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Canonical restrictions

Let (M, η, µ) a monad on a category D.

Let s : (A, a) → (MA,µ) a section of a : (MA,µ) → (A, a).
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Canonical restrictions

Let (M, η, µ) a monad on a category D.

Let s : (A, a) → (MA,µ) a section of a : (MA,µ) → (A, a).

A

η //

s
//
MAaoo
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Canonical restrictions

Let (M, η, µ) a monad on a category D.

Let s : (A, a) → (MA,µ) a section of a : (MA,µ) → (A, a).

A

η //

s
//
MAaoo

Def. 3. The canonical restriction of s is the p.b. on the left or,
equivalently, the equalizer on the right.

As

s
��

s // A

η

��

As
s // A

ηA //

s
// MA

A s
// MA
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The Explicit Basis property

A

η //

s
//
MAaoo As

s // A

ηA //

s
// MA
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The Explicit Basis property

A

η //

s
//
MAaoo As

s // A

ηA //

s
// MA

Def. 5. (M, η, µ) satisfies the Explicit Basis (EB) property if for every
such section s : (A, a) → (MA,µ) the map

MAs
Ms // MA

a // A

is an iso. (I.e. the canonical restriction is a ‘basis’.)
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The Explicit Basis property

A

η //

s
//
MAaoo As

s // A

ηA //

s
// MA

Def. 6. (M, η, µ) satisfies the Explicit Basis (EB) property if for every
such section s : (A, a) → (MA,µ) the map

MAs
Ms // MA

a // A

is an iso. (I.e. the canonical restriction is a ‘basis’.)

Example 3. Idempotent monads.
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The Explicit Basis property

A

η //

s
//
MAaoo As

s // A

ηA //

s
// MA

Def. 7. (M, η, µ) satisfies the Explicit Basis (EB) property if for every
such section s : (A, a) → (MA,µ) the map

MAs
Ms // MA

a // A

is an iso. (I.e. the canonical restriction is a ‘basis’.)

Example 4. Idempotent monads.

Prop. 4. If a monad is EB then idempotents split in the Kleisli category.
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Example: compact convex sets

compact convex set = compact convex subset of a locally
convex Hausdorff real vector space.

cConv = category of compact convex sets and continuous
affine functions between them.

Bimonadic adjunctions and the Explicit Basis property – p. 4



Example: compact convex sets

compact convex set = compact convex subset of a locally
convex Hausdorff real vector space.

cConv = category of compact convex sets and continuous
affine functions between them.

cConv → cHaus is monadic (Świrszcz’74).
MA is the space of probability measures on A.
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Example: compact convex sets

compact convex set = compact convex subset of a locally
convex Hausdorff real vector space.

cConv = category of compact convex sets and continuous
affine functions between them.

cConv → cHaus is monadic (Świrszcz’74).
MA is the space of probability measures on A.

Prop. 7. cConv → cHaus is EB
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Example: compact convex sets

compact convex set = compact convex subset of a locally
convex Hausdorff real vector space.

cConv = category of compact convex sets and continuous
affine functions between them.

cConv → cHaus is monadic (Świrszcz’74).
MA is the space of probability measures on A.

Prop. 8. cConv → cHaus is EB

Every canonical presentation a : MA → A has at most one
section s : A → MA and...
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Example: compact convex sets

compact convex set = compact convex subset of a locally
convex Hausdorff real vector space.

cConv = category of compact convex sets and continuous
affine functions between them.

cConv → cHaus is monadic (Świrszcz’74).
MA is the space of probability measures on A.

Prop. 9. cConv → cHaus is EB

Every canonical presentation a : MA → A has at most one
section s : A → MA and...

... if it exists, its canonical restriction coincides with
∂eA → A.
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Example: Myhill’s combinatorial functions

Bij → Inj determines an essential surjection

q : [Bij,Set] → [Inj,Set]

and so, a monadic q! ⊣ q∗ : [Inj,Set] → [Bij,Set].
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Example: Myhill’s combinatorial functions

Bij → Inj determines an essential surjection

q : [Bij,Set] → [Inj,Set]

and so, a monadic q! ⊣ q∗ : [Inj,Set] → [Bij,Set].

Prop. 11. The induced monad on [Bij,Set] is EB and the Kleisli
category is the Schanuel topos.
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Example: Myhill’s combinatorial functions

Bij → Inj determines an essential surjection

q : [Bij,Set] → [Inj,Set]

and so, a monadic q! ⊣ q∗ : [Inj,Set] → [Bij,Set].

Prop. 12. The induced monad on [Bij,Set] is EB and the Kleisli
category is the Schanuel topos.

The EB prop. survives if we replace Bij → Inj with M → C
where (E ,M) is a factorization system on C with all E-maps
epi.
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Example: Myhill’s combinatorial functions

Bij → Inj determines an essential surjection

q : [Bij,Set] → [Inj,Set]

and so, a monadic q! ⊣ q∗ : [Inj,Set] → [Bij,Set].

Prop. 13. The induced monad on [Bij,Set] is EB and the Kleisli
category is the Schanuel topos.

The EB prop. survives if we replace Bij → Inj with M → C
where (E ,M) is a factorization system on C with all E-maps
epi.

(How ‘good’ the Kleisli category is depends on other
things...)
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Other examples

i : C0 → C discrete subcategory of objects.
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Other examples

i : C0 → C discrete subcategory of objects.

Prop. 15. The monadic i∗ : Ĉ → Ĉ0 is EB iff C is reduced.
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Other examples

i : C0 → C discrete subcategory of objects.

Prop. 16. The monadic i∗ : Ĉ → Ĉ0 is EB iff C is reduced.

Cor. 5. For C a monoid C-Set → Set is EB iff C is reduced.
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Other examples

i : C0 → C discrete subcategory of objects.

Prop. 17. The monadic i∗ : Ĉ → Ĉ0 is EB iff C is reduced.

Cor. 7. For C a monoid C-Set → Set is EB iff C is reduced.

Cor. 8 (Janelidze). G-Set → Set is EB for any group G.
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Other examples

i : C0 → C discrete subcategory of objects.

Prop. 18. The monadic i∗ : Ĉ → Ĉ0 is EB iff C is reduced.

Cor. 9. For C a monoid C-Set → Set is EB iff C is reduced.

Cor. 10 (Janelidze). G-Set → Set is EB for any group G.

Example 13. Cat → ReflGrph is EB.
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Other examples

i : C0 → C discrete subcategory of objects.

Prop. 19. The monadic i∗ : Ĉ → Ĉ0 is EB iff C is reduced.

Cor. 11. For C a monoid C-Set → Set is EB iff C is reduced.

Cor. 12 (Janelidze). G-Set → Set is EB for any group G.

Example 15. Cat → ReflGrph is EB.

Example 16. If E is extensive then E/E → E is EB.
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Other examples

i : C0 → C discrete subcategory of objects.

Prop. 20. The monadic i∗ : Ĉ → Ĉ0 is EB iff C is reduced.

Cor. 13. For C a monoid C-Set → Set is EB iff C is reduced.

Cor. 14 (Janelidze). G-Set → Set is EB for any group G.

Example 17. Cat → ReflGrph is EB.

Example 18. If E is extensive then E/E → E is EB.

Note: in most examples of EB monads the ‘free algebra’
functor is comonadic.
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“Is it possible that for some
comonads the unit law implies the

associative law ?”
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Pre-coalgebras

Let C = (C, ε, δ) be a comonad on a category X .
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Pre-coalgebras

Let C = (C, ε, δ) be a comonad on a category X .
Def. 9. A pre-coalgebra is a pair (X, s) where s : X → CX is a map
in X such that the diagram on the left below

X
s //

id !!DD
DD

DD
DD

CX

ε

��

X

f
��

s // CX

Cf
��

X X ′

s′
// CX ′

commutes. A morphism f : (X, s) → (X ′, s′) of pre-coalgebras is a

map f : X → X ′ in X s.t. the diagram on the right above commutes.
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Pre-coalgebras

Let C = (C, ε, δ) be a comonad on a category X .
Def. 10. A pre-coalgebra is a pair (X, s) where s : X → CX is a map
in X such that the diagram on the left below

X
s //

id !!DD
DD

DD
DD

CX

ε

��

X

f
��

s // CX

Cf
��

X X ′

s′
// CX ′

commutes. A morphism f : (X, s) → (X ′, s′) of pre-coalgebras is a

map f : X → X ′ in X s.t. the diagram on the right above commutes.

Let XC be the category of pre-coalgebras and morphisms
between them.
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The Redundant Coassociativity property

Clearly, the category XC of C-coalgebras is a full
subcategory XC → XC.
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The Redundant Coassociativity property

Clearly, the category XC of C-coalgebras is a full
subcategory XC → XC.

Def. 12. We say that C satisfies the Redundant Coassociativity property
if the embedding XC → XC is an equivalence.
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The Redundant Coassociativity property

Clearly, the category XC of C-coalgebras is a full
subcategory XC → XC.

Def. 13. We say that C satisfies the Redundant Coassociativity property
if the embedding XC → XC is an equivalence.

Example 21 (Wood). Let C be a category with products and consider
the comonadic C/I → C. The resulting comonad I × ( ) : C → C
satisfies Redundant Coassociativity:
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The Redundant Coassociativity property

Clearly, the category XC of C-coalgebras is a full
subcategory XC → XC.

Def. 14. We say that C satisfies the Redundant Coassociativity property
if the embedding XC → XC is an equivalence.

Example 22 (Wood). Let C be a category with products and consider
the comonadic C/I → C. The resulting comonad I × ( ) : C → C
satisfies Redundant Coassociativity: A pre-coalgebra is a map
s : A → I × A such that

A

id ""FFFFFFFFF
s // I × A

ε=π1

��
A

so it is determined by the coalgebra π0s : A → I .
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The extended comparison

Fix an adjunction L ⊣ R : X → Y.

Bimonadic adjunctions and the Explicit Basis property – p. 10



The extended comparison

Fix an adjunction L ⊣ R : X → Y.
Let C be the induced comonad on X .
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The extended comparison

Fix an adjunction L ⊣ R : X → Y.
Let C be the induced comonad on X .
Denote the standard comparison by K : Y → XC and ...
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The extended comparison

Fix an adjunction L ⊣ R : X → Y.
Let C be the induced comonad on X .
Denote the standard comparison by K : Y → XC and ...
... extend it to a comparison K : Y → XC

X

Y

K

55

L
>>}}}}}}}} K // XC

OO

// XC

aaCCCCCCCC
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EB and RC

X

Y

K

55

L
>>}}}}}}}} K // XC

OO

// XC

aaCCCCCCCC

Prop. 21. If R : X → Y is monadic the following are equivalent:
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EB and RC

X

Y

K

55

L
>>}}}}}}}} K // XC

OO

// XC

aaCCCCCCCC

Prop. 22. If R : X → Y is monadic the following are equivalent:

1. K : Y → XC is an equivalence.
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EB and RC

X

Y

K

55

L
>>}}}}}}}} K // XC

OO

// XC

aaCCCCCCCC

Prop. 23. If R : X → Y is monadic the following are equivalent:

1. K : Y → XC is an equivalence.

2. L : Y → X is comonadic and Redundant Coassociativity holds.
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EB and RC

X

Y

K

55

L
>>}}}}}}}} K // XC

OO

// XC

aaCCCCCCCC

Prop. 24. If R : X → Y is monadic the following are equivalent:

1. K : Y → XC is an equivalence.

2. L : Y → X is comonadic and Redundant Coassociativity holds.

3. The induced monad on Y reflects isos and is EB.
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Sketch of the proof

Every pre-coalgebra (X, s : X → LRX) induces a

RX

ηR //

Rs
// RLRXRεoo

in Y, with Rε as a common retraction of ηR and Rs.
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Sketch of the proof

Every pre-coalgebra (X, s : X → LRX) induces a

RX

ηR //

Rs
// RLRXRεoo

in Y, with Rε as a common retraction of ηR and Rs.

Define the canonical restriction of (X, s) as the
p.b./equalizer

Xs

s
��

s // RX

ηR

��

Xs
s // RX

η //

Rs
// RLRX

RX
Rs

// RLRX
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Sketch of proof (cont.)

The assignment (X, s) 7→ Xs extends to a right adjoint
N : XC → Y to the extended comparison Y → XC.

X

Y

L
22

K

))
K // XC

// XC

N

hh
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Sketch of proof (cont.)

The assignment (X, s) 7→ Xs extends to a right adjoint
N : XC → Y to the extended comparison Y → XC.

X

Y

L
22

K

))
K // XC

// XC

N

hh

A slight extension of Beck’s Thm. shows t.f.a.e:

1. K : Y → XC is an equivalence.

2. L : Y → X is comonadic and Redundant Coassociativity
holds.
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Sketch of the proof (cont.)

Finally, if R : X → Y is monadic, X = YM and a
pre-coalgebra ((A, a), s) is just

(A, a)

id %%KKKKKKKKK

s // (MA,µ)

a
��

= LR(A, a)

counit of L ⊣ R
��

(A, a) = (A, a)

a section s : (A, a) → (MA,µ) of the presentation of (A, a);
and...
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Sketch of the proof (cont.)

Finally, if R : X → Y is monadic, X = YM and a
pre-coalgebra ((A, a), s) is just

(A, a)

id %%KKKKKKKKK

s // (MA,µ)

a
��

= LR(A, a)

counit of L ⊣ R
��

(A, a) = (A, a)

a section s : (A, a) → (MA,µ) of the presentation of (A, a);
and...

... the adjoint N : XC → Y maps such a pre-coalgebra to its
canonical restriction.
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EB iff RC

Prop. 25. If R : X → Y is monadic t.f.a.e.:

1. K : Y → XC is an equivalence.

2. L : Y → X is comonadic and Redundant Coassociativity holds.

3. The induced monad on Y reflects isos and is EB.

Bimonadic adjunctions and the Explicit Basis property – p. 15



EB iff RC

Prop. 26. If R : X → Y is monadic t.f.a.e.:

1. K : Y → XC is an equivalence.

2. L : Y → X is comonadic and Redundant Coassociativity holds.

3. The induced monad on Y reflects isos and is EB.

Cor. 16. Let

X

monadic
��

Cgg

Y

comonadic

OO

Mgg
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EB iff RC

Prop. 27. If R : X → Y is monadic t.f.a.e.:

1. K : Y → XC is an equivalence.

2. L : Y → X is comonadic and Redundant Coassociativity holds.

3. The induced monad on Y reflects isos and is EB.

Cor. 17. Let

X

monadic
��

Cgg

Y

comonadic

OO

Mgg

Then: M is EB ⇔C satisfies Redundant Coassociativity.
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EB iff RC

Prop. 28. If R : X → Y is monadic t.f.a.e.:

1. K : Y → XC is an equivalence.

2. L : Y → X is comonadic and Redundant Coassociativity holds.

3. The induced monad on Y reflects isos and is EB.

Cor. 18. Let

X

monadic
��

Cgg

Y

comonadic

OO

Mgg

Then: M is EB ⇔C satisfies Redundant Coassociativity.

A CEB monad is one that is iso-reflecting and EB.
Every CEB monad has a conservative underlying functor.
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Two new examples
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Example:Monadic Descent

E with pullbacks, p : I → J in E , M the monad on E/I
induced by Σp ⊣ p∗ : E/J → E/I.
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Example:Monadic Descent

E with pullbacks, p : I → J in E , M the monad on E/I
induced by Σp ⊣ p∗ : E/J → E/I.

Cor. 20. If p is effective descent then M is CEB.

Proof. The comonad on E/J determined by Σp ⊣ p∗ : E/J → E/I
satisfies Redundant Coassociativity (Wood).
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Example:Monadic Descent

E with pullbacks, p : I → J in E , M the monad on E/I
induced by Σp ⊣ p∗ : E/J → E/I.

Cor. 21. If p is effective descent then M is CEB.

Proof. The comonad on E/J determined by Σp ⊣ p∗ : E/J → E/I
satisfies Redundant Coassociativity (Wood).

A little more effort shows:

Prop. 31. M is CEB (anyway).

I.e. the monadic category of ‘Descent data’ determines a
CEB monad.

Bimonadic adjunctions and the Explicit Basis property – p. 17



Example: modular categories

D with finite limits and coproducts.
Def. 15. D satisfies the modular law if for every f : X → Z , the map

(
〈in0, f〉

in1 × Z

)
: X + (Y × Z) −→ (X + Y )× Z

is an iso for every Y in D.

Bimonadic adjunctions and the Explicit Basis property – p. 18



Example: modular categories

D with finite limits and coproducts.
Def. 17. D satisfies the modular law if for every f : X → Z , the map

(
〈in0, f〉

in1 × Z

)
: X + (Y × Z) −→ (X + Y )× Z

is an iso for every Y in D.

Def. 18 (Carboni’89). D is called modular if D/U satisfies the modular
law for every U , and

X

f
��

in1 // U +X

U+f
��

U
in1

// U + U

is a pullback for every f : X → U in D.
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Example: modular categories

Prop. 32. If D is modular then the monad induced by D/D → D is
CEB for every D in D.

This is something that modular categories share with
extensive categories.
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Example: modular categories

Prop. 33. If D is modular then the monad induced by D/D → D is
CEB for every D in D.

This is something that modular categories share with
extensive categories.

Lemma 3. If D is modular, 1/D is additive with kernels.

Proof. Carboni’s proof uses that for the monadic 1/D → D, every
algebra is free.
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Example: modular categories

Prop. 34. If D is modular then the monad induced by D/D → D is
CEB for every D in D.

This is something that modular categories share with
extensive categories.

Lemma 5. If D is modular, 1/D is additive with kernels.

Proof. Carboni’s proof uses that for the monadic 1/D → D, every
algebra is free.

Using additivity of 1/D we get

Lemma 6. Let F : D → 1/D be the left adjoint to 1/D → D. The
induced comonad coincides with (F1)× ( ) : 1/D → 1/D.
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Modularity without descent

Fix D with finite limits and finite coproducts.
Let M be the monad on D induced by 1/D → D.
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Modularity without descent

Fix D with finite limits and finite coproducts.
Let M be the monad on D induced by 1/D → D.
Prop. 36. The following are equivalent:

1. D is modular.
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Modularity without descent

Fix D with finite limits and finite coproducts.
Let M be the monad on D induced by 1/D → D.
Prop. 37. The following are equivalent:

1. D is modular.

2. 1/D is additive and D → 1/D is comonadic. (Carboni-Janelidze)
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Modularity without descent

Fix D with finite limits and finite coproducts.
Let M be the monad on D induced by 1/D → D.
Prop. 38. The following are equivalent:

1. D is modular.

2. 1/D is additive and D → 1/D is comonadic. (Carboni-Janelidze)

3. 1/D is additive and M is CEB.
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Modularity without descent

Fix D with finite limits and finite coproducts.
Let M be the monad on D induced by 1/D → D.
Prop. 39. The following are equivalent:

1. D is modular.

2. 1/D is additive and D → 1/D is comonadic. (Carboni-Janelidze)

3. 1/D is additive and M is CEB.

In this case, the canonical D → (1/D)/(F1) is an equivalence.
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Modularity without descent

Fix D with finite limits and finite coproducts.
Let M be the monad on D induced by 1/D → D.
Prop. 40. The following are equivalent:

1. D is modular.

2. 1/D is additive and D → 1/D is comonadic. (Carboni-Janelidze)

3. 1/D is additive and M is CEB.

In this case, the canonical D → (1/D)/(F1) is an equivalence.

Cor. 27. Assume that 1/D is additive. Then:
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Modularity without descent

Fix D with finite limits and finite coproducts.
Let M be the monad on D induced by 1/D → D.
Prop. 41. The following are equivalent:

1. D is modular.

2. 1/D is additive and D → 1/D is comonadic. (Carboni-Janelidze)

3. 1/D is additive and M is CEB.

In this case, the canonical D → (1/D)/(F1) is an equivalence.

Cor. 28. Assume that 1/D is additive. Then:

1. D is additive if and only if M is trivial.
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Modularity without descent

Fix D with finite limits and finite coproducts.
Let M be the monad on D induced by 1/D → D.
Prop. 42. The following are equivalent:

1. D is modular.

2. 1/D is additive and D → 1/D is comonadic. (Carboni-Janelidze)

3. 1/D is additive and M is CEB.

In this case, the canonical D → (1/D)/(F1) is an equivalence.

Cor. 29. Assume that 1/D is additive. Then:

1. D is additive if and only if M is trivial.

2. D is modular if and only if M is CEB.

Bimonadic adjunctions and the Explicit Basis property – p. 20



That’s it, thanks.

Bimonadic adjunctions and the Explicit Basis property – p. 21


	Canonical restrictions
	Canonical restrictions
	Canonical restrictions

	The Explicit Basis property
	The Explicit Basis property
	The Explicit Basis property
	The Explicit Basis property

	Example: compact convex sets
	Example: compact convex sets
	Example: compact convex sets
	Example: compact convex sets
	Example: compact convex sets

	Example: Myhill's combinatorial functions
	Example: Myhill's combinatorial functions
	Example: Myhill's combinatorial functions
	Example: Myhill's combinatorial functions

	Other examples
	Other examples
	Other examples
	Other examples
	Other examples
	Other examples
	Other examples

	``Is it possible that for some comonads the unit law implies the associative law ?'' 
	Pre-coalgebras
	Pre-coalgebras
	Pre-coalgebras

	The Redundant Coassociativity property
	The Redundant Coassociativity property
	The Redundant Coassociativity property
	The Redundant Coassociativity property

	The extended comparison
	The extended comparison
	The extended comparison
	The extended comparison

	EB and RC
	EB and RC
	EB and RC
	EB and RC

	Sketch of the proof
	Sketch of the proof

	Sketch of proof (cont.)
	Sketch of proof (cont.)

	Sketch of the proof (cont.)
	Sketch of the proof (cont.)

	EB iff RC
	EB iff RC
	EB iff RC
	EB iff RC

	Two new examples
	Example:Monadic Descent
	Example:Monadic Descent
	Example:Monadic Descent

	Example: modular categories
	Example: modular categories

	Example: modular categories
	Example: modular categories
	Example: modular categories

	Modularity without descent 
	Modularity without descent 
	Modularity without descent 
	Modularity without descent 
	Modularity without descent 
	Modularity without descent 
	Modularity without descent 
	Modularity without descent 

	That's it, thanks.

