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How is the K -theory of an object defined?

Object � //
Structured
category

� K -theory
machine

//

Infinite
loop space/
Spectrum

Possible structures:
• Quillen-exact,
• Waldhausen,
• Symmetric monoidal,
• One of these structures together with a topological

enrichment.
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Object Structured category

Ring R
• Pseudo-coherent R-modules
• Finitely generated projective R-modules
• Finitely generated free R-modules

Space X • (R or C-)vector bundles over X

Ringed space
(X ,OX )

• Coherent OX -modules
• Locally free OX -modules of finite rank

Ring spectrum/
S-algebra R

• Semi-finite cell R-modules
• Finite cell R-modules

Back to questions
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1. What kind of objects K -theory should be applied to?

2. What structured categories should be associated to such an
object in order to define its K -theories?

3. How does this correspondance take the morphisms of these
objects into account?



The original problem Monoidal opfibred categories Locally trivial objects K -theory

1. What kind of objects K -theory should be applied to?
2. What structured categories should be associated to such an

object in order to define its K -theories?

3. How does this correspondance take the morphisms of these
objects into account?



The original problem Monoidal opfibred categories Locally trivial objects K -theory

1. What kind of objects K -theory should be applied to?
2. What structured categories should be associated to such an

object in order to define its K -theories?
3. How does this correspondance take the morphisms of these

objects into account?

Examples of K -theories
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Op-fibred category setting

Let B be a category.
Notation
OPFIB(B) is the 2-category of opfibrations over B, opCartesian
functors over B and natural transformations over B.

Definition
A monoidal opfibred category is a monoidal object in the
2-Cartesian 2-monoidal category OPFIB(B).

Notation
MONOPFIB(B) is the 2-category of monoidal objects, strong
monoidal morphisms and monoidal 2-cells in OPFIB(B).
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Op-indexed category setting

Notation
• MONCAT is the 2-category of monoidal categories, strong

monoidal functors and monoidal natural transformations.
• MONCATB is the corresponding 2-category of

pseudo-functors, pseudo-natural transformations and
modifications.

Theorem
There is a 2-equivalence

MONOPFIB(B) ' MONCATB.
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Monoids

Let (E P−→ B,⊗, u) be a monoidal opfibred category.
Definition

• A monoid in E is a monoid in any fibre of E .
• A morphism of monoids f : R → S is a morphism in E such

that

R ⊗ R φ⊗φ
//

µ

��

S ⊗ S

ν

��

R
φ

// S

IP(R)

η

��

u(P(φ))
// IP(S)

λ

��

R
φ

// S
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Modules
Definition

• A (right) module in E is a pair (R,M) where R is a monoid in
E and M a (right) R-module in EP(R).

• A morphism of modules is a pair (φ, α) : (R,M)→ (S,N)
where:

• φ : R → S and α : M → N are morphisms in E such that
P(φ) = P(α),

• φ : R → S is a morphism of monoids in E ,
• the following diagram commutes:

M ⊗ R

κ

��

α⊗φ
// N ⊗ S

σ

��

M
α

// N.
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An opfibration over an opfibration

Let (E P−→ B,⊗) be a monoidal opfibration.
Proposition
Suppose P has opfibred reflexive coequalizers and that the functors
−⊗ E : EB → EB, for all B ∈ B and E ∈ EB, preserve reflexive
coequalizers. Then, there is an opfibration over an opfibration.

ModE

��

MonE
P
��

B
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Example
Sheaves of modules over ringed spaces

Monoidal opfibration of sheaves of abelian groups over spaces:

Sh→ Topop.

Modules and commutative monoids in there:

Mod(Sh)→ Comm(Sh)→ Topop.

Dual gives sheaves of modules over ringed spaces:

O-Mod → Ringed → Top.
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Sites

Definitions
Let C be a category.

• A covering of an object C ∈ C is a set R of arrows of
codomain C .

• A covering function J on C is a function that assigns a class
of coverings J(C) to each object C ∈ C .

• A site is a pair (C , J) where J is a covering function on the
category C .
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Locally trivial objects

Let (B, J) be a site containing all identity-singleton coverings.
Definitions

• A subcategory of trivial objects is a full and replete
subcategory Triv ⊂ B.

• An object B ∈ B is locally trivial if it can be covered by a
J-covering R whose domains are trivial. Full subcategory of
locally trivial objects Loc ⊂ B.

Triv ⊂ Loc ⊂ B.

• Site (Loc, Jl) whose coverings are J-coverings with trivial
domains.
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Example
Topological manifolds

Site (Top, J) Open subset pretopology.
Trivial objects Euclidean spaces.
Locally trivial objects Topological manifolds.
Jl Coverings of topological manifols by

open euclidean spaces.
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Fibred sites

Definitions
• A fibred site is a fibration E

P−→ B together with a site (B, J)
on its base.

• The induced covering function is the covering function JE on
E whose coverings are Cartesian lifts of J-coverings.
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Locally trivial objects
Definition
Let P : E → (B, J) be a fibred site. A subfibration of trivial
objects of P is a “globally” replete and full subfibration

Triv t
� � //

Triv
��

E

P
��

Trivb
� � // B.

One can then consider the subfunctor of locally trivial objects

Loc(Triv t , JE ) =: Loct
� � //

Loc
��

E

P
��

Loc(Trivb, J) =: Locb
� � // B.
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Fibrational properties of locally trivial objects

Proposition
Let P : E → (B, J) be a fibred site with J containing all
identity-singleton coverings. Let Triv ⊂ P a subfibration of trivial
objects. Suppose that Jl is a coverage.

Then, Loc ⊂ P is a subfibration.

Triv ⊂ Loc ⊂ P.
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Example
Finitely generated projective modules

Freefg
� � //

��

Mod

��

(Comm,Zar)
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Example
Finitely generated projective modules

Freefg
� � //

��

Projfg

��

� � // Mod

��

(Comm,Zar)
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Example
Finitely generated projective modules

Other examples:
• vector bundles,
• G-torsors,
• locally constant sheaves (of rings, abelian groups, . . . ),
• schemes,
• locally free sheaves of modules,
• . . .



The original problem Monoidal opfibred categories Locally trivial objects K -theory

Locally trivial modules

Monoidal opfibred category E
P−→ B with previous conditions

about reflexive coequalizers in the fibres.

(ModE )op

��

(C , J) // (MonE )op



The original problem Monoidal opfibred categories Locally trivial objects K -theory

Locally trivial modules

Monoidal opfibred category E
P−→ B with previous conditions

about reflexive coequalizers in the fibres.

ModC

��

// (ModE )op

��

(C , J) // (MonE )op



The original problem Monoidal opfibred categories Locally trivial objects K -theory

Locally trivial modules

Monoidal opfibred category E
P−→ B with previous conditions

about reflexive coequalizers in the fibres.

Triv t

��

� � // ModC

��

// (ModE )op

��

Trivb
� � // (C , J) // (MonE )op



The original problem Monoidal opfibred categories Locally trivial objects K -theory

Locally trivial modules

Monoidal opfibred category E
P−→ B with previous conditions

about reflexive coequalizers in the fibres.

Triv t

��

� � // Loct
� � //

��

ModC

��

// (ModE )op

��

Trivb
� � // Locb

� � // (C , J) // (MonE )op
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Example
Coherent sheaves of modules over schemes

Modop
fp

��

(Spec,O,˜)
// Coh � � //

��

O-Mod l

��

// O-Mod

��

Commop
(Spec,O)

// Sch �
�

// (LRinged ,Zar) �
�

// Ringed
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Modules in a monoidal abelian opfibration

Theorem (Ardizzoni, 2004)
Let V be a monoidal category whose underlying category is
abelian. Let R be a monoid in V . Suppose that the functor −⊗ R
preserve finite colimits.
Then, the category ModR of R-modules in V is abelian.

Definition
We call a monoidal category that is abelian and such that each
−⊗ A preserves finite colimits a (right) monoidal abelian category.

Corollary
Let E → B be monoidal bifibration whose fibres are monoidal
abelian categories. Then, there is a bifibration Mod(E )→ Mon(E )
whose fibres are abelian and direct image functors additive.
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Exact categories of locally trivial objects

Proposition
Suppose:

• P : E → B fibred in abelian categories and additive functors.
• P comes with a subfibration of trivial objects Triv ⊂ P whose

fibres (Triv t)B ⊂ EB are Quillen-exact subcategories for all
B ∈ Trivb.

• Site (B, J) such that Jl is a coverage satisfying axiom (L).
• The inverse image functors of P are exact over Jl -coverings.

Then for each B ∈ Locb, (Loct)B ⊂ EB is a Quillen-exact
subcategory.
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