Bimonadic adjunctions and the Explicit Basis property

M. Menni

Conicet - Universidad Nacional de La Plata - Argentina

Canonical restrictions

Let (M, η, μ) a monad on a category \mathcal{D} . Let $s : (A, a) \to (MA, \mu)$ a section of $a : (MA, \mu) \to (A, a)$.

Canonical restrictions

Let (M, η, μ) a monad on a category \mathcal{D} . Let $s : (A, a) \to (MA, \mu)$ a section of $a : (MA, \mu) \to (A, a)$.

Canonical restrictions

Let (M, η, μ) a monad on a category \mathcal{D} . Let $s : (A, a) \to (MA, \mu)$ a section of $a : (MA, \mu) \to (A, a)$.

Def. 3. The *canonical restriction of s* is the p.b. on the left or, equivalently, the equalizer on the right.

Def. 5. (M, η, μ) satisfies the *Explicit Basis* (EB) property if for every such section $s : (A, a) \to (MA, \mu)$ the map

$$MA_s \xrightarrow{M\overline{s}} MA \xrightarrow{a} A$$

is an iso. (I.e. the canonical restriction is a 'basis'.)

Def. 6. (M, η, μ) satisfies the *Explicit Basis* (EB) property if for every such section $s : (A, a) \to (MA, \mu)$ the map

$$MA_s \xrightarrow{M\overline{s}} MA \xrightarrow{a} A$$

is an iso. (I.e. the canonical restriction is a 'basis'.)

Example 3. Idempotent monads.

Def. 7. (M, η, μ) satisfies the *Explicit Basis* (EB) property if for every such section $s : (A, a) \to (MA, \mu)$ the map

$$MA_s \xrightarrow{M\overline{s}} MA \xrightarrow{a} A$$

is an iso. (I.e. the canonical restriction is a 'basis'.)

Example 4. Idempotent monads.

Prop. 4. If a monad is EB then idempotents split in the Kleisli category.

compact convex set = compact convex subset of a locally convex Hausdorff real vector space.

cConv = category of compact convex sets and continuous affine functions between them.

compact convex set = compact convex subset of a locally convex Hausdorff real vector space.

cConv = category of compact convex sets and continuous affine functions between them.

 $cConv \rightarrow cHaus$ is monadic (Świrszcz'74). MA is the space of probability measures on A.

compact convex set = compact convex subset of a locally convex Hausdorff real vector space.

cConv = category of compact convex sets and continuous affine functions between them.

 $cConv \rightarrow cHaus$ is monadic (Świrszcz'74). MA is the space of probability measures on A.

Prop. 7. $cConv \rightarrow cHaus$ is EB

compact convex set = compact convex subset of a locally convex Hausdorff real vector space.

cConv = category of compact convex sets and continuous affine functions between them.

 $cConv \rightarrow cHaus$ is monadic (Świrszcz'74). MA is the space of probability measures on A.

Prop. 8. $cConv \rightarrow cHaus$ is EB

Every canonical presentation $a: MA \rightarrow A$ has at most one section $s: A \rightarrow MA$ and...

compact convex set = compact convex subset of a locally convex Hausdorff real vector space.

cConv = category of compact convex sets and continuous affine functions between them.

 $cConv \rightarrow cHaus$ is monadic (Świrszcz'74). MA is the space of probability measures on A.

Prop. 9. $cConv \rightarrow cHaus$ is EB

Every canonical presentation $a: MA \rightarrow A$ has at most one section $s: A \rightarrow MA$ and...

... if it exists, its canonical restriction coincides with $\partial_e A \rightarrow A$.

 $\mathbf{Bij} \to \mathbf{Inj}$ determines an essential surjection

```
q: [\mathbf{Bij}, \mathbf{Set}] \to [\mathbf{Inj}, \mathbf{Set}]
```

and so, a monadic $q_! \dashv q^* : [\mathbf{Inj}, \mathbf{Set}] \rightarrow [\mathbf{Bij}, \mathbf{Set}]$.

 $\mathbf{Bij} \to \mathbf{Inj}$ determines an essential surjection

 $q: [\mathbf{Bij}, \mathbf{Set}] \to [\mathbf{Inj}, \mathbf{Set}]$

and so, a monadic $q_! \dashv q^* : [\mathbf{Inj}, \mathbf{Set}] \rightarrow [\mathbf{Bij}, \mathbf{Set}]$.

Prop. 11. The induced monad on [Bij, Set] is EB and the Kleisli category is the Schanuel topos.

 $\mathbf{Bij} \to \mathbf{Inj}$ determines an essential surjection

 $q: [\mathbf{Bij}, \mathbf{Set}] \to [\mathbf{Inj}, \mathbf{Set}]$

and so, a monadic $q_! \dashv q^* : [\mathbf{Inj}, \mathbf{Set}] \rightarrow [\mathbf{Bij}, \mathbf{Set}]$.

Prop. 12. The induced monad on [Bij, Set] is EB and the Kleisli category is the Schanuel topos.

The EB prop. survives if we replace $Bij \to Inj$ with $\mathcal{M} \to \mathcal{C}$ where $(\mathcal{E}, \mathcal{M})$ is a factorization system on \mathcal{C} with all \mathcal{E} -maps epi.

 $\mathbf{Bij} \to \mathbf{Inj}$ determines an essential surjection

 $q: [\mathbf{Bij}, \mathbf{Set}] \to [\mathbf{Inj}, \mathbf{Set}]$

and so, a monadic $q_! \dashv q^* : [\mathbf{Inj}, \mathbf{Set}] \rightarrow [\mathbf{Bij}, \mathbf{Set}].$

Prop. 13. The induced monad on [Bij, Set] is EB and the Kleisli category is the Schanuel topos.

The EB prop. survives if we replace $Bij \to Inj$ with $\mathcal{M} \to \mathcal{C}$ where $(\mathcal{E}, \mathcal{M})$ is a factorization system on \mathcal{C} with all \mathcal{E} -maps epi.

(How 'good' the Kleisli category is depends on other things...)

 $i: \mathcal{C}_0 \rightarrow \mathcal{C}$ discrete subcategory of objects.

 $i: \mathcal{C}_0 \rightarrow \mathcal{C}$ discrete subcategory of objects.

Prop. 15. The monadic $i^* : \widehat{\mathcal{C}} \to \widehat{\mathcal{C}}_0$ is EB iff \mathcal{C} is reduced.

 $i: \mathcal{C}_0 \rightarrow \mathcal{C}$ discrete subcategory of objects.

Prop. 16. The monadic $i^* : \widehat{\mathcal{C}} \to \widehat{\mathcal{C}}_0$ is EB iff \mathcal{C} is reduced.

Cor. 5. For \mathcal{C} a monoid \mathcal{C} -Set \rightarrow Set is EB iff \mathcal{C} is reduced.

 $i: \mathcal{C}_0 \rightarrow \mathcal{C}$ discrete subcategory of objects.

Prop. 17. The monadic $i^* : \widehat{\mathcal{C}} \to \widehat{\mathcal{C}}_0$ is EB iff \mathcal{C} is reduced.

Cor. 7. For C a monoid C-Set \rightarrow Set is EB iff C is reduced.

Cor. 8 (Janelidze). G-Set \rightarrow Set is EB for any group G.

 $i: \mathcal{C}_0 \rightarrow \mathcal{C}$ discrete subcategory of objects.

Prop. 18. The monadic $i^* : \widehat{\mathcal{C}} \to \widehat{\mathcal{C}}_0$ is EB iff \mathcal{C} is reduced.

Cor. 9. For \mathcal{C} a monoid \mathcal{C} -Set \rightarrow Set is EB iff \mathcal{C} is reduced.

Cor. 10 (Janelidze). G-Set \rightarrow Set is EB for any group G.

Example 13. Cat \rightarrow ReflGrph is EB.

 $i: \mathcal{C}_0 \rightarrow \mathcal{C}$ discrete subcategory of objects.

Prop. 19. The monadic $i^* : \widehat{\mathcal{C}} \to \widehat{\mathcal{C}}_0$ is EB iff \mathcal{C} is reduced.

Cor. 11. For \mathcal{C} a monoid \mathcal{C} -Set \rightarrow Set is EB iff \mathcal{C} is reduced.

Cor. 12 (Janelidze). G-Set \rightarrow Set is EB for any group G.

Example 15. Cat \rightarrow ReflGrph is EB.

Example 16. If \mathcal{E} is extensive then $E/\mathcal{E} \to \mathcal{E}$ is EB.

 $i : C_0 \to C$ discrete subcategory of objects. **Prop. 20.** The monadic $i^* : \widehat{C} \to \widehat{C_0}$ is EB iff C is reduced.

Cor. 13. For C a monoid C-Set \rightarrow Set is EB iff C is reduced.

Cor. 14 (Janelidze). G-Set \rightarrow Set is EB for any group G.

Example 17. Cat \rightarrow ReflGrph is EB.

Example 18. If \mathcal{E} is extensive then $E/\mathcal{E} \to \mathcal{E}$ is EB.

Note: in most examples of EB monads the 'free algebra' functor is comonadic.

"Is it possible that for some comonads the unit law implies the associative law ?"

Pre-coalgebras

Let $\mathbf{C} = (C, \varepsilon, \delta)$ be a comonad on a category \mathcal{X} .

Pre-coalgebras

Let $\mathbf{C} = (C, \varepsilon, \delta)$ be a comonad on a category \mathcal{X} . Def. 9. A *pre-coalgebra* is a pair (X, s) where $s : X \to CX$ is a map in \mathcal{X} such that the diagram on the left below

commutes. A morphism $f : (X, s) \to (X', s')$ of pre-coalgebras is a map $f : X \to X'$ in \mathcal{X} s.t. the diagram on the right above commutes.

Pre-coalgebras

Let $\mathbf{C} = (C, \varepsilon, \delta)$ be a comonad on a category \mathcal{X} . Def. 10. A *pre-coalgebra* is a pair (X, s) where $s : X \to CX$ is a map in \mathcal{X} such that the diagram on the left below

commutes. A morphism $f : (X, s) \to (X', s')$ of pre-coalgebras is a map $f : X \to X'$ in \mathcal{X} s.t. the diagram on the right above commutes.

Let $\underline{\mathcal{X}_{C}}$ be the category of pre-coalgebras and morphisms between them.

Clearly, the category \mathcal{X}_C of C-coalgebras is a full subcategory $\mathcal{X}_C \to \underline{\mathcal{X}_C}$.

Clearly, the category \mathcal{X}_C of C-coalgebras is a full subcategory $\mathcal{X}_C \to \underline{\mathcal{X}_C}$.

Def. 12. We say that C satisfies the *Redundant Coassociativity* property if the embedding $\mathcal{X}_C \to \mathcal{X}_C$ is an equivalence.

Clearly, the category \mathcal{X}_C of C-coalgebras is a full subcategory $\mathcal{X}_C \to \underline{\mathcal{X}_C}$.

Def. 13. We say that C satisfies the *Redundant Coassociativity* property if the embedding $\mathcal{X}_C \to \mathcal{X}_C$ is an equivalence.

Example 21 (Wood). Let C be a category with products and consider the comonadic $C/I \to C$. The resulting comonad $I \times (_) : C \to C$ satisfies Redundant Coassociativity:

Clearly, the category \mathcal{X}_C of C-coalgebras is a full subcategory $\mathcal{X}_C \to \underline{\mathcal{X}_C}$.

Def. 14. We say that C satisfies the *Redundant Coassociativity* property if the embedding $\mathcal{X}_C \to \mathcal{X}_C$ is an equivalence.

Example 22 (Wood). Let \mathcal{C} be a category with products and consider the comonadic $\mathcal{C}/I \to \mathcal{C}$. The resulting comonad $I \times (_) : \mathcal{C} \to \mathcal{C}$ satisfies Redundant Coassociativity: A pre-coalgebra is a map $s : A \to I \times A$ such that

so it is determined by the coalgebra $\pi_0 s : A \to I$.

Fix an adjunction $L \dashv R : \mathcal{X} \to \mathcal{Y}$.

Fix an adjunction $L \dashv R : \mathcal{X} \to \mathcal{Y}$. Let C be the induced comonad on \mathcal{X} .

Fix an adjunction $L \dashv R : \mathcal{X} \to \mathcal{Y}$. Let C be the induced comonad on \mathcal{X} . Denote the standard comparison by $K : \mathcal{Y} \to \mathcal{X}_{C}$ and ...

Fix an adjunction $L \dashv R : \mathcal{X} \to \mathcal{Y}$. Let C be the induced comonad on \mathcal{X} . Denote the standard comparison by $K : \mathcal{Y} \to \mathcal{X}_{\mathbf{C}}$ and extend it to a comparison $\underline{K} : \mathcal{Y} \to \mathcal{X}_{\mathbf{C}}$

Prop. 21. If $R : \mathcal{X} \to \mathcal{Y}$ is monadic the following are equivalent:

Prop. 22. If $R : \mathcal{X} \to \mathcal{Y}$ is monadic the following are equivalent: 1. $\underline{K} : \mathcal{Y} \to \underline{\mathcal{X}_{\mathbf{C}}}$ is an equivalence.

Prop. 23. If $R : \mathcal{X} \to \mathcal{Y}$ is monadic the following are equivalent:

1. $\underline{K}: \mathcal{Y} \to \mathcal{X}_{\mathbf{C}}$ is an equivalence.

2. $L: \mathcal{Y} \to \mathcal{X}$ is comonadic and Redundant Coassociativity holds.

Prop. 24. If $R : \mathcal{X} \to \mathcal{Y}$ is monadic the following are equivalent:

- 1. $\underline{K}: \mathcal{Y} \to \mathcal{X}_{\mathbf{C}}$ is an equivalence.
- 2. $L: \mathcal{Y} \to \mathcal{X}$ is comonadic and Redundant Coassociativity holds.
- 3. The induced monad on \mathcal{Y} reflects isos and is EB.

Sketch of the proof

Every pre-coalgebra $(X, s : X \rightarrow LRX)$ induces a

$$RX \xrightarrow[\overline{\prec R\varepsilon}]{} RLRX$$

in \mathcal{Y} , with $R\varepsilon$ as a common retraction of η_R and Rs.

Sketch of the proof

Every pre-coalgebra $(X, s : X \rightarrow LRX)$ induces a

$$RX \xrightarrow[\overline{\prec R\varepsilon}]{\stackrel{\eta_R}{\overleftarrow{\prec}R\varepsilon}} RLRX$$

in \mathcal{Y} , with $R\varepsilon$ as a common retraction of η_R and Rs.

Define the *canonical restriction* of (X, s) as the p.b./equalizer

$$\begin{array}{cccc} X_{s} & \xrightarrow{\overline{s}} & RX & & X_{s} & \xrightarrow{\overline{s}} & RX & \xrightarrow{\eta} & RLRX \\ \hline \overline{s} & & & & & & & & \\ RX & \xrightarrow{Rs} & RLRX & & & & & \\ \end{array}$$

Sketch of proof (cont.)

The assignment $(X, s) \mapsto X_s$ extends to a right adjoint $\underline{N} : \underline{\mathcal{X}_{\mathbf{C}}} \to \mathcal{Y}$ to the extended comparison $\mathcal{Y} \to \underline{\mathcal{X}_{\mathbf{C}}}$.

Sketch of proof (cont.)

The assignment $(X, s) \mapsto X_s$ extends to a right adjoint $\underline{N} : \underline{\mathcal{X}_{\mathbf{C}}} \to \mathcal{Y}$ to the extended comparison $\mathcal{Y} \to \underline{\mathcal{X}_{\mathbf{C}}}$.

A slight extension of Beck's Thm. shows t.f.a.e:

- 1. $\underline{K}: \mathcal{Y} \to \underline{\mathcal{X}_{C}}$ is an equivalence.
- 2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.

Sketch of the proof (cont.)

Finally, if $R : \mathcal{X} \to \mathcal{Y}$ is monadic, $\mathcal{X} = \mathcal{Y}^{\mathbf{M}}$ and a pre-coalgebra ((A, a), s) is just

a section $s: (A, a) \rightarrow (MA, \mu)$ of the presentation of (A, a); and...

Sketch of the proof (cont.)

Finally, if $R : \mathcal{X} \to \mathcal{Y}$ is monadic, $\mathcal{X} = \mathcal{Y}^{\mathbf{M}}$ and a pre-coalgebra ((A, a), s) is just

a section $s: (A, a) \rightarrow (MA, \mu)$ of the presentation of (A, a); and...

... the adjoint $\underline{N} : \underline{\mathcal{X}_C} \to \mathcal{Y}$ maps such a pre-coalgebra to its canonical restriction.

Prop. 25. If $R : \mathcal{X} \to \mathcal{Y}$ is monadic t.f.a.e.:

- 1. $\underline{K}: \mathcal{Y} \to \mathcal{X}_{\mathbf{C}}$ is an equivalence.
- 2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.
- 3. The induced monad on $\mathcal Y$ reflects isos and is EB.

Prop. 26. If $R : \mathcal{X} \to \mathcal{Y}$ is monadic t.f.a.e.:

- 1. $\underline{K}: \mathcal{Y} \to \mathcal{X}_{\mathbf{C}}$ is an equivalence.
- 2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.
- 3. The induced monad on \mathcal{Y} reflects isos and is EB.

Cor. 16. Let

Prop. 27. If $R : \mathcal{X} \to \mathcal{Y}$ is monadic t.f.a.e.:

- 1. $\underline{K}: \mathcal{Y} \to \mathcal{X}_{\mathbf{C}}$ is an equivalence.
- 2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.
- 3. The induced monad on \mathcal{Y} reflects isos and is EB.

Cor. 17. Let

Then: $M \text{ is } \textit{EB} \Leftrightarrow C \text{ satisfies Redundant Coassociativity.}$

Prop. 28. If $R : \mathcal{X} \to \mathcal{Y}$ is monadic t.f.a.e.:

- 1. $\underline{K}: \mathcal{Y} \to \mathcal{X}_{\mathbf{C}}$ is an equivalence.
- 2. $L: \mathcal{Y} \rightarrow \mathcal{X}$ is comonadic and Redundant Coassociativity holds.
- 3. The induced monad on \mathcal{Y} reflects isos and is EB.

Cor. 18. Let

Then: M is EB \Leftrightarrow C satisfies Redundant Coassociativity.

A CEB monad is one that is iso-reflecting and EB. Every CEB monad has a conservative underlying functor.

Two new examples

Example:Monadic Descent

 \mathcal{E} with pullbacks, $p: I \to J$ in \mathcal{E} , M the monad on \mathcal{E}/I induced by $\Sigma_p \dashv p^* : \mathcal{E}/J \to \mathcal{E}/I$.

Example:Monadic Descent

 \mathcal{E} with pullbacks, $p: I \to J$ in \mathcal{E} , M the monad on \mathcal{E}/I induced by $\Sigma_p \dashv p^* : \mathcal{E}/J \to \mathcal{E}/I$.

Cor. 20. If p is effective descent then ${\bf M}$ is CEB.

Proof. The comonad on \mathcal{E}/J determined by $\Sigma_p \dashv p^* : \mathcal{E}/J \to \mathcal{E}/I$ satisfies Redundant Coassociativity (Wood).

Example:Monadic Descent

 \mathcal{E} with pullbacks, $p: I \to J$ in \mathcal{E} , M the monad on \mathcal{E}/I induced by $\Sigma_p \dashv p^* : \mathcal{E}/J \to \mathcal{E}/I$.

Cor. 21. If p is effective descent then ${\bf M}$ is CEB.

Proof. The comonad on \mathcal{E}/J determined by $\Sigma_p \dashv p^* : \mathcal{E}/J \to \mathcal{E}/I$ satisfies Redundant Coassociativity (Wood).

A little more effort shows:

Prop. 31. M is CEB (anyway).

I.e. the monadic category of 'Descent data' determines a CEB monad.

 $\ensuremath{\mathcal{D}}$ with finite limits and coproducts.

Def. 15. \mathcal{D} satisfies the *modular law* if for every $f: X \to Z$, the map

$$\left(\begin{array}{c} \langle in_0, f \rangle \\ in_1 \times Z \end{array}\right) : X + (Y \times Z) \longrightarrow (X + Y) \times Z$$

is an iso for every Y in \mathcal{D} .

 $\ensuremath{\mathcal{D}}$ with finite limits and coproducts.

Def. 17. \mathcal{D} satisfies the *modular law* if for every $f: X \to Z$, the map

$$\left(\begin{array}{c} \langle in_0, f \rangle \\ in_1 \times Z \end{array}\right) : X + (Y \times Z) \longrightarrow (X + Y) \times Z$$

is an iso for every Y in \mathcal{D} .

Def. 18 (Carboni'89). \mathcal{D} is called *modular* if \mathcal{D}/U satisfies the modular law for every U, and

$$\begin{array}{ccc} X \xrightarrow{in_1} & U + X \\ f & & \downarrow U + f \\ U \xrightarrow{in_1} & U + U \end{array}$$

is a pullback for every $f: X \to U$ in \mathcal{D} .

Prop. 32. If \mathcal{D} is modular then the monad induced by $D/\mathcal{D} \to \mathcal{D}$ is CEB for every D in \mathcal{D} .

This is something that modular categories share with extensive categories.

Prop. 33. If \mathcal{D} is modular then the monad induced by $D/\mathcal{D} \to \mathcal{D}$ is CEB for every D in \mathcal{D} .

This is something that modular categories share with extensive categories.

Lemma 3. If \mathcal{D} is modular, $1/\mathcal{D}$ is additive with kernels.

Proof. Carboni's proof uses that for the monadic $1/\mathcal{D} \to \mathcal{D}$, every algebra is free.

Prop. 34. If \mathcal{D} is modular then the monad induced by $D/\mathcal{D} \to \mathcal{D}$ is CEB for every D in \mathcal{D} .

This is something that modular categories share with extensive categories.

Lemma 5. If \mathcal{D} is modular, $1/\mathcal{D}$ is additive with kernels.

Proof. Carboni's proof uses that for the monadic $1/\mathcal{D} \to \mathcal{D}$, every algebra is free.

Using additivity of $1/\mathcal{D}$ we get

Lemma 6. Let $F : \mathcal{D} \to 1/\mathcal{D}$ be the left adjoint to $1/\mathcal{D} \to \mathcal{D}$. The induced comonad coincides with $(F1) \times (_) : 1/\mathcal{D} \to 1/\mathcal{D}$.

Fix \mathcal{D} with finite limits and finite coproducts. Let M be the monad on \mathcal{D} induced by $1/\mathcal{D} \to \mathcal{D}$.

Fix \mathcal{D} with finite limits and finite coproducts. Let M be the monad on \mathcal{D} induced by $1/\mathcal{D} \rightarrow \mathcal{D}$. **Prop. 36.** *The following are equivalent:*

1. \mathcal{D} is modular.

Fix \mathcal{D} with finite limits and finite coproducts. Let M be the monad on \mathcal{D} induced by $1/\mathcal{D} \rightarrow \mathcal{D}$. **Prop. 37.** The following are equivalent:

- 1. \mathcal{D} is modular.
- 2. 1/D is additive and $D \rightarrow 1/D$ is comonadic. (Carboni-Janelidze)

Fix \mathcal{D} with finite limits and finite coproducts. Let M be the monad on \mathcal{D} induced by $1/\mathcal{D} \rightarrow \mathcal{D}$. **Prop. 38.** The following are equivalent:

- 1. \mathcal{D} is modular.
- 2. 1/D is additive and $D \rightarrow 1/D$ is comonadic. (Carboni-Janelidze)
- 3. $1/\mathcal{D}$ is additive and \mathbf{M} is CEB.

Fix \mathcal{D} with finite limits and finite coproducts. Let M be the monad on \mathcal{D} induced by $1/\mathcal{D} \to \mathcal{D}$. **Prop. 39.** The following are equivalent:

- 1. \mathcal{D} is modular.
- 2. 1/D is additive and $D \rightarrow 1/D$ is comonadic. (Carboni-Janelidze)

3. $1/\mathcal{D}$ is additive and \mathbf{M} is CEB.

In this case, the canonical $\mathcal{D} \to (1/\mathcal{D})/(F1)$ is an equivalence.

Fix \mathcal{D} with finite limits and finite coproducts. Let M be the monad on \mathcal{D} induced by $1/\mathcal{D} \rightarrow \mathcal{D}$. **Prop. 40.** The following are equivalent:

- 1. \mathcal{D} is modular.
- 2. 1/D is additive and $D \rightarrow 1/D$ is comonadic. (Carboni-Janelidze)
- 3. $1/\mathcal{D}$ is additive and \mathbf{M} is CEB.

In this case, the canonical $\mathcal{D} \to (1/\mathcal{D})/(F1)$ is an equivalence.

Cor. 27. Assume that 1/D is additive. Then:

Fix \mathcal{D} with finite limits and finite coproducts. Let M be the monad on \mathcal{D} induced by $1/\mathcal{D} \to \mathcal{D}$. **Prop. 41.** The following are equivalent:

- 1. \mathcal{D} is modular.
- 2. 1/D is additive and $D \rightarrow 1/D$ is comonadic. (Carboni-Janelidze)
- 3. $1/\mathcal{D}$ is additive and \mathbf{M} is CEB.

In this case, the canonical $\mathcal{D} \to (1/\mathcal{D})/(F1)$ is an equivalence.

Cor. 28. Assume that 1/D is additive. Then:

1. ${\cal D}$ is additive if and only if M is trivial.

Fix \mathcal{D} with finite limits and finite coproducts. Let M be the monad on \mathcal{D} induced by $1/\mathcal{D} \rightarrow \mathcal{D}$. **Prop. 42.** The following are equivalent:

- 1. \mathcal{D} is modular.
- 2. 1/D is additive and $D \rightarrow 1/D$ is comonadic. (Carboni-Janelidze)
- 3. $1/\mathcal{D}$ is additive and \mathbf{M} is CEB.

In this case, the canonical $\mathcal{D} \to (1/\mathcal{D})/(F1)$ is an equivalence.

Cor. 29. Assume that 1/D is additive. Then:

- 1. ${\cal D}$ is additive if and only if M is trivial.
- 2. ${\cal D}$ is modular if and only if M is CEB.

That's it, thanks.