it is proved by taking also the
kernel pair of δ, shown in the following diagram, where dashed arrows
are suitably obtained by the universal property of the kernel pair R[δ],
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This means that in any category C with finite limits, fractors give rise
to special internal profunctors (distributors, relators).
It turned out that these profunctors were very recently studied for
other reasons by D. Bourn in [Bourn10] and characterized as the
ones whose canonical span representation has a fully faithful,
surjective on objects, left leg (left regularly faithful profunctors):

GEH

d

��

c

��

w1

}}

v1

""
H1

d

��

c

��

G1

d

��

c

��

E

w0|| v0 ""
H0 G0

D. Bourn has also shown that for C exact, fractors are closed under
composition of profunctors and any morphism of fractors is an iso, so
that they form a bigroupoid Fr(C) inside Prof (C).
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Recall that given a functor f : H→ G, you can consider f as a
profunctor in a covariant f• and a contravariant f • way (with the
property f• a f •). In the case of groupoids, f • is isomorphic to f•

op.
This embedding extends to natural transformations and we have

GrpdC(H,G) ↪→ ProfC(H,G).

In the constructions of f•, δ : E → H0 is obtained as the pullback of
the domain d : G1 → G0 along f0:

E
δ

~~

f0 // G1

d

~~ c   
H0 f0

// G0 G0

and as γ = cf0.
Proposition. Let C be finitely complete and H,G in Grpd(C).
A profunctor E : H# G is representable, i.e. E ∼= f• if and only if it is
a split fractor, that is a fractor with δ a split epi.
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We can also characterize those profunctors representable by a weak
equivalence. Recall that a functors between groupoids is essentially
surjective on objects, if in the pullback of the domain d : G1 → G0
along f0
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f0 // G1

d

��
c

��
H0 f0

// G0 G0

cf0 is a regular epimorphism.
But, in the profunctorial representation f• of f this last morphism is
nothing but γ, so we find a first condition, that turns out to be also
sufficient.
Proposition. Let C be finitely complete and H,G in Grpd(C).
A profunctor E : H# G is representable by an essentially surjective
functor if and only if it is a split fractor with γ a regular epi.



We can also characterize those profunctors representable by a weak
equivalence. Recall that a functors between groupoids is essentially
surjective on objects, if in the pullback of the domain d : G1 → G0
along f0

E

δ

��

f0 // G1

d

��
c

��
H0 f0

// G0 G0

cf0 is a regular epimorphism.
But, in the profunctorial representation f• of f this last morphism is
nothing but γ, so we find a first condition, that turns out to be also
sufficient.
Proposition. Let C be finitely complete and H,G in Grpd(C).
A profunctor E : H# G is representable by an essentially surjective
functor if and only if it is a split fractor with γ a regular epi.



We can also characterize those profunctors representable by a weak
equivalence. Recall that a functors between groupoids is essentially
surjective on objects, if in the pullback of the domain d : G1 → G0
along f0

E

δ

��

f0 // G1

d

��
c

��
H0 f0

// G0 G0

cf0 is a regular epimorphism.
But, in the profunctorial representation f• of f this last morphism is
nothing but γ, so we find a first condition, that turns out to be also
sufficient.
Proposition. Let C be finitely complete and H,G in Grpd(C).
A profunctor E : H# G is representable by an essentially surjective
functor if and only if it is a split fractor with γ a regular epi.



The next condition characterizes the weak equivalence case:
Proposition. Let C be finitely complete and H,G in Grpd(C).
A profunctor E : H# G is representable by a weak equivalence if
and only if it is a split fractor with Eop still a fractor:
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In particular any such profunctor is what D. Bourn called regularly fully
faithful profunctor (in our terminology, both E and Eop are fractors).
He showed that, in case C is efficiently regular, they are equivalences
in the bicategory Prof (C) and an inverse of E is given by Eop.
As an easy consequence, we obtain that, if F : Grpd(C)→ Fr(C)
denotes a homomorphism such that

F(H) = H F(f ) = f•

and it is defined in a suitable way on 2-cells, then
if f is a weak equivalence, then F(f ) = f• is an equivalence (with f•

op

as an inverse)
Also for fractors, as for the pointed version given by butterflies, we
show that the homomorphism F fulfills the conditions required by the
Theorem of D. Pronk and we obtain
Theorem. Let C be a Barr-exact category. Then the bicategory of
fractions with respect to weak equivalences of the 2-category
Grpd(C) is equivalent to the bicategory Fr(C) of fractors in C.
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Let C have split extensions classifiers, as it happens, for instance, in
the category of groups or of Lie-algebras. Consider two objects H and
G in C. Let D(H) = (0→ H) be the discrete crossed module on H and

A(G) = (IG : G→ AutG , ev : AutG[G→ G)

the crossed module associated with the split extensions classifier
AutG (that is, the crossed module corresponding to the action
groupoid).

Lemma
The groupoid

Ext(H,G)

of extensions of the form H ← E ← G is isomorphic to the groupoid

B(C)(D(H),A(G))

Such an isomorphism restricts to split extensions and split butterflies.



Theorem
([Pronk96]) Let Σ be a class of 1-cells in a bicategory B. Assume that
Σ has a right calculus of fractions and consider a homomorphism of
bicategories F : B → A such that

EF0. F(S) is an equivalence for all S ∈ Σ;

EF1. F is surjective up to equivalence on objects;
EF2. F is full and faithful on 2-cells;
EF3. For every 1-cell F in A there exist 1-cells G and W in B with W in

Σ and a 2-cell F(G)⇒ F(W ) · F .
Then the (essentially unique) extension

F̂ : B[Σ−1]→ A

of F through PΣ is a biequivalence.


