A model structure for quasi-2-categories

David Oury
Macquarie University, New South Wales, Australia

19 July 2011

This is a report of joint work with Ross Street and Dominic Verity.
All errors though are my own.



Orthogonality

Let £ and R be sets of morphisms in a category A.
We write L L. R or L =1lp(R) or R =rlp(L)

or say that "R has the RLP with respect to £"
when for every morphism f € Land g € R

and every commutative square

A——B
7
Ve
Ve
C——D

there exists a diagonal (dashed) morphism
which makes the two triangles commute.



Horns (general)

Let A = [A°P, Set] be a presheaf category and let ¢ be an object
of A. A (freestanding) horn is a morphism f from a designated set
of morphisms with codomain A(_, c).

A horn in X is a morphism h: § — X. A filler for this horn
is a diagonal morphism making the triangle commute.

We say that “X has the RLP with respect to "

when there exists a filler for any h.

By Yoneda's Lemma, a horn in X corresponds to a collection
of elements in X and a filler corresponds to a c-element-in X.



Horns and higher categories

One approach to defining higher categories is to look for
shape categories A and for definitions of horns in A such that

» Horns provide a notion of composable morphisms

» Fillers provide a notion of composite morphism

Higher categories are defined as those presheaves
which have the RLP with respect to the horns
(These presheaves satisfy a horn-filler condition).

Three examples
» Quasi-categories (Boardman & Vogt, Joyal)
» Weak complicial sets (Roberts, Street, Verity)
> O-sets (Joyal)



Horns in simplicial sets

A = A is the skeletal category of finite linearly ordered sets with
» objects: [n] ={0,1,...,n} forn >0
> arrows: order preserving maps

Simplicial sets are contravariant functors X: A°? — Set.
The elements x of X, are called n-simplicies and have dimension n.

An n-simplex x has n+ 1 compatible faces of dimension n — 1.
This collection of faces is called a sphere and is the boundary of x.
A horn is a sphere minus one of its faces. Suppose the missing face
is the i-th face. When i = 0, n the face is outer, e.g. first diagram.
Otherwise it is inner, e.g. second diagram.
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Kan complexes and quasi-categories

A simplicial set is a Kan complex if every horn has a filler
and is a weak Kan complex if every inner horn has a filler.

Quasi-categories are weak Kan complexes and so have
(not necessarily unique) fillers for all inner horns.
They also have

> objects as O-simplices
» weak composition of 1-simplices given by 2-simplices
> a notion of homotopy given by certain 2-simplices

» homotopies between different composites

v

3-simplices witnessing associativity

See Associativity Data in an (oo, 1)-category by Emily Riehl.



Model category

A model category is a category A with all small limits and colimits
and with three sets W, C and F of morphisms which contain the
weak equivalences, cofibrations and fibrations (respectively).

The set F N WV contains the trivial fibrations and

the set C N W contains the trivial cofibrations such that

M1 If two of f, g and gf are weak equivalences, so is the third
M2 Each of the three sets (W, C and F) is closed under retracts
M3CLFnNWandCNW L F

M4 Every morphism can be factored into

» a trivial cofibration followed by a fibration
» a cofibration followed by a trivial fibration

Fibrant objects are those objects defined as having
the RLP with respect to the trivial cofibrations.



Cofibrantly generated |

Let IC be a set of morphisms in a cocomplete category. Define
» cell (K) as the closure of IC under p.o. and t.f. composition

» cof (K) as the closure of cell () under retracts

A model category A is said to be cofibrantly generated if
it is locally presentable and if there is a small set Z and
a small set J such that

» cof (Z) is the set of cofibrations
» cof (J) is the set of trivial cofibrations

» 7 and J permit the small object argument



Cofibrantly generated I

In a cofibrantly generated model category
» cof (Z) = llp(rlp (2))
> cof (J) = lIp (rlp (7))

Hence the fibrations (and fibrant objects) have
the RLP with respect to the generating trivial cofibrations.

We find weak higher categories as fibrant objects
in a cofibrantly generated model category with
generating trivial cofibrations the horns of interest.



Model structure for quasi-categories

The category of simplicial sets has
a cofibrantly generated model structure where

» Generating cofibrations Za are
boundary inclusions into representables.

» Generating trivial cofibrations [Ja are the inner horns
» Cofibrations cof (Za) are the monomorphisms

» Fibrant objects are quasi-categories



Extensions of quasi-categories

Two extensions of the concept of quasi-category
» Weak complicial sets

> O-sets

There is a cofibrantly generated model category whose fibrant
objects are weak complicial sets. (See Weak Complicial sets,
A Simplicial Weak w-Category Theory by Dominic Verity).

Our work has been to construct a model structure on ©»-sets
whose fibrant objects define quasi-2-categories.



Model structure for quasi-2-categories

We constructed a cofibrantly generated model structure
on the presheaf category of ©s-sets where

» Generating trivial cofibrations Jg are the horns
» Cofibrations are monomorphisms

» Fibrant objects are quasi-2-categories

The remainder of the talk will describe
» the generating trivial cofibrations (aka the horns)
» the concepts of homotopy and weak equivalence
on this model structure.



Theta

André provided the original definition of © as an extension of A.
Equivalent definitions were given by Batanin-Street, Berger,
Makkai-Zawadowski and Oury.

The category ©; is a full subcategory of 2-Cat.
Let m = my,..., m, and let [n; m] denote the 2-category with

» objects 0,1,...,n
» hom-sets [m;m] (i — 1,i) = [mj]

For example, the object [3;0,2,1] is




~

©, embedding — A (_)

Let (A, ®) be a monoidal category.
We define a pseudofunctor A(_): A°P — Cat

» the category A ([n]) is A x ... x A (n times)
» the functor A (y: [n] = [m]) : A([m]) = A([n])
sends an object (W;)"; to

n

(®]S’3("—1)+1 VVJ) i=1

We only use A = A with cartesian product; that is, we use 3(7)



©, embedding — A A

The category A A has
> Objects as pairs (X: A% — Cat,®: X — 3(7))
with X, a discrete category for all k.
» Morphisms as pairs (f,¢) : (X;®) — (Y; V)
with f: X = Y and (: & — Vf.

X f Y
A

A().




©, embedding

Define an embedding of ©5 into A A by
» sending [n; m]

» to the pseudonatural transformation A[n] — 3(7)
which sends Id, to (A[m], ..., A[mg])



Box functor and representables

~

The Kan construction on the embedding © —emb L A A
induces a functor O: A} A — ©5 defined

> by sending (X: A% 5 Cat,d: X — 3(7))
> to A1 A <emb(),Xi>ﬁ()>
Define a functor [J,;: A/A[n] xAx...xA— G/)\Q

» by sending (A#A[n],Xl,...,Xn>

> to O <AL‘”>£()>

where ® is defined by sending Idj, to (X1, ..., Xp).
The representable ©[n; m] is isomorphic to

Dn (IdA[n], A[ml], ce ,A[m,,]) .



Abstract corner tensor (Street)

Let V be a complete cocomplete closed symmetric monoidal
category. Suppose we have a functor A: 7T ®...0T — T.

Let Aj,..., A, and C be categories which admit enough colimits
to allow tensoring with homs of 7 and taking coends over 7.
Suppose we have a functor

|:| A1®...®An_>c.
Using Day convolution, define
O: [T, A]®...®[T, A — [T,C]

by putting O (My, ..., M,) t isomorphic to

ui,...,Un
/ T (A (u1y.. o up), t)@0O(Myus, ..., Myuy) .



Corner tensor (specialized)

Let 7 be the category 2 and let A be the infimum.
Let Aj,...,A, and C be cocomplete categories and let

O: 4 x...x A, = C.

We have a functor O: A2 x ... x A2 — C? defined
for a family of morphisms fi,...,f, by

L ug,...,Un€2
D(fl,...,fn)tg/ 2(u0/\.../\un,t)-D(ﬂuo,...,fnun).

Using the product functor for [J we have what is known as
the pushout smash (Hess) and pushout product (Hovey).



Categorical nerve

The categorical nerve NAC of C is defined by
(NaC), = Cat ([n].C).

Let I denote the chaotic category with two distinct objects.
Let Ia denote NaI which is the interval object for the model
structure on simplicial sets whose fibrant objects are
quasi-categories.



Horns

Let
> h(”)k, h(m)k be horns of A
» e: A[0] — I be the equivalence extension of A

» the morphisms b"”, b™ be boundary inclusions of A
A horizontal horn is

o, (h(">k,bm1,...,bmn>
A vertical horn is
o (b7, 6™, ™1, )k pmss, )
A vertical equivalence extensions is

O, (b", b™, ..., b™=1 e b™+1 . . p™).



Quasi-2-categories

Quasi-2-categories are defined as the fibrant objects and so
are those objects having the RLP with respect to these morphisms.



Oriented simplices in 2-cat

Ross Street introduced
the free n-category O, on the oriented n-simplex A[n].

Define a functor O: A — 2-Cat where the 2-category O, is
obtained from the n-th oriental O,, by identifying all cells of
dimension strictly greater than 2 and inverting those of dim’'n 2.



©,-nerve of 2-categories

We use the Kan process on the inclusion of ©; into 2-Cat
to define a functor N, : 2-Cat — ©5 by

(N2 A) g = 2-Cat ([pa], A).-

[p:d]



Homotopy coherent nerve

We use the Kan process on the composite

A 2-Cat ©5.
to obtain an adjunction
Fre=_ QK
TN
Npe=K

and define a homotopy coherent nerve Np.: (:)\2 — A.



Adjunctions and enrichment

We have a pair of adjunctions

Cat L A T 0,

and enrich @2 over A to obtain the A- category (Npc), @2
and enrich @2 over Cat to obtain the 2-category (m1Nxc), @2

We do so to interpret homotopy and homotopy equivalence
in terms of quasi-isomorphisms and isomorphisms (respectively)
in these two enriched categories.



Interval object and the horiz. equivalence extension

We define the interval object of é\z as Fpla denoted Ig.

The elementary horizontal equivalence is
the morphism E: ©[0;] — Ig defined by sending * to 0.

The horizontal equivalence extensions are morphisms
of the form E X b with b a boundary morphism.

The fibrations are those morphisms with the RLP with respect to
the horns and equivalence extensions (horizontal and vertical).



Homotopy

A homotopy between parallel morphisms f,g: B — C
is a morphism h: Ig — [B, C] such that

f?
i8¢

(ioi1)
B x ]I@.
A pair of morphisms f: X — Y and g: Y — X are

homotopy equivalences when gf is homotopic to Idx
and fg is homotopic to Idy.




More homotopy

Morphisms f and g are homotopic

if and only if

they are vertices of an adjoint quasi-isomorphism in Nx[B, C]

if and only if

they are isomorphic in 71 Nyc[B, CJ.

Morphisms g and h are mutual homotopy inverses if and only if
they are mutually inverse 1-cells in the 2-category (m1Nxc), ©2.

The homotopy relation is an equivalence relation.



Weak equivalences

A morphism w: U — V of (:)\2 is a weak equivalence when
w*: [V, Al — [U, A]

is a homotopy equivalence for all fibrant objects A.
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