On (binary) localic products and localic groups

Jorge Picado

Department of Mathematics University of Coimbra PORTUGAL

— joint work with Aleš Pultr (Charles University, Prague, CZ)

locales (or frames)

• Complete lattices *L* satisfying

$$a \land \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \land b_i)$$

(= complete Heyting algebras)

locales (or frames)

• Complete lattices *L* satisfying

$$a \land \bigvee_{i \in I} b_i = \bigvee_{i \in I} (a \land b_i)$$

(= complete Heyting algebras)

locale L

locale L

 $(L,\mu,\varepsilon,\iota)$

• $\mu: L \times L \to L$

"multiplication"

locale L

• $\mu: L \times L \to L$

"multiplication"

locale L

• $\mu: L \times L \to L$

"multiplication"

$$a(bc) = (ab)c$$

•
$$\varepsilon : \mathbf{2} = \{0, 1\} \rightarrow L$$

"unit"

• $\mu: L \times L \to L$

"multiplication"

•
$$\varepsilon : \mathbf{2} = \{0, 1\} \rightarrow L$$

"unit"

locale L

• $\mu: L \times L \to L$

"multiplication"

• $\iota: L \to L$

"inverse"

locale L

• $\mu: L \times L \to L$

"multiplication"

• $\iota: L \to L$

"inverse"

$$f: (M, \mu_M, \varepsilon_M, \iota_M) \rightarrow (L, \mu_L, \varepsilon_L, \iota_L)$$
 preserves

$$f: (M, \mu_M, \varepsilon_M, \iota_M) \rightarrow (L, \mu_L, \varepsilon_L, \iota_L)$$
 preserves

• multiplication

$$f: (M, \mu_M, \varepsilon_M, \iota_M) \rightarrow (L, \mu_L, \varepsilon_L, \iota_L)$$
 preserves

• multiplication

• unit

$$f: (M, \mu_M, \varepsilon_M, \iota_M) \rightarrow (L, \mu_L, \varepsilon_L, \iota_L)$$
 preserves

multiplication

• unit

inverses

$$f: (M, \mu_M, \varepsilon_M, \iota_M) \rightarrow (L, \mu_L, \varepsilon_L, \iota_L)$$
 preserves

It is an improvement of classical TopGrp: Closed Subgroup Theorem...

$$f: (M, \mu_M, \varepsilon_M, \iota_M) \rightarrow (L, \mu_L, \varepsilon_L, \iota_L)$$
 preserves

It is an improvement of classical TopGrp: Closed Subgroup Theorem...

J. Isbell, I. Kříž, A. Pultr, J. Rosický, *LNM 1348* (1987) 154-172

G-ideals of $L \times M$

G-ideals of $L \times M$

$R\subseteq L\times M$

•
$$\downarrow R = R$$
 (down-sets)

G-ideals of $L \times M$

 $R\subseteq L\times M$

BACKGROUND: BINARY PRODUCTS IN Loc

The coproduct $L \otimes M$ of L and M:

•
$$\downarrow R = R$$
 (down-sets)

G-ideals of $L \times M$

•
$$\{x\} \times U_2 \subseteq R \Rightarrow (x, \bigvee U_2) \in R$$

 $R \subseteq L \times M$

G-ideals of $L \times M$

 $R \subseteq L \times M$

- $\downarrow R = R$ (down-sets)
- $\{x\} \times U_2 \subseteq R \Rightarrow (x, \bigvee U_2) \in R$
- $U_1 \times \{y\} \subseteq R \Rightarrow (\bigvee U_1, y) \in R$

G-ideals of $L \times M$

 $R \subseteq L \times M$

- $\downarrow R = R$ (down-sets)
- $\{x\} \times U_2 \subseteq R \Rightarrow (x, \bigvee U_2) \in R$

•
$$U_1 \times \{y\} \subseteq R \Rightarrow (\bigvee U_1, y) \in R$$

 $\mathbf{a}\otimes\mathbf{b}:=\downarrow(a,b)\cup\downarrow(1,0)\cup\downarrow(0,1)$

G-ideals of $L \times M$

 $R \subseteq L \times M$

•
$$\downarrow R = R$$
 (down-sets)

•
$$\{x\} \times U_2 \subseteq R \Rightarrow (x, \bigvee U_2) \in R$$

•
$$U_1 \times \{y\} \subseteq R \Rightarrow (\bigvee U_1, y) \in R$$

 $\boldsymbol{a} \otimes \boldsymbol{b} := \downarrow (a, b) \cup \downarrow (1, 0) \cup \downarrow (0, 1)$

$$L \xrightarrow{u_L} L \otimes M \xleftarrow{u_M} M$$

G-ideals of $L \times M$

 $R \subseteq L \times M$

•
$$\downarrow R = R$$
 (down-sets)

•
$$\{x\} \times U_2 \subseteq R \Rightarrow (x, \bigvee U_2) \in R$$

•
$$U_1 \times \{y\} \subseteq R \Rightarrow (\bigvee U_1, y) \in R$$

 $\boldsymbol{a} \otimes \boldsymbol{b} := \downarrow (a, b) \cup \downarrow (1, 0) \cup \downarrow (0, 1)$

$$L \xrightarrow{u_L} L \otimes M \xleftarrow{u_M} M$$
$$a \xrightarrow{u_M} a \otimes 1$$

G-ideals of $L \times M$

 $R \subseteq L \times M$

•
$$\downarrow R = R$$
 (down-sets)

•
$$\{x\} \times U_2 \subseteq R \Rightarrow (x, \bigvee U_2) \in R$$

•
$$U_1 \times \{y\} \subseteq R \Rightarrow (\bigvee U_1, y) \in R$$

 $\boldsymbol{a} \otimes \boldsymbol{b} := \downarrow (a, b) \cup \downarrow (1, 0) \cup \downarrow (0, 1)$

$$L \xrightarrow{u_L} L \otimes M \xleftarrow{u_M} M$$
$$a \xrightarrow{a \otimes 1} 1 \otimes b \xleftarrow{b} b$$

covers: $U \subseteq L$ such that $\bigvee U = 1$.

"the star of $b \in L$ in U"

 $Ub := \bigvee \{ u \in U \mid u \land b \neq 0 \}$

covers: $U \subseteq L$ such that $\bigvee U = 1$. $U \leq V \equiv \forall u \in U \exists v \in V : u \leq v$

"the star of $b \in L$ in U"

 $UV := \{Uv \mid v \in V\}$

"the star of $b \in L$ in U"

 $UV := \{Uv \mid v \in V\}$

 $\mathscr{U} =$ system of covers

 $\boldsymbol{b} \triangleleft_{\mathscr{U}} \boldsymbol{a} \equiv \exists U \in \mathscr{U} : Ub \leqslant \boldsymbol{a}$

 $UV := \{Uv \mid v \in V\}$

"the star of
$$b \in L$$
 in U "

$$\mathscr{U} =$$
 system of covers

 $\boldsymbol{b} \triangleleft_{\mathscr{U}} \boldsymbol{a} \equiv \exists U \in \mathscr{U} : Ub \leqslant \boldsymbol{a}$

Uniform locale (L, \mathscr{U}) : non-void filter \mathscr{U} of covers such that

 $Ub := \bigvee \{ u \in U \mid u \land b \neq 0 \}$

covers: $U \subseteq L$ such that $\bigvee U = 1$. $U \leq V \equiv \forall u \in U \exists v \in V : u \leq v$

"the star of
$$b \in L$$
 in U "

 $\mathscr{U} =$ system of covers

 $UV := \{Uv \mid v \in V\}$

 $\boldsymbol{b} \triangleleft_{\mathscr{U}} \boldsymbol{a} \equiv \exists U \in \mathscr{U} : Ub \leqslant \boldsymbol{a}$

Uniform locale (L, \mathscr{U}) : non-void filter \mathscr{U} of covers such that

(U1) for every $U \in \mathscr{U}$ there is a $V \in \mathscr{U}$ such that $VV \leq U$,

 $Ub := \bigvee \{ u \in U \mid u \land b \neq 0 \}$

covers: $U \subseteq L$ such that $\bigvee U = 1$. $U \leq V \equiv \forall u \in U \exists v \in V : u \leq v$

"the star of
$$b \in L$$
 in U "

 $\mathscr{U} =$ system of covers

 $UV := \{Uv \mid v \in V\}$

 $b \triangleleft_{\mathscr{U}} a \equiv \exists U \in \mathscr{U} : Ub \leqslant a$

Uniform locale (L, \mathscr{U}) : non-void filter \mathscr{U} of covers such that

(U1) for every $U \in \mathscr{U}$ there is a $V \in \mathscr{U}$ such that $VV \leq U$, (U2) for each $a \in L$, $a = \bigvee \{b \in L \mid b \triangleleft_{\mathscr{U}} a\}$.

Uniform maps: $f: (L, \mathscr{U}) \to (M, \mathscr{V})$

Uniform maps: $f: (L, \mathscr{U}) \to (M, \mathscr{V})$

Uniform maps: $f: (L, \mathscr{U}) \to (M, \mathscr{V})$

frame homomorphism

 $f^*[V] \in \mathscr{U}$ for all $V \in \mathscr{V}$

(LEFT and RIGHT) UNIFORMITIES ON LOCALIC GROUPS

 $(L,\mu,\varepsilon,\iota)$

Neighbourhoods of the unit:

 $\mathcal{N} := \{ a \in L \mid \varepsilon^*(a) = 1 \}$

Neighbourhoods of the unit:

$$\mathcal{N} := \{ a \in L \mid \varepsilon^*(a) = 1 \}$$

 $a \in \mathcal{N}, \quad U_l(a) := \{ x \in L \mid x \otimes \iota^*(x) \leq \mu^*(x) \}$

"left" uniformity $\mathscr{U}_l(L)$

Neighbourhoods of the unit: $\mathcal{N} := \{a \in L \mid \varepsilon^*(a) = 1\}$ $a \in \mathcal{N}, \quad U_l(a) := \{x \in L \mid x \otimes \iota^*(x) \leq \mu^*(x)\}$ "left" uniformity $\mathscr{U}_l(L)$ $U_r(a) := \{x \in L \mid \iota^*(x) \otimes x \leq \mu^*(x)\}$ "right" uniformity $\mathscr{U}_r(L)$

Neighbourhoods of the unit: $\mathcal{N} := \{a \in L \mid \varepsilon^*(a) = 1\}$

 $a \in \mathcal{N}, \quad U_l(a) := \{x \in L \mid x \otimes \iota^*(x) \leq \mu^*(x)\}$ "left" uniformity $\mathscr{U}_l(L)$

 $U_r(a) := \{ x \in L \mid \iota^*(x) \otimes x \leq \mu^*(x) \} \quad \text{"right" uniformity } \mathscr{U}_r(L)$

Any localic group is complete in its two-sided uniformity.

B. BANASCHEWSKI & J. VERMEULEN On the completeness of localic groups, CMUC 40 (1999) 293-307

Neighbourhoods of the unit: $\mathcal{N} := \{a \in L \mid \varepsilon^*(a) = 1\}$

 $a \in \mathcal{N}, \quad U_l(a) := \{x \in L \mid x \otimes \iota^*(x) \leq \mu^*(x)\}$ "left" uniformity $\mathscr{U}_l(L)$

 $U_r(a) := \{ x \in L \mid \iota^*(x) \otimes x \leq \mu^*(x) \} \quad \text{"right" uniformity } \mathscr{U}_r(L)$

Any localic group is complete in its two-sided uniformity.

B. BANASCHEWSKI & J. VERMEULEN On the completeness of localic groups, CMUC 40 (1999) 293-307

QUESTION: are $L \mapsto (L, \mathscr{U}_l(L))$ and $L \mapsto (L, \mathscr{U}_r(L))$ functorial?

$E \subseteq X \times X$

 $\begin{array}{c} X \\ \downarrow \Delta_X \\ \downarrow \\ X \times X \end{array}$

$$\Delta_X(X) \subseteq E$$

 $\Delta_X(X) \subseteq E$

```
E \in \Omega(X \times X)
```


 $E \in \Omega(X \times X)$

ENTOURAGES

$$\Delta_X(X) \subseteq E$$

$$E \in \Omega(X \times X)$$

classically: happens in $\Omega(X \times X)$

ENTOURAGES

 $E \in \Omega(X \times X)$

classically: happens in $\Omega(X \times X)$ pointfreely: happens in $\Omega(X) \times \Omega(X)$

 $\downarrow E$

 $E \in L \times L$

 Δ_L

 $\rightarrow L \times L$

 $E \subseteq X \times X$

UNIFORMITIES (Weil type)

 $\rightarrow L \times L$

ENTOURAGES

 $E \in \Omega(X \times X)$

classically: happens in $\Omega(X \times X)$ pointfreely: happens in $\Omega(X) \times \Omega(X)$

 $\downarrow E$

UNIFORMITIES (Weil type)

E

 $E \in \Omega(X \times X)$

 $\rightarrow X \times X$

 Δ_X

 $\nabla_L(E) = 1$

UNIFORMITIES (Weil type)

 $E \in \Omega(X \times X)$

Locales

 $E \in L \times L$ $\bigvee \Delta_L \int \nabla_L(R) = \bigvee \{a | a \otimes a \leq R\} \qquad \qquad \bigvee \{a \mid a \otimes a \leq E\}$ $\rightarrow L \times L$ $\downarrow E$

classically: happens in $\Omega(X \times X)$ pointfreely: happens in $\Omega(X) \times \Omega(X)$

$$\nabla_L(E) = 1$$

$\underline{E} \circ \underline{F} = \bigvee \{ a \otimes b \mid \exists c \in L, c \neq 0 : a \otimes c \leqslant E, c \otimes b \leqslant F \}$

(caution: unions are not necessarily saturated, the join is typically bigger.)

$\underline{E} \circ \underline{F} = \bigvee \{ a \otimes b \mid \exists c \in L, c \neq 0 : a \otimes c \leqslant E, c \otimes b \leqslant F \}$

(caution: unions are not necessarily saturated, the join is typically bigger.)

ESSENTIAL:

• quantale $(Ent(L), \circ)$

• $E \leq E \circ E$ for all entourages E

$$\underline{E} \circ \underline{F} = \bigvee \{ a \otimes b \mid \exists c \in L, c \neq 0 : a \otimes c \leqslant E, c \otimes b \leqslant F \}$$

(caution: unions are not necessarily saturated, the join is typically bigger.)

$$E^{-1} := \{ (a, b) \mid b \otimes a \leqslant E \}$$

ESSENTIAL:

• quantale $(Ent(L), \circ)$

• $E \leq E \circ E$ for all entourages E

$$\underline{E} \circ \underline{F} = \bigvee \{ a \otimes b \mid \exists c \in L, c \neq 0 : a \otimes c \leqslant E, c \otimes b \leqslant F \}$$

(caution: unions are not necessarily saturated, the join is typically bigger.)

 $E^{-1} := \{ (a, b) \mid b \otimes a \leqslant E \}$

 $\mathscr{E} =$ system of entourages $b \triangleleft_{\mathscr{E}} a \equiv \exists E \in \mathscr{E} : E \circ (b \otimes b) \leq a \otimes a$

$$\underline{E} \circ \underline{F} = \bigvee \{ a \otimes b \mid \exists c \in L, c \neq 0 : a \otimes c \leqslant E, c \otimes b \leqslant F \}$$

(caution: unions are not necessarily saturated, the join is typically bigger.)

 $E^{-1} := \{ (a, b) \mid b \otimes a \leqslant E \}$

 $\mathscr{E} =$ system of entourages $b \triangleleft_{\mathscr{E}} a \equiv \exists E \in \mathscr{E} : E \circ (b \otimes b) \leqslant a \otimes a$

Uniform locale (L, \mathscr{E}) : non-void filter \mathscr{E} of entourages such that

$$\underline{E} \circ \underline{F} = \bigvee \{ a \otimes b \mid \exists c \in L, c \neq 0 : a \otimes c \leqslant E, c \otimes b \leqslant F \}$$

(caution: unions are not necessarily saturated, the join is typically bigger.)

 $E^{-1} := \{ (a, b) \mid b \otimes a \leqslant E \}$

$$\mathscr{E} =$$
 system of entourages $b \triangleleft_{\mathscr{E}} a \equiv \exists E \in \mathscr{E} : E \circ (b \otimes b) \leq a \otimes a$

Uniform locale (L, \mathscr{E}) : non-void filter \mathscr{E} of entourages such that (E1) if $E \in \mathscr{E}$ then $E^{-1} \in \mathscr{E}$,

$$\underline{E} \circ \underline{F} = \bigvee \{ a \otimes b \mid \exists c \in L, c \neq 0 : a \otimes c \leqslant E, c \otimes b \leqslant F \}$$

(caution: unions are not necessarily saturated, the join is typically bigger.)

$$E^{-1} := \{ (a, b) \mid b \otimes a \leqslant E \}$$

$$\mathscr{E} =$$
 system of entourages $b \triangleleft_{\mathscr{E}} a \equiv \exists E \in \mathscr{E} : E \circ (b \otimes b) \leqslant a \otimes a$

Uniform locale (L, \mathscr{E}) : non-void filter \mathscr{E} of entourages such that

(E1) if
$$E \in \mathscr{E}$$
 then $E^{-1} \in \mathscr{E}$,

(E2) for every $E \in \mathscr{E}$ there is an $F \in \mathscr{E}$ such that $F \circ F \leq E$,

$$\underline{E} \circ \underline{F} = \bigvee \{ a \otimes b \mid \exists c \in L, c \neq 0 : a \otimes c \leqslant E, c \otimes b \leqslant F \}$$

(caution: unions are not necessarily saturated, the join is typically bigger.)

$$E^{-1} := \{ (a, b) \mid b \otimes a \leqslant E \}$$

 $\mathscr{E} =$ system of entourages $b \triangleleft_{\mathscr{E}} a \equiv \exists E \in \mathscr{E} : E \circ (b \otimes b) \leqslant a \otimes a$

Uniform locale (L, \mathscr{E}) : non-void filter \mathscr{E} of entourages such that

(E1) if
$$E \in \mathscr{E}$$
 then $E^{-1} \in \mathscr{E}$,

(E2) for every $E \in \mathscr{E}$ there is an $F \in \mathscr{E}$ such that $F \circ F \leq E$,

Uniform maps: $f: (L, \mathscr{E}) \to (M, \mathscr{F})$

Uniform maps: $f: (L, \mathscr{E}) \to (M, \mathscr{F})$

Uniform maps: $f: (L, \mathscr{E}) \to (M, \mathscr{F})$

Uniform maps: $f: (L, \mathscr{E}) \to (M, \mathscr{F})$ f^* frame homomorphism $M \xrightarrow{u_M^1} M \otimes M \xleftarrow{u_M^2} M$ $(f^* \otimes f^*)(F) \in \mathscr{E}$ for all $F \in \mathscr{F}$ $f^* \downarrow$ $L \xrightarrow{u_L^1} L \otimes L \xleftarrow{u_L^2} L$

Uniform maps: $f: (L, \mathscr{E}) \to (M, \mathscr{F})$ $\overbrace{f^*}^{f^*}$ frame homomorphism $(f^* \otimes f^*)(F) \in \mathscr{E} \text{ for all } F \in \mathscr{F} \quad f^* \bigvee_{\substack{u_L^1 \\ U \\ L \\ \longrightarrow}} f^* \otimes L \otimes L \overset{u_M^2}{\longleftarrow} L \otimes L \overset{u_M^2}{\longleftarrow} L$

THEOREM.

The categories U_ELoc and U_CLoc are concretely isomorphic.

(Surprising, since Ω does not preserve products.)

SKETCH OF PROOF: TRANSLATIONS

$$U \leadsto E_U := \bigvee \{a \otimes a \mid a \in U\}$$
$$U \leadsto E_U := \bigvee \{a \otimes a \mid a \in U\} \qquad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}} := \{F \mid F \ge E_U, U \in \mathscr{U}\}$$

$$U \leadsto E_U := \bigvee \{a \otimes a \mid a \in U\} \qquad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}} := \{F \mid F \ge E_U, U \in \mathscr{U}\}$$

 $E \leadsto \mathbf{U}_E := \bigvee \{ a \in L \mid a \otimes a \leq E \}$

$$U \leadsto E_U := \bigvee \{a \otimes a \mid a \in U\} \qquad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}} := \{F \mid F \ge E_U, U \in \mathscr{U}\}$$

$$U \leadsto E_U := \bigvee \{a \otimes a \mid a \in U\} \qquad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}} := \{F \mid F \ge E_U, U \in \mathscr{U}\}$$

Nice features of localic products

$$U \leadsto E_U := \bigvee \{a \otimes a \mid a \in U\} \qquad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}} := \{F \mid F \ge E_U, U \in \mathscr{U}\}$$

Nice features of localic products

$$U \leadsto E_U := \bigvee \{a \otimes a \mid a \in U\} \qquad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}} := \{F \mid F \ge E_U, U \in \mathscr{U}\}$$

Nice features of localic products

$$a \otimes b \leq E_U, b \neq 0 \implies a \leq Ub.$$

2
$$0 \neq a \otimes b \leq E \implies (a \lor b) \otimes (a \lor b) \leq E \circ E.$$

symmetric

UNIFORMITIES ON LOCALIC GROUPS

Under this isomorphism:

UNIFORMITIES ON LOCALIC GROUPS

Under this isomorphism:

 $\mathcal{U}_l \rightsquigarrow \mathcal{E}_l$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } \underline{E}_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_r \iff \mathscr{E}_r$$
 generated by $E_r(a) := (\iota^* \otimes 1) \mu^*(a), \ a \in \mathcal{N}$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } \underline{E}_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_r \iff \mathscr{E}_r$$
 generated by $E_r(a) := (\iota^* \otimes 1) \mu^*(a), \ a \in \mathcal{N}$

$$E_l(a) = \bigvee \{ x \otimes y \mid x \otimes y \leq (1 \otimes \iota^*) \mu^*(a) \}$$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_r \dashrightarrow \mathscr{E}_r$$
 generated by $E_r(a) := (\iota^* \otimes 1) \mu^*(a), \ a \in \mathcal{N}$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_r \dashrightarrow \mathscr{E}_r$$
 generated by $E_r(a) := (\iota^* \otimes 1) \mu^*(a), \ a \in \mathcal{N}$

[P.T. Johnstone, 1988]

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_r \dashrightarrow \mathscr{E}_r$$
 generated by $E_r(a) := (\iota^* \otimes 1) \mu^*(a), \ a \in \mathcal{N}$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_r \rightsquigarrow \mathscr{E}_r$$
 generated by $E_r(a) := (\iota^* \otimes 1) \mu^*(a), \ a \in \mathcal{N}$

$$\mathscr{U}_l \iff \mathscr{E}_l \quad \text{generated by } E_l(a) := (1 \otimes \iota^*) \mu^*(a), \ a \in \mathcal{N}$$

$$\mathscr{U}_r \dashrightarrow \mathscr{E}_r$$
 generated by $E_r(a) := (\iota^* \otimes 1) \mu^*(a), \ a \in \mathcal{N}$

JP & A. PULTR Entourages, covers and localic groups, Appl. Categ. Struct., to appear

PROPOSITION. Each LG-map $f: (L, \mu_L, \varepsilon_L, \iota_L) \rightarrow (M, \mu_M, \varepsilon_M, \iota_M)$

is uniform w.r.t. both the left and right uniformities.

PROPOSITION. Each LG-map $f : (L, \mu_L, \varepsilon_L, \iota_L) \rightarrow (M, \mu_M, \varepsilon_M, \iota_M)$ is uniform w.r.t. both the left and right uniformities.

PROPOSITION. Each LG-map $f : (L, \mu_L, \varepsilon_L, \iota_L) \rightarrow (M, \mu_M, \varepsilon_M, \iota_M)$ is uniform w.r.t. both the left and right uniformities.

PROPOSITION. Each LG-map $f : (L, \mu_L, \varepsilon_L, \iota_L) \rightarrow (M, \mu_M, \varepsilon_M, \iota_M)$ is uniform w.r.t. both the left and right uniformities.

PROPOSITION. Each LG-map $f : (L, \mu_L, \varepsilon_L, \iota_L) \rightarrow (M, \mu_M, \varepsilon_M, \iota_M)$ is uniform w.r.t. both the left and right uniformities.

PROPOSITION. Each LG-map $f : (L, \mu_L, \varepsilon_L, \iota_L) \rightarrow (M, \mu_M, \varepsilon_M, \iota_M)$ is uniform w.r.t. both the left and right uniformities.

PROPOSITION. Each LG-map $f : (L, \mu_L, \varepsilon_L, \iota_L) \rightarrow (M, \mu_M, \varepsilon_M, \iota_M)$ is uniform w.r.t. both the left and right uniformities.

