On (binary) localic products and localic groups

Jorge Picado

Department of Mathematics
University of Coimbra
PORTUGAL

— joint work with Aleš Pultr (Charles University, Prague, CZ)

THE SETTING

locales (or frames)

- Complete lattices L satisfying

$$
a \wedge \bigvee_{i \in I} b_{i}=\bigvee_{i \in I}\left(a \wedge b_{i}\right)
$$

(= complete Heyting algebras)

THE SETTING

locales (or frames)

- Complete lattices L satisfying

$$
a \wedge \bigvee_{i \in I} b_{i}=\bigvee_{i \in I}\left(a \wedge b_{i}\right)
$$

(= complete Heyting algebras)

preserves V (incl. the bottom 0)
$\wedge($ incl. the top 1)
locale L
$(L, \mu, \varepsilon, \iota)$

- $\mu: L \times L \rightarrow L$
"multiplication"
- $\mu: L \times L \rightarrow L$
"multiplication"

$$
a(b c)=(a b) c
$$

- $\mu: L \times L \rightarrow L$
"multiplication"

$$
a(b c)=(a b) c
$$

- $\varepsilon: \mathbf{2}=\{0,1\} \rightarrow L$
"unit"
- $\mu: L \times L \rightarrow L$
"multiplication"

- $\mu: L \times L \rightarrow L$
"multiplication"

$$
a(b c)=(a b) c
$$

- $\iota: L \rightarrow L$
"inverse"
- $\mu: L \times L \rightarrow L$
"multiplication"

- $\iota: L \rightarrow L$
"inverse"

THE CATEGORY OF LOCALIC GROUPS

$f:\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right) \rightarrow\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right)$ preserves

THE CATEGORY OF LOCALIC GROUPS

$f:\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right) \rightarrow\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right)$ preserves

- multiplication

THE CATEGORY OF LOCALIC GROUPS

$f:\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right) \rightarrow\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right)$ preserves

- multiplication

- unit

$f:\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right) \rightarrow\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right)$ preserves
- multiplication

- unit

- inverses

$f:\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right) \rightarrow\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right)$ preserves
- multiplication

- unit

It is an improvement of classical TopGrp: Closed Subgroup Theorem...
$f:\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right) \rightarrow\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right)$ preserves

- multiplication

- unit

- inverses

It is an improvement of classical TopGrp: Closed Subgroup Theorem...

$$
\text { J. Isbell, I. Kříž, A. Pultr, J. Rosický, LNM } 1348 \text { (1987) 154-172 }
$$

BACKGROUND: BINARY PRODUCTS IN Loc

Frm
The coproduct $L \otimes M$ of L and M :

BACKGROUND: BINARY PRODUCTS IN Loc

Frm
The coproduct $L \otimes M$ of L and M :

G-ideals of $L \times M$

BACKGROUND: BINARY PRODUCTS IN Loc

Frm
The coproduct $L \otimes M$ of L and M :

G-ideals of $L \times M$

$$
R \subseteq L \times M
$$

BACKGROUND: BINARY PRODUCTS IN Loc

Frm
The coproduct $L \otimes M$ of L and M :

$$
\text { - } \downarrow R=R \quad \text { (down-sets) }
$$

G-ideals of $L \times M$

$$
R \subseteq L \times M
$$

BACKGROUND: BINARY PRODUCTS IN Loc

Frm The coproduct $L \otimes M$ of L and M :

- $\downarrow R=R \quad$ (down-sets)

G-ideals of $L \times M$

- $\{x\} \times U_{2} \subseteq R \Rightarrow\left(x, \bigvee U_{2}\right) \in R$

$$
R \subseteq L \times M
$$

BACKGROUND: BINARY PRODUCTS IN Loc

Frm The coproduct $L \otimes M$ of L and M :

G-ideals of $L \times M$

$$
R \subseteq L \times M
$$

- $\downarrow R=R \quad$ (down-sets)
- $\{x\} \times U_{2} \subseteq R \Rightarrow\left(x, \bigvee U_{2}\right) \in R$
- $U_{1} \times\{y\} \subseteq R \Rightarrow\left(\bigvee U_{1}, y\right) \in R$

BACKGROUND: BINARY PRODUCTS IN Loc

Frm The coproduct $L \otimes M$ of L and M :

G-ideals of $L \times M$

$$
R \subseteq L \times M
$$

- $\downarrow R=R \quad$ (down-sets)
- $\{x\} \times U_{2} \subseteq R \Rightarrow\left(x, \bigvee U_{2}\right) \in R$
- $U_{1} \times\{y\} \subseteq R \Rightarrow\left(\bigvee U_{1}, y\right) \in R$

$$
a \otimes b:=\downarrow(a, b) \cup \downarrow(1,0) \cup \downarrow(0,1)
$$

BACKGROUND: BINARY PRODUCTS IN Loc

Frm The coproduct $L \otimes M$ of L and M :

- $\downarrow R=R \quad$ (down-sets)

G-ideals of $L \times M$

$$
R \subseteq L \times M
$$

- $\{x\} \times U_{2} \subseteq R \Rightarrow\left(x, \bigvee U_{2}\right) \in R$
- $U_{1} \times\{y\} \subseteq R \Rightarrow\left(\bigvee U_{1}, y\right) \in R$
$a \otimes b:=\downarrow(a, b) \cup \downarrow(1,0) \cup \downarrow(0,1)$
$L \xrightarrow{u_{L}} L \otimes M \nprec{ }^{u_{M}} M$

BACKGROUND: BINARY PRODUCTS IN Loc

Frm The coproduct $L \otimes M$ of L and M :

- $\downarrow R=R \quad$ (down-sets)

G-ideals of $L \times M$

$$
R \subseteq L \times M
$$

- $\{x\} \times U_{2} \subseteq R \Rightarrow\left(x, \bigvee U_{2}\right) \in R$
- $U_{1} \times\{y\} \subseteq R \Rightarrow\left(\bigvee U_{1}, y\right) \in R$
$a \otimes b:=\downarrow(a, b) \cup \downarrow(1,0) \cup \downarrow(0,1)$

$a \sim a \otimes 1$

BACKGROUND: BINARY PRODUCTS IN Loc

Frm The coproduct $L \otimes M$ of L and M :

- $\downarrow R=R \quad$ (down-sets)

G-ideals of $L \times M$

$$
R \subseteq L \times M
$$

- $\{x\} \times U_{2} \subseteq R \Rightarrow\left(x, \bigvee U_{2}\right) \in R$
- $U_{1} \times\{y\} \subseteq R \Rightarrow\left(\bigvee U_{1}, y\right) \in R$
$a \otimes b:=\downarrow(a, b) \cup \downarrow(1,0) \cup \downarrow(0,1)$
$L \xrightarrow{u_{L}} L \otimes M \not{\nprec}{ }^{u_{M}} M$
$a \sim \sim \neq 1$
$1 \otimes b \ll \sim b$

UNIFORMITIES (Tukey type)

covers: $U \subseteq L$ such that $\bigvee U=1$.

UNIFORMITIES (Tukey type)

covers: $U \subseteq L$ such that $\bigvee U=1 . \quad U \leqslant V \equiv \forall u \in U \exists v \in V: u \leqslant v$

UNIFORMITIES (Tukey type)

covers: $U \subseteq L$ such that $\bigvee U=1 . \quad U \leqslant V \equiv \forall u \in U \exists v \in V: u \leqslant v$

UNIFORMITIES (Tukey type)

covers: $U \subseteq L$ such that $\bigvee U=1 . \quad U \leqslant V \equiv \forall u \in U \exists v \in V: u \leqslant v$
"the star of $b \in L$ in U "

UNIFORMITIES (Tukey type)

covers: $U \subseteq L$ such that $\bigvee U=1 . \quad U \leqslant V \equiv \forall u \in U \exists v \in V: u \leqslant v$
$U b:=\bigvee\{u \in U \mid u \wedge b \neq 0\}$

"the star of $b \in L$ in U "

UNIFORMITIES (Tukey type)

covers: $U \subseteq L$ such that $\bigvee U=1 . \quad U \leqslant V \equiv \forall u \in U \exists v \in V: u \leqslant v$
$U b:=\bigvee\{u \in U \mid u \wedge b \neq 0\}$
$U V:=\{U v \mid v \in V\}$

UNIFORMITIES (Tukey type)

covers: $U \subseteq L$ such that $\bigvee U=1 . \quad U \leqslant V \equiv \forall u \in U \exists v \in V: u \leqslant v$
$U b:=\bigvee\{u \in U \mid u \wedge b \neq 0\}$
$U V:=\{U v \mid v \in V\}$
$\mathscr{U}=$ system of covers

$$
b \triangleleft \mathscr{U} a \equiv \exists U \in \mathscr{U}: U b \leqslant a
$$

covers: $U \subseteq L$ such that $\bigvee U=1 . \quad U \leqslant V \equiv \forall u \in U \exists v \in V: u \leqslant v$
$U b:=\bigvee\{u \in U \mid u \wedge b \neq 0\}$
$U V:=\{U v \mid v \in V\}$
$\mathscr{U}=$ system of covers

$$
b \triangleleft \mathscr{U} a \equiv \exists U \in \mathscr{U}: U b \leqslant a
$$

Uniform locale (L, \mathscr{U}) : non-void filter \mathscr{U} of covers such that
covers: $U \subseteq L$ such that $\bigvee U=1 . \quad U \leqslant V \equiv \forall u \in U \exists v \in V: u \leqslant v$
$U b:=\bigvee\{u \in U \mid u \wedge b \neq 0\}$
$U V:=\{U v \mid v \in V\}$
$\mathscr{U}=$ system of covers

$$
b \triangleleft \mathscr{U} a \equiv \exists U \in \mathscr{U}: U b \leqslant a
$$

Uniform locale (L, \mathscr{U}) : non-void filter \mathscr{U} of covers such that
[(U1) for every $U \in \mathscr{U}$ there is a $V \in \mathscr{U}$ such that $V V \leqslant U$,
covers: $U \subseteq L$ such that $\bigvee U=1 . \quad U \leqslant V \equiv \forall u \in U \exists v \in V: u \leqslant v$
$U b:=\bigvee\{u \in U \mid u \wedge b \neq 0\}$
$U V:=\{U v \mid v \in V\}$
$\mathscr{U}=$ system of covers

$$
b \triangleleft \mathscr{U} a \equiv \exists U \in \mathscr{U}: U b \leqslant a
$$

Uniform locale (L, \mathscr{U}) : non-void filter \mathscr{U} of covers such that
[(U1) for every $U \in \mathscr{U}$ there is a $V \in \mathscr{U}$ such that $V V \leqslant U$,
(U2) for each $a \in L, a=\bigvee\{b \in L \mid b \triangleleft \mathscr{U} a\}$.

Category of uniform locales

Uniform maps: $\quad f:(L, \mathscr{U}) \rightarrow(M, \mathscr{V})$

Uniform maps: $\quad f:(L, \mathscr{U}) \rightarrow(M, \mathscr{V})$

frame homomorphism

Uniform maps: $\quad f:(L, \mathscr{U}) \rightarrow(M, \mathscr{V})$

frame homomorphism
$f^{*}[V] \in \mathscr{U}$ for all $V \in \mathscr{V}$

(LEFT and RIGHT) UNIFORMITIES ON LOCALIC GROUPS
 $(L, \mu, \varepsilon, \iota)$

Neighbourhoods of the unit:

$$
\mathcal{N}:=\left\{a \in L \mid \varepsilon^{*}(a)=1\right\}
$$

(LEFT and RIGHT) UNIFORMITIES ON LOCALIC GROUPS

Neighbourhoods of the unit:

$$
\mathcal{N}:=\left\{a \in L \mid \varepsilon^{*}(a)=1\right\}
$$

$a \in \mathcal{N}, \quad U_{l}(a):=\left\{x \in L \mid x \otimes \iota^{*}(x) \leqslant \mu^{*}(x)\right\} \quad$ "left" uniformity $\mathscr{U}_{l}(L)$

Neighbourhoods of the unit:
$a \in \mathcal{N}, \quad U_{l}(a):=\left\{x \in L \mid x \otimes \iota^{*}(x) \leqslant \mu^{*}(x)\right\} \quad$ "left" uniformity $\mathscr{U}_{l}(L)$

$$
U_{r}(a):=\left\{x \in L \mid \iota^{*}(x) \otimes x \leqslant \mu^{*}(x)\right\} \quad \text { "right" uniformity } \mathscr{U}_{r}(L)
$$

(LEFT and RIGHT) UNIFORMITIES ON LOCALIC GROUPS

Neighbourhoods of the unit:

$$
a \in \mathcal{N}, \quad U_{l}(a):=\left\{x \in L \mid x \otimes \iota^{*}(x) \leqslant \mu^{*}(x)\right\} \quad \text { "left" uniformity } \mathscr{U}_{l}(L)
$$

$$
U_{r}(a):=\left\{x \in L \mid \iota^{*}(x) \otimes x \leqslant \mu^{*}(x)\right\} \quad \text { "right" uniformity } \mathscr{U}_{r}(L)
$$

Any localic group is complete in its two-sided uniformity.

```
B. BANASCHEWSKI & J. VERMEULEN
On the completeness of localic groups, CMUC 40 (1999) 293-307
```


(LEFT and RIGHT) UNIFORMITIES ON LOCALIC GROUPS

Neighbourhoods of the unit:
$a \in \mathcal{N}, \quad U_{l}(a):=\left\{x \in L \mid x \otimes \iota^{*}(x) \leqslant \mu^{*}(x)\right\} \quad$ "left" uniformity $\mathscr{U}_{l}(L)$

$$
U_{r}(a):=\left\{x \in L \mid \iota^{*}(x) \otimes x \leqslant \mu^{*}(x)\right\} \quad \text { "right" uniformity } \mathscr{U}_{r}(L)
$$

Any localic group is complete in its two-sided uniformity.

```
B. BANASCHEWSKI& J. VERMEULEN
On the completeness of localic groups, CMUC 40 (1999) 293-307
```

QUESTION: are $L \longmapsto\left(L, \mathscr{C}_{l}(L)\right)$ and $L \longmapsto\left(L, \mathscr{U}_{r}(L)\right)$ functorial?

UNIFORMITIES (Weil type)

$E \subseteq X \times X$
$E \subseteq X \times X$

$$
\Delta_{X}(X) \subseteq E
$$

Spaces

$E \subseteq X \times X$

$$
\Delta_{X}(X) \subseteq E
$$

UNIFORMITIES (Weil type)

ENTOURAGES

Spaces

$E \subseteq X \times X$

$$
E \in \Omega(X \times X)
$$

$$
\Delta_{X}(X) \subseteq E
$$

UNIFORMITIES (Weil type)

ENTOURAGES

Spaces

$E \subseteq X \times X$

$$
E \in \Omega(X \times X)
$$

Locales

$E \in L \times L$

$$
\Delta_{X}(X) \subseteq E
$$

UNIFORMITIES (Weil type)

ENTOURAGES

Spaces

$E \subseteq X \times X$

Locales
$E \in L \times L$

$\Delta_{X}(X) \subseteq E$
$E \in \Omega(X \times X)$
classically: happens in $\Omega(X \times X)$

Spaces

$E \subseteq X \times X$

Locales
$E \in L \times L$

Spaces

$E \subseteq X \times X$

$$
E \in \Omega(X \times X)
$$

classically: happens in $\Omega(X \times X)$ pointfreely: happens in $\Omega(X) \times \Omega(X)$
$E \in L \times L$

Spaces

$E \subseteq X \times X$

$$
E \in \Omega(X \times X)
$$

classically: happens in $\Omega(X \times X)$ pointfreely: happens in $\Omega(X) \times \Omega(X)$
$E \in L \times L$

$$
\nabla_{L}(E)=1
$$

Spaces

$E \subseteq X \times X$

$$
E \in \Omega(X \times X)
$$

classically: happens in $\Omega(X \times X)$ pointfreely: happens in $\Omega(X) \times \Omega(X)$
$E \in L \times L$

$$
\begin{array}{r}
\bigvee\{a \mid a \otimes a \leqslant E\} \\
\quad \begin{array}{c}
\| \\
\nabla_{L}(E)=1
\end{array}
\end{array}
$$

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad$ (Ent L, \leqslant)

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad$ (Ent L, \leqslant)

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad$ (Ent L, \leqslant)

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad($ Ent $L, \leqslant)$
$E \circ F=\bigvee\{a \otimes b \mid \exists c \in L, c \neq 0: a \otimes c \leqslant E, c \otimes b \leqslant F\}$
(caution: unions are not necessarily saturated, the join is typically bigger.)

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad($ Ent $L, \leqslant)$
$E \circ F=\bigvee\{a \otimes b \mid \exists c \in L, c \neq 0: a \otimes c \leqslant E, c \otimes b \leqslant F\}$
(caution: unions are not necessarily saturated, the join is typically bigger.)

ESSENTIAL:

- quantale $(E n t(L), \circ)$
- $E \leqslant E \circ E$ for all entourages E

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad($ Ent $L, \leqslant)$
$E \circ F=\bigvee\{a \otimes b \mid \exists c \in L, c \neq 0: a \otimes c \leqslant E, c \otimes b \leqslant F\}$
(caution: unions are not necessarily saturated, the join is typically bigger.)
$E^{-1}:=\{(a, b) \mid b \otimes a \leqslant E\}$

- quantale $(E n t(L), \circ)$
- $E \leqslant E \circ E$ for all entourages E

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad($ Ent $L, \leqslant)$
$E \circ F=\bigvee\{a \otimes b \mid \exists c \in L, c \neq 0: a \otimes c \leqslant E, c \otimes b \leqslant F\}$
(caution: unions are not necessarily saturated, the join is typically bigger.)
$E^{-1}:=\{(a, b) \mid b \otimes a \leqslant E\}$
$\mathscr{E}=$ system of entourages

$$
b \triangleleft_{\mathscr{E}} a \equiv \exists E \in \mathscr{E}: E \circ(b \otimes b) \leqslant a \otimes a
$$

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad($ Ent $L, \leqslant)$
$E \circ F=\bigvee\{a \otimes b \mid \exists c \in L, c \neq 0: a \otimes c \leqslant E, c \otimes b \leqslant F\}$
(caution: unions are not necessarily saturated, the join is typically bigger.)
$E^{-1}:=\{(a, b) \mid b \otimes a \leqslant E\}$
$\mathscr{E}=$ system of entourages

$$
b \triangleleft_{\mathscr{E}} a \equiv \exists E \in \mathscr{E}: E \circ(b \otimes b) \leqslant a \otimes a
$$

Uniform locale (L, \mathscr{E}) : non-void filter \mathscr{E} of entourages such that

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad($ Ent $L, \leqslant)$
$E \circ F=\bigvee\{a \otimes b \mid \exists c \in L, c \neq 0: a \otimes c \leqslant E, c \otimes b \leqslant F\}$
(caution: unions are not necessarily saturated, the join is typically bigger.)
$E^{-1}:=\{(a, b) \mid b \otimes a \leqslant E\}$
$\mathscr{E}=$ system of entourages

$$
b \triangleleft_{\mathscr{E}} a \equiv \exists E \in \mathscr{E}: E \circ(b \otimes b) \leqslant a \otimes a
$$

Uniform locale (L, \mathscr{E}) : non-void filter \mathscr{E} of entourages such that
$\left[\right.$ (E1) if $E \in \mathscr{E}$ then $E^{-1} \in \mathscr{E}$,

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad($ Ent $L, \leqslant)$
$E \circ F=\bigvee\{a \otimes b \mid \exists c \in L, c \neq 0: a \otimes c \leqslant E, c \otimes b \leqslant F\}$
(caution: unions are not necessarily saturated, the join is typically bigger.)
$E^{-1}:=\{(a, b) \mid b \otimes a \leqslant E\}$
$\mathscr{E}=$ system of entourages

$$
b \triangleleft_{\mathscr{E}} a \equiv \exists E \in \mathscr{E}: E \circ(b \otimes b) \leqslant a \otimes a
$$

Uniform locale (L, \mathscr{E}) : non-void filter \mathscr{E} of entourages such that
$\left[(\mathrm{E} 1)\right.$ if $E \in \mathscr{E}$ then $E^{-1} \in \mathscr{E}$,
(E2) for every $E \in \mathscr{E}$ there is an $F \in \mathscr{E}$ such that $F \circ F \leqslant E$,

UNIFORMITIES (Weil type)

entourages: $E \in L \otimes L$ such that $\bigvee\{a \mid a \otimes a \leqslant E\}=1 . \quad($ Ent $L, \leqslant)$
$E \circ F=\bigvee\{a \otimes b \mid \exists c \in L, c \neq 0: a \otimes c \leqslant E, c \otimes b \leqslant F\}$
(caution: unions are not necessarily saturated, the join is typically bigger.)
$E^{-1}:=\{(a, b) \mid b \otimes a \leqslant E\}$
$\mathscr{E}=$ system of entourages

$$
b \triangleleft_{\mathscr{E}} a \equiv \exists E \in \mathscr{E}: E \circ(b \otimes b) \leqslant a \otimes a
$$

Uniform locale (L, \mathscr{E}) : non-void filter \mathscr{E} of entourages such that
(E1) if $E \in \mathscr{E}$ then $E^{-1} \in \mathscr{E}$,
(E2) for every $E \in \mathscr{E}$ there is an $F \in \mathscr{E}$ such that $F \circ F \leqslant E$,
(E3) for each $a \in L, a=\bigvee\left\{b \in L \mid b \triangleleft_{\mathscr{E}} a\right\}$.

UNIFORMITIES (Weil type)
 Category of uniform locales

Uniform maps: $\quad f:(L, \mathscr{E}) \rightarrow(M, \mathscr{F})$

frame homomorphism

Uniform maps: $\quad f:(L, \mathscr{E}) \rightarrow(M, \mathscr{F})$

frame homomorphism

Uniform maps: $\quad f:(L, \mathscr{E}) \rightarrow(M, \mathscr{F})$

frame homomorphism

Uniform maps: $\quad f:(L, \mathscr{E}) \rightarrow(M, \mathscr{F})$

frame homomorphism

Uniform maps: $\quad f:(L, \mathscr{E}) \rightarrow(M, \mathscr{F})$

frame homomorphism

THEOREM.
The categories UELoc and UCLoc are concretely isomorphic.
(Surprising, since Ω does not preserve products.)

SKETCH OF PROOF: TRANSLATIONS

$U \leadsto E_{U}:=\bigvee\{a \otimes a \mid a \in U\}$

SKETCH OF PROOF: TRANSLATIONS

$U \leadsto E_{U}:=\bigvee\{a \otimes a \mid a \in U\}$ $\mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}}:=\left\{F \mid F \geqslant E_{U}, U \in \mathscr{U}\right\}$

SKETCH OF PROOF: TRANSLATIONS

$U \leadsto E_{U}:=\bigvee\{a \otimes a \mid a \in U\} \quad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}}:=\left\{F \mid F \geqslant E_{U}, U \in \mathscr{U}\right\}$
$E \leadsto U_{E}:=\bigvee\{a \in L \mid a \otimes a \leqslant E\}$

SKETCH OF PROOF: TRANSLATIONS

$U \leadsto E_{U}:=\bigvee\{a \otimes a \mid a \in U\} \quad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}}:=\left\{F \mid F \geqslant E_{U}, U \in \mathscr{U}\right\}$
$E \leadsto U_{E}:=\bigvee\{a \in L \mid a \otimes a \leqslant E\} \quad \mathscr{E} \leadsto \mathscr{U}_{\mathscr{E}}:=\left\{V \mid V \geqslant U_{E}, E \in \mathscr{E}\right\}$

SKETCH OF PROOF: TRANSLATIONS

$U \leadsto E_{U}:=\bigvee\{a \otimes a \mid a \in U\} \quad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}}:=\left\{F \mid F \geqslant E_{U}, U \in \mathscr{U}\right\}$
$E \leadsto U_{E}:=\bigvee\{a \in L \mid a \otimes a \leqslant E\} \mathscr{E} \leadsto \mathscr{U}_{\mathscr{E}}:=\left\{V \mid V \geqslant U_{E}, E \in \mathscr{E}\right\}$

Nice features of localic products

SKETCH OF PROOF: TRANSLATIONS

$U \leadsto E_{U}:=\bigvee\{a \otimes a \mid a \in U\} \quad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}}:=\left\{F \mid F \geqslant E_{U}, U \in \mathscr{U}\right\}$
$E \leadsto U_{E}:=\bigvee\{a \in L \mid a \otimes a \leqslant E\} \mathscr{E} \leadsto \mathscr{U}_{\mathscr{E}}:=\left\{V \mid V \geqslant U_{E}, E \in \mathscr{E}\right\}$

Nice features of localic products

1) $a \otimes b \leqslant E_{U}, b \neq 0 \Longrightarrow a \leqslant U b$.

SKETCH OF PROOF: TRANSLATIONS

$U \leadsto E_{U}:=\bigvee\{a \otimes a \mid a \in U\} \quad \mathscr{U} \leadsto \mathscr{E}_{\mathscr{U}}:=\left\{F \mid F \geqslant E_{U}, U \in \mathscr{U}\right\}$
$E \leadsto U_{E}:=\bigvee\{a \in L \mid a \otimes a \leqslant E\} \mathscr{E} \leadsto \mathscr{U}_{\mathscr{E}}:=\left\{V \mid V \geqslant U_{E}, E \in \mathscr{E}\right\}$

Nice features of localic products

(1) $a \otimes b \leqslant E_{U}, b \neq 0 \Longrightarrow a \leqslant U b$.
(2) $0 \neq a \otimes b \leqslant E \Longrightarrow(a \vee b) \otimes(a \vee b) \leqslant E \circ E$. symmetric

Under this isomorphism:

Under this isomorphism:

$\mathscr{U}_{l} \leadsto \mathscr{E}_{l}$

Under this isomorphism:

$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$

UNIFORMITIES ON LOCALIC GROUPS

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$
$\mathscr{U}_{r} \leadsto \mathscr{E}_{r} \quad$ generated by $E_{r}(a):=\left(\iota^{*} \otimes 1\right) \mu^{*}(a), a \in \mathcal{N}$

UNIFORMITIES ON LOCALIC GROUPS

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$
$\mathscr{U}_{r} \leadsto \mathscr{E}_{r} \quad$ generated by $E_{r}(a):=\left(\iota^{*} \otimes 1\right) \mu^{*}(a), a \in \mathcal{N}$

$$
E_{l}(a)=\bigvee\left\{x \otimes y \mid x \otimes y \leqslant\left(1 \otimes \iota^{*}\right) \mu^{*}(a)\right\}
$$

UNIFORMITIES ON LOCALIC GROUPS

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$
$\mathscr{U}_{r} \leadsto \mathscr{E}_{r} \quad$ generated by $E_{r}(a):=\left(\iota^{*} \otimes 1\right) \mu^{*}(a), a \in \mathcal{N}$

$$
E_{l}(a)=\bigvee\left\{x \otimes y \mid x \otimes y \leqslant\left(1 \otimes \iota^{*}\right) \mu^{*}(a)\right\}
$$

$$
x^{-1}=\iota^{*}(x) \quad x \otimes y^{-1} \leqslant \mu^{*}(a)
$$

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$
$\mathscr{U}_{r} \leadsto \mathscr{E}_{r} \quad$ generated by $E_{r}(a):=\left(\iota^{*} \otimes 1\right) \mu^{*}(a), a \in \mathcal{N}$

$$
E_{l}(a)=\bigvee\left\{x \otimes y \mid x \otimes y \leqslant\left(1 \otimes \iota^{*}\right) \mu^{*}(a)\right\}
$$

$x^{-1}=\iota^{*}(x) \quad x \otimes y^{-1} \leqslant \mu^{*}(a)$
$\mu_{\sharp} \dashv \mu^{*}$ (open)
[P.T. Johnstone, 1988]

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$
$\mathscr{U}_{r} \leadsto \mathscr{E}_{r} \quad$ generated by $E_{r}(a):=\left(\iota^{*} \otimes 1\right) \mu^{*}(a), a \in \mathcal{N}$

$$
E_{l}(a)=\bigvee\left\{x \otimes y \mid x \otimes y \leqslant\left(1 \otimes \iota^{*}\right) \mu^{*}(a)\right\}
$$

$$
\begin{array}{lc}
x^{-1}=\iota^{*}(x) & x \otimes y^{-1} \leqslant \mu^{*}(a) \\
\mu_{\sharp} \dashv \mu^{*} \text { (open) } & \Uparrow \\
x * y=\mu_{\sharp}(x \otimes y) & x * y^{-1} \leqslant a
\end{array}
$$

[P.T. Johnstone, 1988]
Semigroup $(L, *)$ with $(-)^{-1}$

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$
$\mathscr{U}_{r} \leadsto \mathscr{E}_{r} \quad$ generated by $E_{r}(a):=\left(\iota^{*} \otimes 1\right) \mu^{*}(a), a \in \mathcal{N}$

$$
E_{l}(a)=\bigvee\left\{x \otimes y \mid x \otimes y \leqslant\left(1 \otimes \iota^{*}\right) \mu^{*}(a)\right\}
$$

$$
\begin{array}{lc}
x^{-1}=\iota^{*}(x) & x \otimes y^{-1} \leqslant \mu^{*}(a) \\
\mu_{\sharp} \dashv \mu^{*} \text { (open) } & \Uparrow \\
x * y=\mu_{\sharp}(x \otimes y) & x * y^{-1} \leqslant a
\end{array}
$$

[P.T. Johnstone, 1988]
Semigroup $(L, *)$ with $(-)^{-1}$

$$
E_{l}(a)=\bigvee\left\{x \otimes y \mid x * y^{-1} \leqslant a\right\}
$$

Under this isomorphism:
$\mathscr{U}_{l} \leadsto \mathscr{E}_{l} \quad$ generated by $E_{l}(a):=\left(1 \otimes \iota^{*}\right) \mu^{*}(a), a \in \mathcal{N}$
$\mathscr{U}_{r} \leadsto \mathscr{E}_{r} \quad$ generated by $E_{r}(a):=\left(\iota^{*} \otimes 1\right) \mu^{*}(a), a \in \mathcal{N}$

$$
E_{l}(a)=\bigvee\left\{x \otimes y \mid x \otimes y \leqslant\left(1 \otimes \iota^{*}\right) \mu^{*}(a)\right\}
$$

$$
\begin{array}{lc}
x^{-1}=\iota^{*}(x) & x \otimes y^{-1} \leqslant \mu^{*}(a) \\
\mu_{\sharp} \dashv \mu^{*} \text { (open) } & \Uparrow \\
x * y=\mu_{\sharp}(x \otimes y) & x * y^{-1} \leqslant a
\end{array}
$$

[P.T. Johnstone, 1988]

Entourages, covers and localic groups, Appl. Categ. Struct., to appear

QUESTION ON FUNCTORIALITY

PROPOSITION. Each LG-map $f:\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right) \rightarrow\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right)$ is uniform w.r.t. both the left and right uniformities.

QUESTION ON FUNCTORIALITY

PROPOSITION. Each LG-map $f:\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right) \rightarrow\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right)$

 is uniform w.r.t. both the left and right uniformities.
Proof:

QUESTION ON FUNCTORIALITY

PROPOSITION. Each LG-map $f:\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right) \rightarrow\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right)$ is uniform w.r.t. both the left and right uniformities.

Proof:

QUESTION ON FUNCTORIALITY

PROPOSITION. Each LG-map $f:\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right) \rightarrow\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right)$ is uniform w.r.t. both the left and right uniformities.

Proof:

QUESTION ON FUNCTORIALITY

PROPOSITION. Each LG-map $f:\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right) \rightarrow\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right)$ is uniform w.r.t. both the left and right uniformities.

Proof:

QUESTION ON FUNCTORIALITY

PROPOSITION. Each LG-map $f:\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right) \rightarrow\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right)$

 is uniform w.r.t. both the left and right uniformities.
Proof:

QUESTION ON FUNCTORIALITY

PROPOSITION. Each LG-map $f:\left(L, \mu_{L}, \varepsilon_{L}, \iota_{L}\right) \rightarrow\left(M, \mu_{M}, \varepsilon_{M}, \iota_{M}\right)$

is uniform w.r.t. both the left and right uniformities.

Proof:

