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— joint work with Aleš Pultr (Charles University, Prague, CZ)

July 22, 2011 On (binary) localic products and localic groups CT2011 – 0
– p. 0



THE SETTING locales (or frames)


 Complete lattices L satisfying a^ª

iPI bi �ªiPI pa^ biq
(= complete Heyting algebras)




� �
^

July 22, 2011 On (binary) localic products and localic groups CT2011 – 1
– p. 1



THE SETTING locales (or frames)


 Complete lattices L satisfying a^ª

iPI bi �ªiPI pa^ biq
(= complete Heyting algebras)


 L

f

M

L

M

f� preserves
�

(incl. the bottom 0)^ (incl. the top 1)

Loc Frm

July 22, 2011 On (binary) localic products and localic groups CT2011 – 1
– p. 1



GROUPS IN Loc: LOCALIC GROUPS locale L pL, µ, ε, ιq


 � Ñ � � �
� �

� p q � p q


 � t u Ñ � � � � � ��
� �

July 22, 2011 On (binary) localic products and localic groups CT2011 – 2
– p. 2



GROUPS IN Loc: LOCALIC GROUPS locale L pL, µ, ε, ιq


 µ : L� LÑ L

“multiplication”

� � �
� �

� p q � p q


 � t u Ñ � � � � � ��
� �

July 22, 2011 On (binary) localic products and localic groups CT2011 – 2
– p. 2



GROUPS IN Loc: LOCALIC GROUPS locale L pL, µ, ε, ιq


 µ : L� LÑ L

“multiplication”

L� L� L
µ�id

id�µ

L� L

µ

L� L µ L

apbcq � pabqc


 � t u Ñ � � � � � ��
� �

July 22, 2011 On (binary) localic products and localic groups CT2011 – 2
– p. 2



GROUPS IN Loc: LOCALIC GROUPS locale L pL, µ, ε, ιq


 µ : L� LÑ L

“multiplication”

L� L� L
µ�id

id�µ

L� L

µ

L� L µ L

apbcq � pabqc


 ε : 2 � t0, 1u Ñ L

“unit”

� � � � � ��
� �

July 22, 2011 On (binary) localic products and localic groups CT2011 – 2
– p. 2



GROUPS IN Loc: LOCALIC GROUPS locale L pL, µ, ε, ιq


 µ : L� LÑ L

“multiplication”

L� L� L
µ�id

id�µ

L� L

µ

L� L µ L

apbcq � pabqc


 ε : 2 � t0, 1u Ñ L

“unit”

L � 2� L
ε�id

L� L

µ

L� 2 � L
id�ε

L
εa � a � aε

July 22, 2011 On (binary) localic products and localic groups CT2011 – 2
– p. 2



GROUPS IN Loc: LOCALIC GROUPS locale L pL, µ, ε, ιq


 µ : L� LÑ L

“multiplication”

L� L� L
µ�id

id�µ

L� L

µ

L� L µ L

apbcq � pabqc


 ι : LÑ L

“inverse”

�
�

�
�

� � � � � �

July 22, 2011 On (binary) localic products and localic groups CT2011 – 2
– p. 2



GROUPS IN Loc: LOCALIC GROUPS locale L pL, µ, ε, ιq


 µ : L� LÑ L

“multiplication”

L� L� L
µ�id

id�µ

L� L

µ

L� L µ L

apbcq � pabqc


 ι : LÑ L

“inverse”

L� L

id�ι

L

!

∆ ∆
L� L

ι�id2

ε

L� L µ L L� Lµ

aa�1 � ε � a�1a

July 22, 2011 On (binary) localic products and localic groups CT2011 – 2
– p. 2



THE CATEGORY OF LOCALIC GROUPS LocGrp

f : pM,µM , εM , ιM q Ñ pL, µL, εL, ιLq preserves


 �� �
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BACKGROUND: BINARY PRODUCTS IN Loc
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On the completeness of localic groups, CMUC 40 (1999) 293-307
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UNIFORMITIES (Weil type)

entourages: E P Lb L such that

�ta | ab a ¤ Eu � 1. pEntL,¤q
E � F ��tab b | Dc P L, c � 0 : ab c ¤ E, cb b ¤ F u

(caution: unions are not necessarily saturated, the join is typically bigger.)
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 quantale pEntpLq, �q
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�ta | ab a ¤ Eu � 1. pEntL,¤q
E � F ��tab b | Dc P L, c � 0 : ab c ¤ E, cb b ¤ F u

(caution: unions are not necessarily saturated, the join is typically bigger.)

ESSENTIAL:
 quantale pEntpLq, �q
 E ¤ E � E for all entourages E

E�1 :� tpa, bq | bb a ¤ Eu
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E � F ��tab b | Dc P L, c � 0 : ab c ¤ E, cb b ¤ F u

(caution: unions are not necessarily saturated, the join is typically bigger.)

E�1 :� tpa, bq | bb a ¤ Eu

E � system of entourages b⊳E a � DE P E : E � pbb bq ¤ ab a

p q���� P � PP P � ¤P ��t P | u
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E � F ��tab b | Dc P L, c � 0 : ab c ¤ E, cb b ¤ F u

(caution: unions are not necessarily saturated, the join is typically bigger.)

E�1 :� tpa, bq | bb a ¤ Eu

E � system of entourages b⊳E a � DE P E : E � pbb bq ¤ ab a

Uniform locale pL,E q: non-void filter E of entourages such that���� (E1) if E P E then E�1 P E ,

(E2) for every E P E there is an F P E such that F � F ¤ E,

P ��t P | u
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UNIFORMITIES (Weil type)

entourages: E P Lb L such that

�ta | ab a ¤ Eu � 1. pEntL,¤q
E � F ��tab b | Dc P L, c � 0 : ab c ¤ E, cb b ¤ F u

(caution: unions are not necessarily saturated, the join is typically bigger.)

E�1 :� tpa, bq | bb a ¤ Eu

E � system of entourages b⊳E a � DE P E : E � pbb bq ¤ ab a

Uniform locale pL,E q: non-void filter E of entourages such that���� (E1) if E P E then E�1 P E ,

(E2) for every E P E there is an F P E such that F � F ¤ E,

(E3) for each a P L, a ��tb P L | b⊳E au.
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UNIFORMITIES (Weil type) Category of uniform locales UELoc

Uniform maps: f : pL,E q Ñ pM,F q

f� frame homomorphism

� b �b
�b �p � b �qp q P P
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M bM M
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L
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UNIFORMITIES (Weil type) Category of uniform locales UELoc

Uniform maps: f : pL,E q Ñ pM,F q

f� frame homomorphism

M

f�

u1

M

M bM M

f�
u2

M

L
u1

L

Lb L L
u2

L

f�bf�pf� b f�qpF q P E for all F P F

THEOREM.

The categories UELoc and UCLoc are concretely isomorphic.

(Surprising, since Ω does not preserve products.)
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SKETCH OF PROOF: TRANSLATIONS

Uù EU :��tab a | a P Uu

ù � t | ¥ P u

ù ��t P | b ¤ u ù � t | ¥ P u

b ¤ � ùñ ¤

� b ¤ ùñ p _ q b p _ q ¤ �
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SKETCH OF PROOF: TRANSLATIONS

Uù EU :��tab a | a P Uu U ù EU :� tF | F ¥ EU , U P U u
Eù UE :��ta P L | ab a ¤ Eu E ù UE :� tV | V ¥ UE , E P E u

Nice features of localic products

1 ab b ¤ EU , b � 0 ùñ a ¤ Ub.

2 0 � ab b ¤ E ùñ pa_ bq b pa_ bq ¤ E � E.

symmetric
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UNIFORMITIES ON LOCALIC GROUPS Under this isomorphism:

ù p q � p b �q �p q P

�
�

�
�

� �
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UNIFORMITIES ON LOCALIC GROUPS Under this isomorphism:

Ul ù El

p q � p b �q �p q P

�
�

�
�

� �
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UNIFORMITIES ON LOCALIC GROUPS Under this isomorphism:

Ul ù El generated by Elpaq :� p1b ι�qµ�paq, a P N

�
�

�
�

� �
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UNIFORMITIES ON LOCALIC GROUPS Under this isomorphism:

Ul ù El generated by Elpaq :� p1b ι�qµ�paq, a P N

Loc L� L

id�ι

L

!

∆ ∆
L� L

ι�id2

ε

L� L µ L L� Lµ

July 22, 2011 On (binary) localic products and localic groups CT2011 – 12
– p. 12



UNIFORMITIES ON LOCALIC GROUPS Under this isomorphism:

Ul ù El generated by Elpaq :� p1b ι�qµ�paq, a P N
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∇

L Lb L
∇

2
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L
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!
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UNIFORMITIES ON LOCALIC GROUPS Under this isomorphism:

Ul ù El generated by Elpaq :� p1b ι�qµ�paq, a P N

Ur ù Er generated by Erpaq :� pι� b 1qµ�paq, a P N

p q ��t b | b ¤ p b �q �p qu

� � �p q b � ¤ �p q7 % �
� � 7p b q � � ¤ p �q p�q�p q ��t b | � � ¤ u
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Ul ù El generated by Elpaq :� p1b ι�qµ�paq, a P N

Ur ù Er generated by Erpaq :� pι� b 1qµ�paq, a P N

Elpaq ��txb y | xb y ¤ p1b ι�qµ�paqu
x�1 � ι�pxq xb y�1 ¤ µ�paq
µ7 % µ� (open) [P.T. Johnstone, 1988]

� � 7p b q � � ¤ p �q p�q�p q ��t b | � � ¤ u
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x�1 � ι�pxq xb y�1 ¤ µ�paq
µ7 % µ� (open) [P.T. Johnstone, 1988]

x � y � µ7pxb yq x � y�1 ¤ a Semigroup pL, �q with p�q�1

p q ��t b | � � ¤ u
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UNIFORMITIES ON LOCALIC GROUPS Under this isomorphism:

Ul ù El generated by Elpaq :� p1b ι�qµ�paq, a P N

Ur ù Er generated by Erpaq :� pι� b 1qµ�paq, a P N

Elpaq ��txb y | xb y ¤ p1b ι�qµ�paqu
x�1 � ι�pxq xb y�1 ¤ µ�paq
µ7 % µ� (open) [P.T. Johnstone, 1988]

x � y � µ7pxb yq x � y�1 ¤ a Semigroup pL, �q with p�q�1

JP & A. PULTR

Entourages, covers and localic groups, Appl. Categ. Struct., to appear
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QUESTION ON FUNCTORIALITY

PROPOSITION. Each LG-map f : pL, µL, εL, ιLq Ñ pM,µM , εM , ιM q
is uniform w.r.t. both the left and right uniformities.

�
�

b
�b �

� b

b � b
�b �

bb �
p q P p q

�p q p �p qq P p q
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