Monoidal opfibred categories 00 0000 Locally trivial objects

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

K-theory 00 00

Categorical Foundations for K-theory

Nicolas MICHEL

EPFL Lausanne, Switzerland

International Category Theory Conference July 19, 2011

Monoidal opfibred categories

Locally trivial objects

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

K-theory

How is the K-theory of an object defined?

Possible structures:

- Quillen-exact,
- Waldhausen,
- Symmetric monoidal,
- One of these structures together with a topological enrichment.

The	original	problem
00		
0		

Locally trivial objects

K-theory

Back to questions

æ

◆□ > ◆圖 > ◆臣 > ◆臣 >

Object	Structured category
	 Pseudo-coherent <i>R</i>-modules
Ring <i>R</i>	 Finitely generated projective <i>R</i>-modules
	 Finitely generated free <i>R</i>-modules
Space X	- (${\mathbb R}$ or ${\mathbb C}$ -)vector bundles over X
Ringed space	• Coherent \mathscr{O}_X -modules
(X, \mathscr{O}_X)	• Locally free \mathscr{O}_X -modules of finite rank
Ring spectrum/ <i>S</i> -algebra <i>R</i>	Semi-finite cell <i>R</i>-modulesFinite cell <i>R</i>-modules

The	original	problem
00		
•		

Monoidal opfibred categories

Locally trivial objects 000 0000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

K-theory 00 00

1. What kind of objects K-theory should be applied to?

The	original	problem
00		
•		

Monoidal opfibred categories 00 0000 Locally trivial objects 000 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

K-theory

- 1. What kind of objects K-theory should be applied to?
- 2. What structured categories should be associated to such an object in order to define its *K*-theories?

The original problem	Monoidal opfibred categories	Locally trivial objects	K-theory
oo ●	00 0000	000	00

- 1. What kind of objects K-theory should be applied to?
- 2. What structured categories should be associated to such an object in order to define its *K*-theories?
- 3. How does this correspondance take the morphisms of these objects into account?

Examples of K-theories

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Monoidal opfibred categories •O ······ Locally trivial objects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

K-theory

Op-fibred category setting

Let \mathscr{B} be a category.

Notation

 $OPFIB(\mathcal{B})$ is the 2-category of opfibrations over \mathcal{B} , opCartesian functors over \mathcal{B} and natural transformations over \mathcal{B} .

Definition

A monoidal opfibred category is a monoidal object in the 2-Cartesian 2-monoidal category $OPFIB(\mathscr{B})$.

Notation

 $MONOPFIB(\mathscr{B})$ is the 2-category of monoidal objects, strong monoidal morphisms and monoidal 2-cells in $OPFIB(\mathscr{B})$.

Monoidal opfibred categories $\circ \bullet$ $\circ \circ \circ \circ \circ$ Locally trivial objects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K-theory

Op-indexed category setting

Notation

- MONCAT is the 2-category of monoidal categories, strong monoidal functors and monoidal natural transformations.
- MONCAT^B is the corresponding 2-category of pseudo-functors, pseudo-natural transformations and modifications.

Theorem There is a 2-equivalence

 $MONOPFIB(\mathscr{B}) \simeq MONCAT^{\mathscr{B}}.$

Monoidal opfibred categories $\circ\circ$ • $\circ\circ\circ\circ$ Locally trivial objects

K-theory

Monoids

Let $(\mathscr{E} \xrightarrow{P} \mathscr{B}, \otimes, u)$ be a monoidal opfibred category. Definition

- A monoid in \mathscr{E} is a monoid in any fibre of \mathscr{E} .
- A morphism of monoids $f: R \to S$ is a morphism in $\mathscr E$ such that

Locally trivial objects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

K-theory

Modules

Definition

- A (right) module in *E* is a pair (*R*, *M*) where *R* is a monoid in *E* and *M* a (right) *R*-module in *E*_{*P*(*R*)}.
- A morphism of modules is a pair (φ, α): (R, M) → (S, N) where:
 - $\phi: R \to S$ and $\alpha: M \to N$ are morphisms in \mathscr{E} such that $P(\phi) = P(\alpha)$,
 - $\phi: R \to S$ is a morphism of monoids in \mathscr{E} ,
 - the following diagram commutes:

$$\begin{array}{c} M \otimes R \xrightarrow{\alpha \otimes \phi} N \otimes S \\ \downarrow \\ \kappa \\ \downarrow \\ M \xrightarrow{\alpha} N. \end{array}$$

Locally trivial objects 000 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

K-theory

An opfibration over an opfibration

Let $(\mathscr{E} \xrightarrow{P} \mathscr{B}, \otimes)$ be a monoidal opfibration.

Proposition

Suppose P has opfibred reflexive coequalizers and that the functors $- \otimes E : \mathscr{E}_B \to \mathscr{E}_B$, for all $B \in \mathscr{B}$ and $E \in \mathscr{E}_B$, preserve reflexive coequalizers. Then, there is an opfibration over an opfibration.

Monoidal opfibred categories

Locally trivial objects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

K-theory

Example

Sheaves of modules over ringed spaces

Monoidal opfibration of sheaves of abelian groups over spaces:

 $Sh \rightarrow Top^{op}$.

Modules and commutative monoids in there:

 $Mod(Sh) \rightarrow Comm(Sh) \rightarrow Top^{op}$.

Dual gives sheaves of modules over ringed spaces:

 \mathcal{O} -Mod \rightarrow Ringed \rightarrow Top.

Monoidal opfibred categories

Locally trivial objects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K-theory 00 00

Sites

Definitions

Let $\ensuremath{\mathscr{C}}$ be a category.

- A covering of an object C ∈ C is a set R of arrows of codomain C.
- A covering function J on C is a function that assigns a class of coverings J(C) to each object C ∈ C.
- A site is a pair (C, J) where J is a covering function on the category C.

Monoidal opfibred categories 00 0000 Locally trivial objects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

K-theory

Locally trivial objects

Let (\mathcal{B}, J) be a site containing all identity-singleton coverings. Definitions

 A subcategory of trivial objects is a full and replete subcategory *Triv* ⊂ *B*.

Monoidal opfibred categories

Locally trivial objects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

K-theory

Locally trivial objects

Let (\mathcal{B}, J) be a site containing all identity-singleton coverings. Definitions

- A subcategory of trivial objects is a full and replete subcategory *Triv* ⊂ *B*.
- An object B ∈ ℬ is locally trivial if it can be covered by a J-covering R whose domains are trivial. Full subcategory of locally trivial objects Loc ⊂ ℬ.

 $\mathit{Triv} \subset \mathit{Loc} \subset \mathscr{B}.$

Monoidal opfibred categories

Locally trivial objects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

K-theory

Locally trivial objects

Let (\mathcal{B}, J) be a site containing all identity-singleton coverings. Definitions

- A subcategory of trivial objects is a full and replete subcategory *Triv* ⊂ *B*.
- An object B ∈ ℬ is locally trivial if it can be covered by a J-covering R whose domains are trivial. Full subcategory of locally trivial objects Loc ⊂ ℬ.

Triv
$$\subset$$
 Loc $\subset \mathscr{B}$.

• Site (*Loc*, *J*_{*l*}) whose coverings are *J*-coverings with trivial domains.

 J_l

Monoidal opfibred categories

Locally trivial objects

K-theory

Example

Topological manifolds

Site (<i>Top</i> , J)	Open subset pretopology.
------------------------	--------------------------

Trivial objects Euclidean spaces.

Locally trivial objects Topological manifolds.

Coverings of topological manifols by open euclidean spaces.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Monoidal opfibred categories 00 0000 Locally trivial objects

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

K-theory

Fibred sites

Definitions

A fibred site is a fibration &
 ^P→ B together with a site (B, J)
 on its base.

Monoidal opfibred categories

Locally trivial objects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K-theory

Fibred sites

Definitions

- A fibred site is a fibration &
 ^P→ B together with a site (B, J)
 on its base.
- The induced covering function is the covering function $J_{\mathscr{E}}$ on \mathscr{E} whose coverings are Cartesian lifts of *J*-coverings.

Monoidal opfibred categories

Locally trivial objects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

K-theory

Locally trivial objects

Definition Let $P \colon \mathscr{E} \to (\mathscr{B}, J)$ be a fibred site. A subfibration of trivial objects of P is a "globally" replete and full subfibration

One can then consider the subfunctor of locally trivial objects

$$\begin{array}{rcl} Loc(\mathit{Triv}_t, J_{\mathscr{C}}) & =: & \mathit{Loc}_t & \longrightarrow \mathscr{C} \\ & & & & & \downarrow \\ Loc & & & \downarrow P \\ Loc(\mathit{Triv}_b, J) & =: & \mathit{Loc}_b & \hookrightarrow \mathscr{B}. \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fibrational properties of locally trivial objects

Proposition

Let $P : \mathscr{E} \to (\mathscr{B}, J)$ be a fibred site with J containing all identity-singleton coverings. Let $Triv \subset P$ a subfibration of trivial objects. Suppose that J_I is a coverage.

Then, $Loc \subset P$ is a subfibration.

Triv \subset *Loc* \subset *P*.

Monoidal opfibred categories 00 0000 Locally trivial objects

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

K-theory

Example

Finitely generated projective modules

Monoidal opfibred categories

Locally trivial objects

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

K-theory

Example

Finitely generated projective modules

 $Free_{fg} \longrightarrow Proj_{fg} \hookrightarrow$ ightarrow Mod(Comm, Zar)

Monoidal opfibred categories

Locally trivial objects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K-theory

Example

Finitely generated projective modules

Other examples:

- vector bundles,
- G-torsors,
- locally constant sheaves (of rings, abelian groups, ...),
- schemes,
- locally free sheaves of modules,

• • • •

Monoidal opfibred categories

Locally trivial objects 000 0000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

K-theory ●0 ○○

Locally trivial modules

$$(Mod \mathscr{E})^{op}$$

$$\downarrow$$
 $(\mathscr{C}, J) \longrightarrow (Mon \mathscr{E})^{op}$

Monoidal opfibred categories

Locally trivial objects

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

K-theory ●0 ○○

Locally trivial modules

Monoidal opfibred categories

Locally trivial objects

K-theory ●0 ○○

Locally trivial modules

Monoidal opfibred categories

Locally trivial objects

K-theory ●0 ○○

Locally trivial modules

Monoidal opfibred categories

Locally trivial objects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K-theory ○●

Example

Coherent sheaves of modules over schemes

Modules in a monoidal abelian opfibration

Theorem (Ardizzoni, 2004)

Let \mathscr{V} be a monoidal category whose underlying category is abelian. Let R be a monoid in \mathscr{V} . Suppose that the functor $-\otimes R$ preserve finite colimits.

Then, the category Mod_R of R-modules in \mathscr{V} is abelian.

Definition

We call a monoidal category that is abelian and such that each $- \otimes A$ preserves finite colimits a (right) monoidal abelian category.

Corollary

Let $\mathscr{E} \to \mathscr{B}$ be monoidal bifibration whose fibres are monoidal abelian categories. Then, there is a bifibration $Mod(\mathscr{E}) \to Mon(\mathscr{E})$ whose fibres are abelian and direct image functors additive.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Exact categories of locally trivial objects

Proposition

Suppose:

- $P: \mathscr{E} \to \mathscr{B}$ fibred in abelian categories and additive functors.
- P comes with a subfibration of trivial objects Triv ⊂ P whose fibres (Triv_t)_B ⊂ *E*_B are Quillen-exact subcategories for all B ∈ Triv_b.
- Site (\mathcal{B}, J) such that J_I is a coverage satisfying axiom (L).

• The inverse image functors of P are exact over J_I -coverings. Then for each $B \in Loc_b$, $(Loc_t)_B \subset \mathscr{E}_B$ is a Quillen-exact subcategory.