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Orthogonality

Let L and R be sets of morphisms in a category A.
We write L ⊥ R or L = llp (R) or R = rlp (L)
or say that “R has the RLP with respect to L”
when for every morphism f ∈ L and g ∈ R
and every commutative square
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there exists a diagonal (dashed) morphism
which makes the two triangles commute.



Horns (general)

Let Â = [Aop,Set] be a presheaf category and let c be an object
of A. A (freestanding) horn is a morphism f from a designated set
of morphisms with codomain A ( , c).
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A horn in X is a morphism h : S → X . A filler for this horn
is a diagonal morphism making the triangle commute.
We say that “X has the RLP with respect to f ”
when there exists a filler for any h.

By Yoneda’s Lemma, a horn in X corresponds to a collection
of elements in X and a filler corresponds to a c-element in X .



Horns and higher categories

One approach to defining higher categories is to look for
shape categories A and for definitions of horns in Â such that

I Horns provide a notion of composable morphisms

I Fillers provide a notion of composite morphism

Higher categories are defined as those presheaves
which have the RLP with respect to the horns
(These presheaves satisfy a horn-filler condition).

Three examples

I Quasi-categories (Boardman & Vogt, Joyal)

I Weak complicial sets (Roberts, Street, Verity)

I Θ-sets (Joyal)



Horns in simplicial sets

A = ∆ is the skeletal category of finite linearly ordered sets with

I objects: [n] = {0, 1, . . . , n} for n ≥ 0

I arrows: order preserving maps

Simplicial sets are contravariant functors X : ∆op → Set.
The elements x of Xn are called n-simplicies and have dimension n.

An n-simplex x has n + 1 compatible faces of dimension n − 1.
This collection of faces is called a sphere and is the boundary of x .
A horn is a sphere minus one of its faces. Suppose the missing face
is the i-th face. When i = 0, n the face is outer, e.g. first diagram.
Otherwise it is inner, e.g. second diagram.
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Kan complexes and quasi-categories

A simplicial set is a Kan complex if every horn has a filler
and is a weak Kan complex if every inner horn has a filler.

Quasi-categories are weak Kan complexes and so have
(not necessarily unique) fillers for all inner horns.
They also have

I objects as 0-simplices

I weak composition of 1-simplices given by 2-simplices

I a notion of homotopy given by certain 2-simplices

I homotopies between different composites

I 3-simplices witnessing associativity

See Associativity Data in an (∞, 1)-category by Emily Riehl.



Model category

A model category is a category A with all small limits and colimits
and with three sets W, C and F of morphisms which contain the
weak equivalences, cofibrations and fibrations (respectively).
The set F ∩W contains the trivial fibrations and
the set C ∩W contains the trivial cofibrations such that

M1 If two of f , g and gf are weak equivalences, so is the third

M2 Each of the three sets (W, C and F) is closed under retracts

M3 C ⊥ F ∩W and C ∩W ⊥ F
M4 Every morphism can be factored into

I a trivial cofibration followed by a fibration
I a cofibration followed by a trivial fibration

Fibrant objects are those objects defined as having
the RLP with respect to the trivial cofibrations.



Cofibrantly generated I

Let K be a set of morphisms in a cocomplete category. Define

I cell (K) as the closure of K under p.o. and t.f. composition

I cof (K) as the closure of cell (K) under retracts

A model category A is said to be cofibrantly generated if
it is locally presentable and if there is a small set I and
a small set J such that

I cof (I) is the set of cofibrations

I cof (J ) is the set of trivial cofibrations

I I and J permit the small object argument



Cofibrantly generated II

In a cofibrantly generated model category

I cof (I) = llp (rlp (I))

I cof (J ) = llp (rlp (J ))

Hence the fibrations (and fibrant objects) have
the RLP with respect to the generating trivial cofibrations.

We find weak higher categories as fibrant objects
in a cofibrantly generated model category with
generating trivial cofibrations the horns of interest.



Model structure for quasi-categories

The category of simplicial sets has
a cofibrantly generated model structure where

I Generating cofibrations I∆ are
boundary inclusions into representables.

I Generating trivial cofibrations J∆ are the inner horns

I Cofibrations cof (I∆) are the monomorphisms

I Fibrant objects are quasi-categories



Extensions of quasi-categories

Two extensions of the concept of quasi-category

I Weak complicial sets

I Θ-sets

There is a cofibrantly generated model category whose fibrant
objects are weak complicial sets. (See Weak Complicial sets,
A Simplicial Weak ω-Category Theory by Dominic Verity).

Our work has been to construct a model structure on Θ2-sets
whose fibrant objects define quasi-2-categories.



Model structure for quasi-2-categories

We constructed a cofibrantly generated model structure
on the presheaf category of Θ2-sets where

I Generating trivial cofibrations JΘ are the horns

I Cofibrations are monomorphisms

I Fibrant objects are quasi-2-categories

The remainder of the talk will describe

I the generating trivial cofibrations (aka the horns)

I the concepts of homotopy and weak equivalence

on this model structure.



Theta

André provided the original definition of Θ as an extension of ∆.
Equivalent definitions were given by Batanin-Street, Berger,
Makkai-Zawadowski and Oury.

The category Θ2 is a full subcategory of 2-Cat.
Let m = m1, . . . ,mn and let [n;m] denote the 2-category with

I objects 0, 1, ..., n

I hom-sets [n;m] (i − 1, i) = [mi ]

For example, the object [3; 0, 2, 1] is

��

��
0 // 1 // %%99

��
2

%%
99 3.



Θ2 embedding — ∆̂ ( )

Let (A,⊗) be a monoidal category.
We define a pseudofunctor A ( ) : ∆op → Cat

I the category A ([n]) is A× . . .×A (n times)

I the functor A (γ : [n]→ [m]) : A ([m])→ A ([n])
sends an object (Wi )

m
i=1 to(
⊗γ(i)

j=γ(i−1)+1Wj

)n
i=1

We only use A = ∆̂ with cartesian product; that is, we use ∆̂ ( ).



Θ2 embedding — ∆̂ o ∆̂

The category ∆̂ o ∆̂ has

I Objects as pairs
(
X : ∆op → Cat,Φ: X → ∆̂ ( )

)
with Xk a discrete category for all k.

I Morphisms as pairs (f , ζ) : (X ; Φ)→ (Y ; Ψ)
with f : X → Y and ζ : Φ→ Ψf .
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Θ2 embedding

Define an embedding of Θ2 into ∆̂ o ∆̂ by

I sending [n;m]

I to the pseudonatural transformation ∆[n]→ ∆̂ ( )
which sends Id[n] to (∆[m1], . . . ,∆[mn])



Box functor and representables

The Kan construction on the embedding Θ2
emb // ∆̂ o ∆̂

induces a functor � : ∆̂ o ∆̂→ Θ̂2 defined

I by sending
(
X : ∆op → Cat,Φ: X → ∆̂ ( )

)
I to ∆̂ o ∆̂

(
emb ( ) ,X

Φ // ∆̂ ( )

)
Define a functor �n : ∆̂/∆[n] × ∆̂× . . .× ∆̂→ Θ̂2

I by sending

(
A

f // ∆[n],X1, . . . ,Xn

)
I to �

(
A

Φ◦f // ∆̂ ( )

)
where Φ is defined by sending Id[n] to (X1, . . . ,Xn).
The representable Θ[n;m] is isomorphic to

�n

(
Id∆[n],∆[m1], . . . ,∆[mn]

)
.



Abstract corner tensor (Street)

Let V be a complete cocomplete closed symmetric monoidal
category. Suppose we have a functor ∧ : T ⊗ . . .⊗ T → T .
Let A1, . . . ,An and C be categories which admit enough colimits
to allow tensoring with homs of T and taking coends over T .
Suppose we have a functor

� : A1 ⊗ . . .⊗An → C.

Using Day convolution, define

� : [T ,A1]⊗ . . .⊗ [T ,An]→ [T , C]

by putting � (M1, . . . ,Mn) t isomorphic to∫ u1,...,un

T (∧ (u1, . . . , un) , t)⊗� (M1u1, . . . ,Mnun) .



Corner tensor (specialized)

Let T be the category 2 and let ∧ be the infimum.
Let A1, . . . ,An and C be cocomplete categories and let

� : A1 × . . .×An → C.

We have a functor � : A2
1 × . . .×A2

n → C2 defined
for a family of morphisms f1, . . . , fn by

� (f1, . . . , fn) t ∼=
∫ u0,...,un∈2

2 (u0 ∧ . . . ∧ un, t) ·� (f1u0, . . . , fnun) .

Using the product functor for � we have what is known as
the pushout smash (Hess) and pushout product (Hovey).



Categorical nerve

The categorical nerve N∆C of C is defined by

(N∆C)n = Cat ([n], C) .

Let I denote the chaotic category with two distinct objects.
Let I∆ denote N∆I which is the interval object for the model
structure on simplicial sets whose fibrant objects are
quasi-categories.



Horns

Let

I h(n)k , h(mi )k be horns of ∆̂

I e : ∆[0]→ I∆ be the equivalence extension of ∆̂

I the morphisms bn, bmi be boundary inclusions of ∆̂

A horizontal horn is

�n

(
h(n)k , bm1 , . . . , bmn

)
A vertical horn is

�n

(
bn, bm1 , . . . , bmh−1 , h(mh)k , bmh+1 , . . . , bmn

)
A vertical equivalence extensions is

�n (bn, bm1 , . . . , bmk−1 , e, bmk+1 , . . . , bmn) .



Quasi-2-categories

Quasi-2-categories are defined as the fibrant objects and so
are those objects having the RLP with respect to these morphisms.



Oriented simplices in 2-cat

Ross Street introduced

the free n-category On on the oriented n-simplex ∆[n].

Define a functor O : ∆→ 2-Cat where the 2-category On is
obtained from the n-th oriental On by identifying all cells of
dimension strictly greater than 2 and inverting those of dim’n 2.



Θ2-nerve of 2-categories

We use the Kan process on the inclusion of Θ2 into 2-Cat
to define a functor N2 : 2-Cat → Θ̂2 by

(N2A)[p;q] = 2-Cat ([p;q],A) .



Homotopy coherent nerve

We use the Kan process on the composite

∆
O // 2-Cat

N2 // Θ̂2.

to obtain an adjunction

Θ̂2

Nhc=K̃

88⊥ ∆̂

Fhc= ⊗K
ww

and define a homotopy coherent nerve Nhc : Θ̂2 → ∆̂.



Adjunctions and enrichment

We have a pair of adjunctions

Cat

N∆

<<⊥ ∆̂

π1

||

Fhc

;;
> Θ̂2

Nhc

||

and enrich Θ̂2 over ∆̂ to obtain the ∆̂-category (Nhc)∗ Θ̂2

and enrich Θ̂2 over Cat to obtain the 2-category (π1Nhc)∗ Θ̂2.

We do so to interpret homotopy and homotopy equivalence
in terms of quasi-isomorphisms and isomorphisms (respectively)
in these two enriched categories.



Interval object and the horiz. equivalence extension

We define the interval object of Θ̂2 as FhcI∆ denoted IΘ.

The elementary horizontal equivalence is
the morphism E : Θ[0; ]→ IΘ defined by sending ∗ to 0.

The horizontal equivalence extensions are morphisms
of the form E × b with b a boundary morphism.

The fibrations are those morphisms with the RLP with respect to
the horns and equivalence extensions (horizontal and vertical).



Homotopy

A homotopy between parallel morphisms f , g : B → C
is a morphism h : IΘ → [B,C ] such that

B + B

(i0,i1)

��

(f ,g) // C

B × IΘ.

h

<<yyyyyyyyyyyyyy

A pair of morphisms f : X → Y and g : Y → X are
homotopy equivalences when gf is homotopic to IdX
and fg is homotopic to IdY .



More homotopy

Morphisms f and g are homotopic

if and only if

they are vertices of an adjoint quasi-isomorphism in Nhc [B,C ]

if and only if

they are isomorphic in π1Nhc [B,C ].

Morphisms g and h are mutual homotopy inverses if and only if
they are mutually inverse 1-cells in the 2-category (π1Nhc)∗ Θ̂2.

The homotopy relation is an equivalence relation.



Weak equivalences

A morphism w : U → V of Θ̂2 is a weak equivalence when

w∗ : [V ,A]→ [U,A]

is a homotopy equivalence for all fibrant objects A.
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