A model structure for quasi-2-categories

David Oury Macquarie University, New South Wales, Australia

19 July 2011

This is a report of joint work with Ross Street and Dominic Verity. All errors though are my own.

Orthogonality

Let \mathcal{L} and \mathcal{R} be sets of morphisms in a category \mathcal{A} . We write $\mathcal{L} \perp \mathcal{R}$ or $\mathcal{L} = \operatorname{llp}(\mathcal{R})$ or $\mathcal{R} = \operatorname{rlp}(\mathcal{L})$ or say that " \mathcal{R} has the RLP with respect to \mathcal{L} " when for every morphism $f \in \mathcal{L}$ and $g \in \mathcal{R}$ and every commutative square

there exists a diagonal (dashed) morphism which makes the two triangles commute.

Horns (general)

Let $\widehat{\mathcal{A}} = [\mathcal{A}^{\text{op}}, Set]$ be a presheaf category and let c be an object of \mathcal{A} . A (freestanding) <u>horn</u> is a morphism f from a designated set of morphisms with codomain $\mathcal{A}(_, c)$.

A <u>horn in X</u> is a morphism $h: S \to X$. A <u>filler</u> for this horn is a diagonal morphism making the triangle commute. We say that "X has the RLP with respect to f" when there exists a filler for any h.

By Yoneda's Lemma, a horn in X corresponds to a collection of elements in X and a filler corresponds to a *c*-element in $X_{\text{corresponds}} = 0.0$

Horns and higher categories

One approach to defining higher categories is to look for shape categories ${\mathcal A}$ and for definitions of horns in $\widehat{{\mathcal A}}$ such that

Horns provide a notion of composable morphisms

► Fillers provide a notion of <u>composite morphism</u> Higher categories are defined as those presheaves which have the RLP with respect to the horns (These presheaves satisfy a <u>horn-filler condition</u>).

Three examples

- Quasi-categories (Boardman & Vogt, Joyal)
- Weak complicial sets (Roberts, Street, Verity)

Θ-sets (Joyal)

Horns in simplicial sets

 $\mathcal{A}=\Delta$ is the skeletal category of finite linearly ordered sets with

- objects: $[n] = \{0, 1, \dots, n\}$ for $n \ge 0$
- arrows: order preserving maps

Simplicial sets are contravariant functors $X : \Delta^{op} \to Set$. The elements x of X_n are called *n*-simplicies and have dimension *n*.

An *n*-simplex x has n + 1 compatible faces of dimension n - 1. This collection of faces is called a sphere and is the boundary of x. A <u>horn</u> is a sphere minus one of its faces. Suppose the missing face is the *i*-th face. When i = 0, n the face is <u>outer</u>, e.g. first diagram. Otherwise it is <u>inner</u>, e.g. second diagram.

Kan complexes and quasi-categories

A simplicial set is a Kan complex if every horn has a filler and is a weak Kan complex if every inner horn has a filler.

Quasi-categories are weak Kan complexes and so have (not necessarily unique) fillers for all inner horns. They also have

- objects as 0-simplices
- weak composition of 1-simplices given by 2-simplices
- a notion of homotopy given by certain 2-simplices
- homotopies between different composites
- 3-simplices witnessing associativity

See Associativity Data in an $(\infty, 1)$ -category by Emily Riehl.

Model category

A model category is a category \mathcal{A} with all small limits and colimits and with three sets \mathcal{W} , \mathcal{C} and \mathcal{F} of morphisms which contain the weak equivalences, cofibrations and fibrations (respectively). The set $\mathcal{F} \cap \mathcal{W}$ contains the trivial fibrations and the set $\mathcal{C} \cap \mathcal{W}$ contains the trivial cofibrations such that M1 If two of f, g and gf are weak equivalences, so is the third M2 Each of the three sets (\mathcal{W} , \mathcal{C} and \mathcal{F}) is closed under retracts

- M3 $\mathcal{C} \perp \mathcal{F} \cap \mathcal{W}$ and $\mathcal{C} \cap \mathcal{W} \perp \mathcal{F}$
- M4 Every morphism can be factored into
 - a trivial cofibration followed by a fibration
 - a cofibration followed by a trivial fibration

Fibrant objects are those objects defined as having the RLP with respect to the trivial cofibrations.

Cofibrantly generated I

Let $\ensuremath{\mathcal{K}}$ be a set of morphisms in a cocomplete category. Define

• cell (\mathcal{K}) as the closure of \mathcal{K} under p.o. and t.f. composition

• cof (\mathcal{K}) as the closure of cell (\mathcal{K}) under retracts

A model category \mathcal{A} is said to be <u>cofibrantly generated</u> if it is locally presentable and if there is a small set \mathcal{I} and a small set \mathcal{J} such that

- ▶ cof (*I*) is the set of cofibrations
- $cof(\mathcal{J})$ is the set of trivial cofibrations
- $\mathcal I$ and $\mathcal J$ permit the small object argument

Cofibrantly generated II

In a cofibrantly generated model category

- $\operatorname{cof}(\mathcal{I}) = \operatorname{llp}(\operatorname{rlp}(\mathcal{I}))$
- $\operatorname{cof}(\mathcal{J}) = \operatorname{llp}(\operatorname{rlp}(\mathcal{J}))$

Hence the fibrations (and fibrant objects) have the RLP with respect to the generating trivial cofibrations.

We find weak higher categories as fibrant objects in a cofibrantly generated model category with generating trivial cofibrations the horns of interest.

Model structure for quasi-categories

The category of simplicial sets has a cofibrantly generated model structure where

- ► Generating cofibrations I_Δ are boundary inclusions into representables.
- Generating trivial cofibrations \mathcal{J}_{Δ} are the inner horns

- ► Cofibrations cof (I_Δ) are the monomorphisms
- Fibrant objects are quasi-categories

Extensions of quasi-categories

Two extensions of the concept of quasi-category

- Weak complicial sets
- Θ-sets

There is a cofibrantly generated model category whose fibrant objects are weak complicial sets. (See *Weak Complicial sets*, *A Simplicial Weak* ω -*Category Theory* by Dominic Verity).

Our work has been to construct a model structure on Θ_2 -sets whose fibrant objects define quasi-2-categories.

Model structure for quasi-2-categories

We constructed a cofibrantly generated model structure on the presheaf category of $\Theta_2\mbox{-sets}$ where

- Generating trivial cofibrations \mathcal{J}_{Θ} are the <u>horns</u>
- Cofibrations are monomorphisms
- Fibrant objects are quasi-2-categories

The remainder of the talk will describe

- the generating trivial cofibrations (aka the horns)
- the concepts of homotopy and weak equivalence on this model structure.

Theta

André provided the original definition of Θ as an extension of Δ . Equivalent definitions were given by Batanin-Street, Berger, Makkai-Zawadowski and Oury.

The category Θ_2 is a full subcategory of 2-*Cat*. Let $\mathbf{m} = m_1, \dots, m_n$ and let $[n; \mathbf{m}]$ denote the 2-category with

- ▶ objects 0, 1, ..., *n*
- hom-sets $[n; \mathbf{m}] (i 1, i) = [m_i]$

For example, the object [3; 0, 2, 1] is

・ロト ・四ト ・ヨト ・ヨ

 Θ_2 embedding — $\widehat{\Delta}(_)$

Let (\mathcal{A}, \otimes) be a monoidal category. We define a pseudofunctor $\mathcal{A}(_) : \Delta^{\mathrm{op}} \to Cat$

- ► the category A ([n]) is A × ... × A (n times)
- ► the functor A (γ: [n] → [m]) : A ([m]) → A ([n]) sends an object (W_i)^m_{i=1} to

$$\left(\otimes_{j=\gamma(i-1)+1}^{\gamma(i)}W_j\right)_{i=1}^n$$

We only use $\mathcal{A} = \widehat{\Delta}$ with cartesian product; that is, we use $\widehat{\Delta}(_)$.

 Θ_2 embedding — $\widehat{\Delta} \wr \widehat{\Delta}$

The category $\widehat{\Delta} \wr \widehat{\Delta}$ has

- Objects as pairs (X: Δ^{op} → Cat, Φ: X → Â(_)) with X_k a discrete category for all k.
- Morphisms as pairs (f, ζ) : $(X; \Phi) \rightarrow (Y; \Psi)$ with $f: X \rightarrow Y$ and $\zeta: \Phi \rightarrow \Psi f$.

Θ_2 embedding

Define an embedding of Θ_2 into $\widehat{\Delta} \wr \widehat{\Delta}$ by

- sending [n; m]
- ► to the pseudonatural transformation $\Delta[n] \rightarrow \widehat{\Delta}(_)$ which sends $\mathrm{Id}_{[n]}$ to $(\Delta[m_1], \ldots, \Delta[m_n])$

Box functor and representables

The Kan construction on the embedding $\Theta_2 \xrightarrow{\text{emb}} \widehat{\Delta} \wr \widehat{\Delta}$ induces a functor $\Box \colon \widehat{\Delta} \wr \widehat{\Delta} \to \widehat{\Theta_2}$ defined

▶ by sending $(X: \Delta^{\mathrm{op}} \to Cat, \Phi: X \to \widehat{\Delta}(_))$

• to
$$\widehat{\Delta} \wr \widehat{\Delta} \left(\operatorname{emb}(\underline{\ }), X \xrightarrow{\Phi} \widehat{\Delta}(\underline{\ }) \right)$$

Define a functor $\Box_n \colon \widehat{\Delta}/_{\Delta[n]} \times \widehat{\Delta} \times \ldots \times \widehat{\Delta} \to \widehat{\Theta_2}$

► by sending $\left(A \xrightarrow{f} \Delta[n], X_1, \dots, X_n\right)$ ► to $\Box \left(A \xrightarrow{\Phi \circ f} \widehat{\Delta}(_)\right)$

where Φ is defined by sending $\mathrm{Id}_{[n]}$ to (X_1, \ldots, X_n) . The representable $\Theta[n; \mathbf{m}]$ is isomorphic to

$$\Box_n \left(\mathrm{Id}_{\Delta[n]}, \Delta[m_1], \ldots, \Delta[m_n] \right)$$

Abstract corner tensor (Street)

Let \mathcal{V} be a complete cocomplete closed symmetric monoidal category. Suppose we have a functor $\wedge : \mathcal{T} \otimes \ldots \otimes \mathcal{T} \to \mathcal{T}$. Let $\mathcal{A}_1, \ldots, \mathcal{A}_n$ and \mathcal{C} be categories which admit enough colimits to allow tensoring with homs of \mathcal{T} and taking coends over \mathcal{T} . Suppose we have a functor

$$\Box\colon \mathcal{A}_1\otimes\ldots\otimes\mathcal{A}_n\to\mathcal{C}.$$

Using Day convolution, define

$$\overline{\Box}: \ [\mathcal{T}, \mathcal{A}_1] \otimes \ldots \otimes [\mathcal{T}, \mathcal{A}_n] \to [\mathcal{T}, \mathcal{C}]$$

by putting $\overline{\Box}$ $(M_1, \ldots, M_n) t$ isomorphic to

$$\int^{u_1,\ldots,u_n} \mathcal{T}\left(\wedge\left(u_1,\ldots,u_n\right),t\right) \otimes \Box\left(M_1u_1,\ldots,M_nu_n\right).$$

Corner tensor (specialized)

Let \mathcal{T} be the category **2** and let \wedge be the infimum. Let $\mathcal{A}_1, \ldots, \mathcal{A}_n$ and \mathcal{C} be cocomplete categories and let

 $\Box\colon \mathcal{A}_1\times\ldots\times\mathcal{A}_n\to \mathcal{C}.$

We have a functor $\overline{\Box} : \mathcal{A}_1^2 \times \ldots \times \mathcal{A}_n^2 \to \mathcal{C}^2$ defined for a family of morphisms f_1, \ldots, f_n by

$$\overline{\Box}(f_1,\ldots,f_n) t \cong \int^{u_0,\ldots,u_n\in\mathbf{2}} \mathbf{2}(u_0\wedge\ldots\wedge u_n,t)\cdot\Box(f_1u_0,\ldots,f_nu_n).$$

Using the product functor for \Box we have what is known as the pushout smash (Hess) and pushout product (Hovey).

The categorical nerve $N_{\Delta}C$ of C is defined by

$$(N_{\Delta}\mathcal{C})_n = Cat([n],\mathcal{C}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathbb{I} denote the chaotic category with two distinct objects. Let \mathbb{I}_{Δ} denote $N_{\Delta}\mathbb{I}$ which is the interval object for the model structure on simplicial sets whose fibrant objects are quasi-categories.

Horns

Let

- $h^{(n)k}$, $h^{(m_i)k}$ be horns of $\widehat{\Delta}$
- $e: \Delta[0] \to \mathbb{I}_{\Delta}$ be the equivalence extension of $\widehat{\Delta}$
- ▶ the morphisms bⁿ, b^{m_i} be boundary inclusions of Â
 A horizontal horn is

$$\overline{\Box_n}\left(h^{(n)k},b^{m_1},\ldots,b^{m_n}\right)$$

A vertical horn is

$$\overline{\Box_n}\left(b^n, b^{m_1}, \ldots, b^{m_{h-1}}, h^{(m_h)k}, b^{m_{h+1}}, \ldots, b^{m_n}\right)$$

A vertical equivalence extensions is

$$\overline{\square_n} (b^n, b^{m_1}, \ldots, b^{m_{k-1}}, e, b^{m_{k+1}}, \ldots, b^{m_n}).$$

Quasi-2-categories

Quasi-2-categories are defined as the fibrant objects and so are those objects having the RLP with respect to these morphisms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Oriented simplices in 2-cat

Ross Street introduced

the free *n*-category \mathcal{O}_n on the oriented *n*-simplex $\Delta[n]$.

Define a functor $\overline{\mathcal{O}}: \Delta \to 2\text{-}Cat$ where the 2-category $\overline{\mathcal{O}}_n$ is obtained from the *n*-th oriental \mathcal{O}_n by identifying all cells of dimension strictly greater than 2 and inverting those of dim'n 2.

We use the Kan process on the inclusion of Θ_2 into 2-*Cat* to define a functor $N_2: 2\text{-}Cat \to \widehat{\Theta_2}$ by

$$(N_2\mathcal{A})_{[p;\mathbf{q}]} = 2\text{-}Cat([p;\mathbf{q}],\mathcal{A}).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Homotopy coherent nerve

We use the Kan process on the composite

$$\Delta \xrightarrow{\overline{\mathcal{O}}} 2\text{-}Cat \xrightarrow{N_2} \widehat{\Theta_2}.$$

to obtain an adjunction

and define a homotopy coherent nerve $N_{hc} \colon \widehat{\Theta_2} \to \widehat{\Delta}$.

Adjunctions and enrichment

We have a pair of adjunctions

and enrich $\widehat{\Theta_2}$ over $\widehat{\Delta}$ to obtain the $\widehat{\Delta}$ -category $(N_{hc})_* \widehat{\Theta_2}$ and enrich $\widehat{\Theta_2}$ over *Cat* to obtain the 2-category $(\pi_1 N_{hc})_* \widehat{\Theta_2}$.

We do so to interpret homotopy and homotopy equivalence in terms of quasi-isomorphisms and isomorphisms (respectively) in these two enriched categories. Interval object and the horiz. equivalence extension

We define the *interval object* of $\widehat{\Theta}_2$ as $F_{hc}\mathbb{I}_{\Delta}$ denoted \mathbb{I}_{Θ} .

The elementary horizontal equivalence is the morphism $E: \Theta[0;] \to \mathbb{I}_{\Theta}$ defined by sending * to 0.

The horizontal equivalence extensions are morphisms of the form $E \times b$ with b a boundary morphism.

The fibrations are those morphisms with the RLP with respect to the horns and equivalence extensions (horizontal and vertical).

Homotopy

A homotopy between parallel morphisms $f, g: B \to C$ is a morphism $h: \mathbb{I}_{\Theta} \to [B, C]$ such that

A pair of morphisms $f: X \to Y$ and $g: Y \to X$ are homotopy equivalences when gf is homotopic to Id_X and fg is homotopic to Id_Y .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

More homotopy

Morphisms f and g are homotopic if and only if

they are vertices of an adjoint quasi-isomorphism in $N_{hc}[B, C]$ if and only if

they are isomorphic in $\pi_1 N_{hc}[B, C]$.

Morphisms g and h are mutual homotopy inverses if and only if they are mutually inverse 1-cells in the 2-category $(\pi_1 N_{hc})_* \widehat{\Theta_2}$.

The homotopy relation is an equivalence relation.

Weak equivalences

A morphism $w: U \to V$ of $\widehat{\Theta_2}$ is a *weak equivalence* when

$$w^* \colon [V, A] \to [U, A]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a homotopy equivalence for all fibrant objects A.