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It is an improvement of classical TopGrp: Closed Subgroup Theorem...

J. Isbell, I. Kriz, A. Pultr, J. Rosicky, LNM 1348 (1987) 154-172
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UNIFORMITIES (Tukey type)

covers: U < L suchthat \/U = 1.
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B. BANASCHEWSKI & J. VERMEULEN

On the completeness of localic groups, CMUC 40 (1999) 293-307
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UNIFORMITIES (Weil type) Category of uniform locales
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UNIFORMITIES (Weil type) Category of uniform locales C>

Uniform maps: f:(L,&) —» (M, %)
x_ S

f* frame homomorphism

M—2 s MQM<_ M

(f*® f*)(F)e &forall Fe. 7 f*l gf*®f* lf*
u} i 12
L - > QL <——1

THEOREM.

The categories UglLoc and UcLoc are concretely isomorphic.

(Surprising, since {2 does not preserve products.)
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SKETCH OF PROOF: TRANSLATIONS

U-wo Eyi=\{a®al|aelU} U > Ey ={F | F > FEy,UeU}

EwoUs:=V{ael|a®a<E &wo» % :={V|V>UsEec&)

Nice features of localic products

% c®b< Ey.b#0 — a<Ub.

% 0#£#a®b< F = (avbd)®(avd) <FEokF.

symmetric
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A A

L x L=< L > [, X L
!
Y
idxe¢ 2 L Xid
g
Y Y Y
L x L m > [, < m L x L
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L®L v - [ < v L®L
A A A
!
id®* 2 ¥ ®id

A
E*
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UNIFORMITIES ON LOCALIC GROUPS Under this isomorphism:

U ~~ & generated by Fj(a) := (1®:*)u*(a), ae N

U, > &. generated by E,.(a) := (*®@1)p*(a), ae N

E(a) =V{zQy|z®@y < (1®%)u*(a)}

<
~1 ~

v = () r®y " < pt(a)
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UNIFORMITIES ON LOCALIC GROUPS Under this isomorphism:

U ~~ & generated by Fj(a) := (1®:*)u*(a), ae N

U, > &. generated by E,.(a) := (*®@1)p*(a), ae N

Ei(a) = V{z®y|z@y < (1®)p*(a)}
vt =i (x) v @y~ < pi*(a)
py = p* (open) [P.T. Johnstone, 1988]
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1y — p* (open) 1} [P.T. Johnstone, 1988]
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Ei(a) =V{z@y|z*y™' <a}

July 22, 2011 On (binary) localic products and localic groups CT2011 —12




UNIFORMITIES ON LOCALIC GROUPS Under this isomorphism:

U ~~ & generated by Fj(a) := (1®:*)u*(a), ae N

U, > &. generated by E,.(a) := (*®@1)p*(a), ae N

Eifa) = V{z®y|z®y < (1®5)u*(a)}
vt =1%(x) r@y ! < p*a)
1y = p* (open) @ [P.T. Johnstone, 1988]
1

rxy = u(rQy) Semigroup (L, ) with (=)~}

JP & A. PULTR
Entourages, covers and localic groups, Appl. Categ. Struct., to appear
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QUESTION ON FUNCTORIALITY

PROPOSITION. Each LG-map f: (L, ur,en,tr) — (M, par, enr, tar)

IS uniform w.r.t. both the left and right uniformities.
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M > M QM
Y Y
L - >L®L
ML
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PROOF:
5y L @3,
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I& FERF* fERf*
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QUESTION ON FUNCTORIALITY

PROPOSITION. Each LG-map f: (L, ur,en,tr) — (M, par, enr, tar)

IS uniform w.r.t. both the left and right uniformities.

PROOF:
5y M @iy

M > M QM > M Q M
a o~~~ B (a) €8 (M)
I& FERF* fERf*
f*(a) = B ([ (a)) |€ E1(L)

Y Y Y
L > RQL < L& L
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