Bimonadic adjunctions and the Explicit Basis property

M. Menni
Conicet - Universidad Nacional de La Plata - Argentina

Canonical restrictions

Let (M, η, μ) a monad on a category \mathcal{D}.
Let $s:(A, a) \rightarrow(M A, \mu)$ a section of $a:(M A, \mu) \rightarrow(A, a)$.

Canonical restrictions

Let (M, η, μ) a monad on a category \mathcal{D}.
Let $s:(A, a) \rightarrow(M A, \mu)$ a section of $a:(M A, \mu) \rightarrow(A, a)$.

$$
A \xrightarrow[s]{\stackrel{\eta}{\rightleftarrows-a-}} M A
$$

Canonical restrictions

Let (M, η, μ) a monad on a category \mathcal{D}.
Let $s:(A, a) \rightarrow(M A, \mu)$ a section of $a:(M A, \mu) \rightarrow(A, a)$.

$$
A \xrightarrow[s]{\stackrel{\eta}{\leftarrow a-}} M A
$$

Def. 3. The canonical restriction of s is the p.b. on the left or, equivalently, the equalizer on the right.

$$
A_{s} \xrightarrow{\bar{s}} A \xrightarrow[s]{\xrightarrow{\eta_{A}}} M A
$$

The Explicit Basis property

$$
A \xrightarrow[s]{\stackrel{\eta}{\leftrightarrows-a-}} M A
$$

$$
A_{s} \xrightarrow{\bar{s}} A \xrightarrow{\xrightarrow{\eta_{A}}} M A
$$

The Explicit Basis property

$$
A \xrightarrow[s]{\stackrel{\eta}{\longleftrightarrow-a-}} M A
$$

$$
A_{s} \xrightarrow{\bar{s}} A \xrightarrow{\xrightarrow{\eta_{A}}} M A
$$

Def. 5. (M, η, μ) satisfies the Explicit Basis (EB) property if for every such section $s:(A, a) \rightarrow(M A, \mu)$ the map

$$
M A_{s} \xrightarrow{M \bar{s}} M A \xrightarrow{a} A
$$

is an iso. (I.e. the canonical restriction is a 'basis'.)

The Explicit Basis property

$$
A \xrightarrow[s]{\stackrel{\eta}{\leftarrow-a-}} M A
$$

$$
A_{s} \xrightarrow{\bar{s}} A \xrightarrow{\xrightarrow{\eta_{A}}} M A
$$

Def. 6. (M, η, μ) satisfies the Explicit Basis (EB) property if for every such section $s:(A, a) \rightarrow(M A, \mu)$ the map

$$
M A_{s} \xrightarrow{M \bar{s}} M A \xrightarrow{a} A
$$

is an iso. (I.e. the canonical restriction is a 'basis'.)
Example 3. Idempotent monads.

The Explicit Basis property

$$
A \xrightarrow[s]{\stackrel{\eta}{\longleftrightarrow-a-}} M A
$$

$$
A_{s} \xrightarrow{\bar{s}} A \xrightarrow{\xrightarrow{\eta_{A}}} M A
$$

Def. 7. (M, η, μ) satisfies the Explicit Basis (EB) property if for every such section $s:(A, a) \rightarrow(M A, \mu)$ the map

$$
M A_{s} \xrightarrow{M \bar{s}} M A \xrightarrow{a} A
$$

is an iso. (I.e. the canonical restriction is a 'basis'.)
Example 4. Idempotent monads.

Prop. 4. If a monad is $E B$ then idempotents split in the Kleisli category.

Example: compact convex sets

compact convex set = compact convex subset of a locally convex Hausdorff real vector space.
cConv = category of compact convex sets and continuous affine functions between them.

Example: compact convex sets

compact convex set = compact convex subset of a locally convex Hausdorff real vector space.
cConv = category of compact convex sets and continuous affine functions between them.
cConv \rightarrow cHaus is monadic (Świrszcz'74). $M A$ is the space of probability measures on A.

Example: compact convex sets

compact convex set = compact convex subset of a locally convex Hausdorff real vector space.
cConv = category of compact convex sets and continuous affine functions between them.
cConv \rightarrow cHaus is monadic (Świrszcz'74). $M A$ is the space of probability measures on A.

Prop. 7. cConv \rightarrow cHaus is $E B$

Example: compact convex sets

compact convex set = compact convex subset of a locally convex Hausdorff real vector space.
cConv = category of compact convex sets and continuous affine functions between them.
cConv \rightarrow cHaus is monadic (Świrszcz'74). $M A$ is the space of probability measures on A.

Prop. 8. cConv \rightarrow cHaus is $E B$
Every canonical presentation $a: M A \rightarrow A$ has at most one section $s: A \rightarrow M A$ and...

Example: compact convex sets

compact convex set = compact convex subset of a locally convex Hausdorff real vector space.
cConv = category of compact convex sets and continuous affine functions between them.
cConv \rightarrow cHaus is monadic (Świrszcz'74). $M A$ is the space of probability measures on A.

Prop. 9. cConv \rightarrow cHaus is $E B$
Every canonical presentation $a: M A \rightarrow A$ has at most one section $s: A \rightarrow M A$ and...
... if it exists, its canonical restriction coincides with
$\partial_{e} A \rightarrow A$.

xample: Myhill's combinatorial function

$\mathrm{Bij} \rightarrow \mathbf{I n j}$ determines an essential surjection

$$
q:[\mathbf{B i j}, \mathbf{S e t}] \rightarrow[\mathbf{I n j}, \mathbf{S e t}]
$$

and so, a monadic $q!\dashv q^{*}:[\mathbf{I n j}, \mathbf{S e t}] \rightarrow[\mathbf{B i j}, \mathbf{S e t}]$.

Example: Myhill's combinatorial function

$\mathrm{Bij} \rightarrow \mathbf{I n j}$ determines an essential surjection

$$
q:[\mathbf{B i j}, \mathbf{S e t}] \rightarrow[\mathbf{I n j}, \mathbf{S e t}]
$$

and so, a monadic $q!\dashv q^{*}:[\mathbf{I n j}, \mathbf{S e t}] \rightarrow[\mathbf{B i j}, \mathbf{S e t}]$.
Prop. 11. The induced monad on $[\mathrm{Bij}, \mathrm{Set}]$ is $E B$ and the Kleisli category is the Schanuel topos.

xample: Myhill's combinatorial function

$\mathrm{Bij} \rightarrow \mathbf{I n j}$ determines an essential surjection

$$
q:[\mathbf{B i j}, \mathbf{S e t}] \rightarrow[\mathbf{I n j}, \mathbf{S e t}]
$$

and so, a monadic $q!\dashv q^{*}:[\mathbf{I n j}$, Set $] \rightarrow[\mathbf{B i j}, \mathbf{S e t}]$.
Prop. 12. The induced monad on $[\mathrm{Bij}, \mathrm{Set}]$ is $E B$ and the Kleisli category is the Schanuel topos.

The EB prop. survives if we replace $\mathrm{Bij} \rightarrow \operatorname{Inj}$ with $\mathcal{M} \rightarrow \mathcal{C}$ where $(\mathcal{E}, \mathcal{M})$ is a factorization system on \mathcal{C} with all \mathcal{E}-maps epi.

xample: Myhill's combinatorial function

$\mathrm{Bij} \rightarrow \mathbf{I n j}$ determines an essential surjection

$$
q:[\mathbf{B i j}, \mathbf{S e t}] \rightarrow[\mathbf{I n j}, \mathbf{S e t}]
$$

and so, a monadic $q!\dashv q^{*}:[\mathbf{I n j}, \mathbf{S e t}] \rightarrow[\mathbf{B i j}, \mathbf{S e t}]$.
Prop. 13. The induced monad on $[\mathrm{Bij}, \mathrm{Set}]$ is EB and the Kleisli category is the Schanuel topos.

The EB prop. survives if we replace $\mathrm{Bij} \rightarrow \mathbf{I n j}$ with $\mathcal{M} \rightarrow \mathcal{C}$ where $(\mathcal{E}, \mathcal{M})$ is a factorization system on \mathcal{C} with all \mathcal{E}-maps epi.
(How 'good' the Kleisli category is depends on other things...)

Other examples

$i: \mathcal{C}_{0} \rightarrow \mathcal{C}$ discrete subcategory of objects.

Other examples

$i: \mathcal{C}_{0} \rightarrow \mathcal{C}$ discrete subcategory of objects.
Prop. 15. The monadic $i^{*}: \widehat{\mathcal{C}} \rightarrow \widehat{\mathcal{C}_{0}}$ is EB iff \mathcal{C} is reduced.

Other examples

$i: \mathcal{C}_{0} \rightarrow \mathcal{C}$ discrete subcategory of objects.
Prop. 16. The monadic $i^{*}: \widehat{\mathcal{C}} \rightarrow \widehat{\mathcal{C}_{0}}$ is $E B$ iff \mathcal{C} is reduced.
Cor. 5. For \mathcal{C} a monoid \mathcal{C}-Set \rightarrow Set is $E B$ iff \mathcal{C} is reduced.

Other examples

$i: \mathcal{C}_{0} \rightarrow \mathcal{C}$ discrete subcategory of objects.
Prop. 17. The monadic $i^{*}: \widehat{\mathcal{C}} \rightarrow \widehat{\mathcal{C}_{0}}$ is $E B$ iffC is reduced.
Cor. 7. For \mathcal{C} a monoid \mathcal{C}-Set \rightarrow Set is $E B$ iff \mathcal{C} is reduced.
Cor. 8 (Janelidze). G-Set \rightarrow Set is $E B$ for any group G.

Other examples

$i: \mathcal{C}_{0} \rightarrow \mathcal{C}$ discrete subcategory of objects.
Prop. 18. The monadic $i^{*}: \widehat{\mathcal{C}} \rightarrow \widehat{\mathcal{C}_{0}}$ is $E B$ iff \mathcal{C} is reduced.
Cor. 9. For \mathcal{C} a monoid \mathcal{C}-Set \rightarrow Set is $E B$ iff \mathcal{C} is reduced.
Cor. 10 (Janelidze). G-Set \rightarrow Set is $E B$ for any group G.
Example 13. Cat \rightarrow ReflGrph is EB.

Other examples

$i: \mathcal{C}_{0} \rightarrow \mathcal{C}$ discrete subcategory of objects.
Prop. 19. The monadic $i^{*}: \widehat{\mathcal{C}} \rightarrow \widehat{\mathcal{C}_{0}}$ is $E B$ iff \mathcal{C} is reduced.
Cor. 11. For \mathcal{C} a monoid \mathcal{C}-Set \rightarrow Set is EB iff \mathcal{C} is reduced.
Cor. 12 (Janelidze). G-Set \rightarrow Set is $E B$ for any group G.
Example 15. Cat \rightarrow ReflGrph is EB.
Example 16. If \mathcal{E} is extensive then $E / \mathcal{E} \rightarrow \mathcal{E}$ is EB .

Other examples

$i: \mathcal{C}_{0} \rightarrow \mathcal{C}$ discrete subcategory of objects.
Prop. 20. The monadic $i^{*}: \widehat{\mathcal{C}} \rightarrow \widehat{\mathcal{C}_{0}}$ is $E B$ iff \mathcal{C} is reduced.
Cor. 13. For \mathcal{C} a monoid \mathcal{C}-Set \rightarrow Set is EB iff \mathcal{C} is reduced.
Cor. 14 (Janelidze). G-Set \rightarrow Set is $E B$ for any group G.
Example 17. Cat \rightarrow ReflGrph is EB.
Example 18. If \mathcal{E} is extensive then $E / \mathcal{E} \rightarrow \mathcal{E}$ is EB .
Note: in most examples of EB monads the 'free algebra' functor is comonadic.

"Is it possible that for some comonads the unit law implies the associative law?"

Pre-coalgebras

Let $\mathbf{C}=(C, \varepsilon, \delta)$ be a comonad on a category \mathcal{X}.

Pre-coalgebras

Let $\mathbf{C}=(C, \varepsilon, \delta)$ be a comonad on a category \mathcal{X}.
Def. 9. A pre-coalgebra is a pair (X, s) where $s: X \rightarrow C X$ is a map in \mathcal{X} such that the diagram on the left below

commutes. A morphism $f:(X, s) \rightarrow\left(X^{\prime}, s^{\prime}\right)$ of pre-coalgebras is a map $f: X \rightarrow X^{\prime}$ in \mathcal{X} s.t. the diagram on the right above commutes.

Pre-coalgebras

Let $\mathbf{C}=(C, \varepsilon, \delta)$ be a comonad on a category \mathcal{X}.
Def. 10. A pre-coalgebra is a pair (X, s) where $s: X \rightarrow C X$ is a map in \mathcal{X} such that the diagram on the left below

commutes. A morphism $f:(X, s) \rightarrow\left(X^{\prime}, s^{\prime}\right)$ of pre-coalgebras is a map $f: X \rightarrow X^{\prime}$ in \mathcal{X} s.t. the diagram on the right above commutes.

Let $\underline{\mathcal{X}}_{\mathrm{C}}$ be the category of pre-coalgebras and morphisms between them.

The Redundant Coassociativity property

Clearly, the category \mathcal{X}_{C} of C-coalgebras is a full subcategory $\mathcal{X}_{\mathrm{C}} \rightarrow \mathcal{X}_{\mathrm{C}}$.

The Redundant Coassociativity property

Clearly, the category \mathcal{X}_{C} of C-coalgebras is a full subcategory $\mathcal{X}_{\mathrm{C}} \rightarrow \mathcal{X}_{\mathrm{C}}$.

Def. 12. We say that C satisfies the Redundant Coassociativity property if the embedding $\mathcal{X}_{\mathbf{C}} \rightarrow \underline{\mathcal{X}_{\mathrm{C}}}$ is an equivalence.

The Redundant Coassociativity property

Clearly, the category \mathcal{X}_{C} of C-coalgebras is a full subcategory $\mathcal{X}_{\mathbf{C}} \rightarrow \underline{\mathcal{X}_{\mathbf{C}}}$.

Def. 13. We say that C satisfies the Redundant Coassociativity property if the embedding $\mathcal{X}_{\mathbf{C}} \rightarrow \mathcal{X}_{\mathbf{C}}$ is an equivalence.

Example 21 (Wood). Let \mathcal{C} be a category with products and consider the comonadic $\mathcal{C} / I \rightarrow \mathcal{C}$. The resulting comonad $\left.I \times()_{-}\right): \mathcal{C} \rightarrow \mathcal{C}$ satisfies Redundant Coassociativity:

The Redundant Coassociativity property

Clearly, the category \mathcal{X}_{C} of C-coalgebras is a full subcategory $\mathcal{X}_{\mathrm{C}} \rightarrow \mathcal{X}_{\mathrm{C}}$.

Def. 14. We say that C satisfies the Redundant Coassociativity property if the embedding $\mathcal{X}_{\mathbf{C}} \rightarrow \mathcal{X}_{\mathbf{C}}$ is an equivalence.

Example 22 (Wood). Let \mathcal{C} be a category with products and consider the comonadic $\mathcal{C} / I \rightarrow \mathcal{C}$. The resulting comonad $I \times(-): \mathcal{C} \rightarrow \mathcal{C}$ satisfies Redundant Coassociativity: A pre-coalgebra is a map $s: A \rightarrow I \times A$ such that

so it is determined by the coalgebra $\pi_{0} s: A \rightarrow I$.

The extended comparison

Fix an adjunction $L \dashv R: \mathcal{X} \rightarrow \mathcal{Y}$.

The extended comparison

Fix an adjunction $L \dashv R: \mathcal{X} \rightarrow \mathcal{Y}$. Let C be the induced comonad on \mathcal{X}.

The extended comparison

Fix an adjunction $L \dashv R: \mathcal{X} \rightarrow \mathcal{Y}$.
Let C be the induced comonad on \mathcal{X}.
Denote the standard comparison by $K: \mathcal{Y} \rightarrow \mathcal{X}_{\mathrm{C}}$ and \ldots

The extended comparison

Fix an adjunction $L \dashv R: \mathcal{X} \rightarrow \mathcal{Y}$.
Let C be the induced comonad on \mathcal{X}.
Denote the standard comparison by $K: \mathcal{Y} \rightarrow \mathcal{X}_{\mathrm{C}}$ and \ldots
... extend it to a comparison $\underline{K}: \mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathbf{C}}}$

EB and RC

Prop. 21. If $R: \mathcal{X} \rightarrow \mathcal{Y}$ is monadic the following are equivalent:

EB and RC

Prop. 22. If $R: \mathcal{X} \rightarrow \mathcal{Y}$ is monadic the following are equivalent:

1. $\underline{K}: \mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathrm{C}}}$ is an equivalence.

EB and RC

Prop. 23. If $R: \mathcal{X} \rightarrow \mathcal{Y}$ is monadic the following are equivalent:

1. $\underline{K}: \mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathrm{C}}}$ is an equivalence.
2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.

EB and RC

Prop. 24. If $R: \mathcal{X} \rightarrow \mathcal{Y}$ is monadic the following are equivalent:

1. $\underline{K}: \mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathrm{C}}}$ is an equivalence.
2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.
3. The induced monad on \mathcal{Y} reflects isos and is $E B$.

Sketch of the proof

Every pre-coalgebra $(X, s: X \rightarrow L R X)$ induces a

$$
R X \underset{R s}{\stackrel{\eta_{R}}{\underset{R \varepsilon}{\leftrightarrows}}} R L R X
$$

in \mathcal{Y}, with $R \varepsilon$ as a common retraction of η_{R} and $R s$.

Sketch of the proof

Every pre-coalgebra $(X, s: X \rightarrow L R X)$ induces a

$$
R X \underset{R s}{\stackrel{\eta_{R}}{\gtrless-\frac{1}{\leftrightarrows}}} R L R X
$$

in \mathcal{Y}, with $R \varepsilon$ as a common retraction of η_{R} and $R s$.
Define the canonical restriction of (X, s) as the p.b./equalizer

$$
X_{s} \xrightarrow{\bar{s}} R X \underset{R s}{\xrightarrow{\eta}} R L R X
$$

Sketch of proof (cont.)

The assignment $(X, s) \mapsto X_{s}$ extends to a right adjoint $\underline{N}: \underline{\mathcal{X}_{\mathbf{C}}} \rightarrow \mathcal{Y}$ to the extended comparison $\mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathbf{C}}}$.

Sketch of proof (cont.)

The assignment $(X, s) \mapsto X_{s}$ extends to a right adjoint $\underline{N}: \underline{\mathcal{X}_{\mathbf{C}}} \rightarrow \mathcal{Y}$ to the extended comparison $\mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathbf{C}}}$.

A slight extension of Beck's Thm. shows t.f.a.e:

1. $\underline{K}: \mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathrm{C}}}$ is an equivalence.
2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.

Sketch of the proof (cont.)

Finally, if $R: \mathcal{X} \rightarrow \mathcal{Y}$ is monadic, $\mathcal{X}=\mathcal{Y}^{\mathrm{M}}$ and a pre-coalgebra $((A, a), s)$ is just

a section $s:(A, a) \rightarrow(M A, \mu)$ of the presentation of (A, a); and...

Sketch of the proof (cont.)

Finally, if $R: \mathcal{X} \rightarrow \mathcal{Y}$ is monadic, $\mathcal{X}=\mathcal{Y}^{\mathrm{M}}$ and a pre-coalgebra $((A, a), s)$ is just

a section $s:(A, a) \rightarrow(M A, \mu)$ of the presentation of (A, a); and...
... the adjoint $\underline{N}: \underline{\mathcal{X}_{\mathbf{C}}} \rightarrow \mathcal{Y}$ maps such a pre-coalgebra to its canonical restriction.

EB iff RC

Prop. 25. If $R: \mathcal{X} \rightarrow \mathcal{Y}$ is monadic t.f.a.e.:

1. $\underline{K}: \mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathbf{C}}}$ is an equivalence.
2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.
3. The induced monad on \mathcal{Y} reflects isos and is $E B$.

EB iff RC

Prop. 26. If $R: \mathcal{X} \rightarrow \mathcal{Y}$ is monadic t.f.a.e.:

1. $\underline{K}: \mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathbf{C}}}$ is an equivalence.
2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.
3. The induced monad on \mathcal{Y} reflects isos and is $E B$.

Cor. 16. Let

EB iff RC

Prop. 27. If $R: \mathcal{X} \rightarrow \mathcal{Y}$ is monadic t.f.a.e.:

1. $\underline{K}: \mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathbf{C}}}$ is an equivalence.
2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.
3. The induced monad on \mathcal{Y} reflects isos and is $E B$.

Cor. 17. Let

Then: $\quad \mathbf{M}$ is $E B \Leftrightarrow \mathbf{C}$ satisfies Redundant Coassociativity.

EB iff RC

Prop. 28. If $R: \mathcal{X} \rightarrow \mathcal{Y}$ is monadic t.f.a.e.:

1. $\underline{K}: \mathcal{Y} \rightarrow \underline{\mathcal{X}_{\mathbf{C}}}$ is an equivalence.
2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.
3. The induced monad on \mathcal{Y} reflects isos and is $E B$.

Cor. 18. Let

Then: $\quad \mathbf{M}$ is $E B \Leftrightarrow \mathbf{C}$ satisfies Redundant Coassociativity.
A CEB monad is one that is iso-reflecting and EB. Every CEB monad has a conservative underlying functor.

Two new examples

Example:Monadic Descent

\mathcal{E} with pullbacks, $p: I \rightarrow J$ in \mathcal{E}, M the monad on \mathcal{E} / I induced by $\Sigma_{p} \dashv p^{*}: \mathcal{E} / J \rightarrow \mathcal{E} / I$.

Example:Monadic Descent

\mathcal{E} with pullbacks, $p: I \rightarrow J$ in \mathcal{E}, M the monad on \mathcal{E} / I induced by $\Sigma_{p} \dashv p^{*}: \mathcal{E} / J \rightarrow \mathcal{E} / I$.

Cor. 20. If p is effective descent then M is $C E B$.
Proof. The comonad on \mathcal{E} / J determined by $\Sigma_{p} \dashv p^{*}: \mathcal{E} / J \rightarrow \mathcal{E} / I$ satisfies Redundant Coassociativity (Wood).

Example:Monadic Descent

\mathcal{E} with pullbacks, $p: I \rightarrow J$ in \mathcal{E}, M the monad on \mathcal{E} / I induced by $\Sigma_{p} \dashv p^{*}: \mathcal{E} / J \rightarrow \mathcal{E} / I$.

Cor. 21. If p is effective descent then M is $C E B$.
Proof. The comonad on \mathcal{E} / J determined by $\Sigma_{p} \dashv p^{*}: \mathcal{E} / J \rightarrow \mathcal{E} / I$ satisfies Redundant Coassociativity (Wood).

A little more effort shows:
Prop. 31. M is CEB (anyway).
I.e. the monadic category of 'Descent data' determines a CEB monad.

Example: modular categories

\mathcal{D} with finite limits and coproducts.
Def. 15. \mathcal{D} satisfies the modular law if for every $f: X \rightarrow Z$, the map

$$
\binom{\left\langle i n_{0}, f\right\rangle}{ i n_{1} \times Z}: X+(Y \times Z) \longrightarrow(X+Y) \times Z
$$

is an iso for every Y in \mathcal{D}.

Example: modular categories

\mathcal{D} with finite limits and coproducts.
Def. 17. \mathcal{D} satisfies the modular law if for every $f: X \rightarrow Z$, the map

$$
\binom{\left\langle i n_{0}, f\right\rangle}{ i n_{1} \times Z}: X+(Y \times Z) \longrightarrow(X+Y) \times Z
$$

is an iso for every Y in \mathcal{D}.
Def. 18 (Carboni'89). \mathcal{D} is called modular if \mathcal{D} / U satisfies the modular law for every U, and
is a pullback for every $f: X \rightarrow U$ in \mathcal{D}.

Example: modular categories

Prop. 32. If \mathcal{D} is modular then the monad induced by $D / \mathcal{D} \rightarrow \mathcal{D}$ is
$C E B$ for every D in \mathcal{D}.
This is something that modular categories share with extensive categories.

Example: modular categories

Prop. 33. If \mathcal{D} is modular then the monad induced by $D / \mathcal{D} \rightarrow \mathcal{D}$ is $C E B$ for every D in \mathcal{D}.

This is something that modular categories share with extensive categories.

Lemma 3. If \mathcal{D} is modular, $1 / \mathcal{D}$ is additive with kernels.
Proof. Carboni's proof uses that for the monadic $1 / \mathcal{D} \rightarrow \mathcal{D}$, every algebra is free.

Example: modular categories

Prop. 34. If \mathcal{D} is modular then the monad induced by $D / \mathcal{D} \rightarrow \mathcal{D}$ is $C E B$ for every D in \mathcal{D}.

This is something that modular categories share with extensive categories.

Lemma 5. If \mathcal{D} is modular, $1 / \mathcal{D}$ is additive with kernels.
Proof. Carboni's proof uses that for the monadic $1 / \mathcal{D} \rightarrow \mathcal{D}$, every algebra is free.

Using additivity of $1 / \mathcal{D}$ we get
Lemma 6. Let $F: \mathcal{D} \rightarrow 1 / \mathcal{D}$ be the left adjoint to $1 / \mathcal{D} \rightarrow \mathcal{D}$. The induced comonad coincides with $(F 1) \times(-): 1 / \mathcal{D} \rightarrow 1 / \mathcal{D}$.

Modularity without descent

Fix \mathcal{D} with finite limits and finite coproducts.
Let M be the monad on \mathcal{D} induced by $1 / \mathcal{D} \rightarrow \mathcal{D}$.

Modularity without descent

Fix \mathcal{D} with finite limits and finite coproducts.
Let M be the monad on \mathcal{D} induced by $1 / \mathcal{D} \rightarrow \mathcal{D}$.
Prop. 36. The following are equivalent:

1. \mathcal{D} is modular.

Modularity without descent

Fix \mathcal{D} with finite limits and finite coproducts.
Let M be the monad on \mathcal{D} induced by $1 / \mathcal{D} \rightarrow \mathcal{D}$.
Prop. 37. The following are equivalent:

1. \mathcal{D} is modular.
2. $1 / \mathcal{D}$ is additive and $\mathcal{D} \rightarrow 1 / \mathcal{D}$ is comonadic. (Carboni-Janelidze)

Modularity without descent

Fix \mathcal{D} with finite limits and finite coproducts.
Let M be the monad on \mathcal{D} induced by $1 / \mathcal{D} \rightarrow \mathcal{D}$.
Prop. 38. The following are equivalent:

1. \mathcal{D} is modular.
2. $1 / \mathcal{D}$ is additive and $\mathcal{D} \rightarrow 1 / \mathcal{D}$ is comonadic. (Carboni-Janelidze)
3. $1 / \mathcal{D}$ is additive and M is CEB.

Modularity without descent

Fix \mathcal{D} with finite limits and finite coproducts.
Let M be the monad on \mathcal{D} induced by $1 / \mathcal{D} \rightarrow \mathcal{D}$.
Prop. 39. The following are equivalent:

1. \mathcal{D} is modular.
2. $1 / \mathcal{D}$ is additive and $\mathcal{D} \rightarrow 1 / \mathcal{D}$ is comonadic. (Carboni-Janelidze)
3. $1 / \mathcal{D}$ is additive and M is CEB.

In this case, the canonical $\mathcal{D} \rightarrow(1 / \mathcal{D}) /(F 1)$ is an equivalence.

Modularity without descent

Fix \mathcal{D} with finite limits and finite coproducts.
Let M be the monad on \mathcal{D} induced by $1 / \mathcal{D} \rightarrow \mathcal{D}$.
Prop. 40. The following are equivalent:

1. \mathcal{D} is modular.
2. $1 / \mathcal{D}$ is additive and $\mathcal{D} \rightarrow 1 / \mathcal{D}$ is comonadic. (Carboni-Janelidze)
3. $1 / \mathcal{D}$ is additive and M is CEB.

In this case, the canonical $\mathcal{D} \rightarrow(1 / \mathcal{D}) /(F 1)$ is an equivalence.
Cor. 27. Assume that $1 / \mathcal{D}$ is additive. Then:

Modularity without descent

Fix \mathcal{D} with finite limits and finite coproducts.
Let M be the monad on \mathcal{D} induced by $1 / \mathcal{D} \rightarrow \mathcal{D}$.
Prop. 41. The following are equivalent:

1. \mathcal{D} is modular.
2. $1 / \mathcal{D}$ is additive and $\mathcal{D} \rightarrow 1 / \mathcal{D}$ is comonadic. (Carboni-Janelidze)
3. $1 / \mathcal{D}$ is additive and M is CEB.

In this case, the canonical $\mathcal{D} \rightarrow(1 / \mathcal{D}) /(F 1)$ is an equivalence.
Cor. 28. Assume that $1 / \mathcal{D}$ is additive. Then:

1. \mathcal{D} is additive if and only if M is trivial.

Modularity without descent

Fix \mathcal{D} with finite limits and finite coproducts.
Let M be the monad on \mathcal{D} induced by $1 / \mathcal{D} \rightarrow \mathcal{D}$.
Prop. 42. The following are equivalent:

1. \mathcal{D} is modular.
2. $1 / \mathcal{D}$ is additive and $\mathcal{D} \rightarrow 1 / \mathcal{D}$ is comonadic. (Carboni-Janelidze)
3. $1 / \mathcal{D}$ is additive and M is CEB.

In this case, the canonical $\mathcal{D} \rightarrow(1 / \mathcal{D}) /(F 1)$ is an equivalence.
Cor. 29. Assume that $1 / \mathcal{D}$ is additive. Then:

1. \mathcal{D} is additive if and only if M is trivial.
2. \mathcal{D} is modular if and only if M is $C E B$.

That's it, thanks.

