Cellularity, composition, and morphisms of algebraic weak factorization systems

Emily Riehl

University of Chicago http://www.math.uchicago.edu/~eriehl

19 July, 2011 International Category Theory Conference University of British Columbia

A weak factorization system $(\mathcal{L}, \mathcal{R})$

• has left and right classes \mathcal{L} and \mathcal{R} of maps s.t. $\mathcal{L} \ni \ell$

• has left and right classes \mathcal{L} and \mathcal{R} of maps s.t. $\mathcal{L} \ni \mathcal{L}$

$$\ell \bigvee_{r \in \mathcal{R}} f(r) = \ell \cdot f(r)$$

An algebraic weak factorization system (\mathbb{L}, \mathbb{R})

• has left and right classes \mathcal{L} and \mathcal{R} of maps s.t. $\mathcal{L} \ni \mathcal{L}$

$$\ell \bigvee_{r \in \mathcal{R}} f(r) = \ell \cdot f(r)$$

An algebraic weak factorization system (\mathbb{L}, \mathbb{R})

 \bullet has a comonad ${\mathbb L}$ and monad ${\mathbb R}$ arising from a functorial factorization

• has left and right classes \mathcal{L} and \mathcal{R} of maps s.t. \mathcal{L}

$$\ell \bigvee_{r \in \mathcal{R}} f(r) = \ell$$

An algebraic weak factorization system (\mathbb{L}, \mathbb{R})

- \bullet has a comonad \mathbbm{L} and monad \mathbbm{R} arising from a functorial factorization
- coalgebras are left maps; algebras are right maps

• has left and right classes \mathcal{L} and \mathcal{R} of maps s.t. $\mathcal{L} \ni \ell$

$$\mathbb{P}\left[\begin{array}{c} \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{$$

An algebraic weak factorization system (\mathbb{L}, \mathbb{R})

- \bullet has a comonad \mathbbm{L} and monad \mathbbm{R} arising from a functorial factorization
- coalgebras are left maps; algebras are right maps
- (co)algebra structures witness membership and solve lifting problems

• has left and right classes \mathcal{L} and \mathcal{R} of maps s.t. \mathcal{L}

$$\ell \bigvee_{r \in \mathcal{R}} f(r) = \ell$$

An algebraic weak factorization system (\mathbb{L}, \mathbb{R})

- \bullet has a comonad ${\mathbb L}$ and monad ${\mathbb R}$ arising from a functorial factorization
- coalgebras are left maps; algebras are right maps
- (co)algebra structures witness membership and solve lifting problems

Examples

• (monos,epis) in **Set**

• has left and right classes \mathcal{L} and \mathcal{R} of maps s.t. $\mathcal{L} \ni \ell \mid \swarrow \mid r \in \mathcal{R}$

$\ell \bigvee_{r \in \mathcal{R}} f(r) = \ell$

An algebraic weak factorization system (\mathbb{L}, \mathbb{R})

- \bullet has a comonad ${\mathbb L}$ and monad ${\mathbb R}$ arising from a functorial factorization
- coalgebras are left maps; algebras are right maps
- (co)algebra structures witness membership and solve lifting problems

Examples

- (monos,epis) in **Set**
- \bullet (injective with projective cokernel, surjective) in $\boldsymbol{\mathsf{Mod}}_R$

• There is an algebraic weak factorization system on **Top** whose coalgebras for the comonad are relative cell complexes.

- There is an algebraic weak factorization system on **Top** whose coalgebras for the comonad are relative cell complexes.
- Hence, we call the maps admitting a coalgebra structure cellular.

- There is an algebraic weak factorization system on **Top** whose coalgebras for the comonad are relative cell complexes.
- Hence, we call the maps admitting a coalgebra structure cellular.
- Not all cofibrations (elements of the left class of the weak factorization system) are cellular: cellularity is a condition!

- There is an algebraic weak factorization system on **Top** whose coalgebras for the comonad are relative cell complexes.
- Hence, we call the maps admitting a coalgebra structure cellular.
- Not all cofibrations (elements of the left class of the weak factorization system) are cellular: cellularity is a condition!
- Generic cofibrations are retracts of relative cell complexes, equivalently, coalgebras for the pointed endofunctor of the comonad.

Composing coalgebras in \mathbf{Top}

Composing coalgebras in $\operatorname{\mathbf{Top}}$

A coalgebra structure for a relative cell complex i: A → B is a cellular decomposition:

$$A = A_0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow \cdots \longrightarrow B$$

each object obtained by attaching cells.

Composing coalgebras in $\operatorname{\mathbf{Top}}$

A coalgebra structure for a relative cell complex i: A → B is a cellular decomposition:

$$A = A_0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow \cdots \longrightarrow B$$

each object obtained by attaching cells.

• Cellular cofibrations can be composed: the composite of two relative cell complexes is one again.

Composing coalgebras in \mathbf{Top}

A coalgebra structure for a relative cell complex i: A → B is a cellular decomposition:

$$A = A_0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow \cdots \longrightarrow B$$

each object obtained by attaching cells.

- Cellular cofibrations can be composed: the composite of two relative cell complexes is one again.
- Furthermore, the coalgebra structures are composable: the composite is equipped with a canonical cellular decomposition.

Composing coalgebras in \mathbf{Top}

A coalgebra structure for a relative cell complex i: A → B is a cellular decomposition:

$$A = A_0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow \cdots \longrightarrow B$$

each object obtained by attaching cells.

- Cellular cofibrations can be composed: the composite of two relative cell complexes is one again.
- Furthermore, the coalgebra structures are composable: the composite is equipped with a canonical cellular decomposition.

In general

• Coalgebras for the comonad of an algebraic weak factorization system can be composed and the composition is functorial.

Emily Riehl (University of Chicago)

Cellularity, composition, and awfs

Composing algebras in \mathbf{sSet}

• Kan fibrations admit algebra structures for the monad of an algebraic weak factorization system.

Composing algebras in \mathbf{sSet}

• Kan fibrations admit algebra structures for the monad of an algebraic weak factorization system.

• An algebra structure is a choice of fillers for all horns

Composing algebras in \mathbf{sSet}

• Kan fibrations admit algebra structures for the monad of an algebraic weak factorization system.

• An algebra structure is a choice of fillers for all horns

- Kan fibrations admit algebra structures for the monad of an algebraic weak factorization system.
- An algebra structure is a choice of fillers for all horns
- Algebra structures are composable: Define ϕ_{gf} by

- Kan fibrations admit algebra structures for the monad of an algebraic weak factorization system.
- An algebra structure is a choice of fillers for all horns
- $\begin{array}{ccc} \Lambda^n_k & \longrightarrow & X \\ & \swarrow & \swarrow & & \downarrow f \\ & \swarrow & & & \downarrow f \\ \Delta^n & \longrightarrow & Y \end{array}$

- Kan fibrations admit algebra structures for the monad of an algebraic weak factorization system.
- An algebra structure is a choice of fillers for all horns
- $\begin{array}{ccc} \Lambda^n_k & \longrightarrow & X \\ & \swarrow & \swarrow & & \uparrow \\ & & \swarrow & & & \downarrow f \\ & & \swarrow & & & & \downarrow f \\ \Delta^n & \longrightarrow & Y \end{array}$
- Algebra structures are composable: Define ϕ_{gf} by

Preliminary definition.

A morphism between two algebraic weak factorization systems is

• a natural transformation comparing their functorial factorizations

Preliminary definition.

A morphism between two algebraic weak factorization systems is

• a natural transformation comparing their functorial factorizations

Preliminary definition.

A morphism between two algebraic weak factorization systems is

• a natural transformation comparing their functorial factorizations

• that induces functors \mathbb{L} -coalg $\to \mathbb{L}'$ -coalg, \mathbb{R}' -alg $\to \mathbb{R}$ -alg; i.e., defines a colax morphism of comonads and a lax morphism of monads

Preliminary definition.

A morphism between two algebraic weak factorization systems is

• a natural transformation comparing their functorial factorizations

• that induces functors \mathbb{L} -coalg $\to \mathbb{L}'$ -coalg, \mathbb{R}' -alg $\to \mathbb{R}$ -alg; i.e., defines a colax morphism of comonads and a lax morphism of monads

We will define morphisms between algebraic weak factorization systems on different categories lifting (two-variable) adjunctions.

Emily Riehl (University of Chicago)

Cellularity, composition, and awfs

Definition

A weak factorization system (wfs) $(\mathcal{L}, \mathcal{R})$ on a category \mathcal{M} :

Definition

A weak factorization system (wfs) $(\mathcal{L}, \mathcal{R})$ on a category \mathcal{M} :

• (factorization) there exists a functorial factorization $\mathcal{M}^2
ightarrow \mathcal{M}^3$:

with $Lf \in \mathcal{L}, Rf \in \mathcal{R}$.

Definition

A weak factorization system (wfs) $(\mathcal{L}, \mathcal{R})$ on a category \mathcal{M} :

• (factorization) there exists a functorial factorization $\mathcal{M}^2
ightarrow \mathcal{M}^3$:

Definition

A weak factorization system (wfs) $(\mathcal{L}, \mathcal{R})$ on a category \mathcal{M} :

• (factorization) there exists a functorial factorization $\mathcal{M}^2
ightarrow \mathcal{M}^3$:

Algebraic left and right maps

Left maps are coalgebras and right maps are algebras, resp., for the pointed endofunctors $L, R: \mathcal{M}^2 \rightrightarrows \mathcal{M}^2$ with $\epsilon: L \Rightarrow 1, \eta: 1 \Rightarrow R$.

Algebraic left and right maps

Left maps are coalgebras and right maps are algebras, resp., for the pointed endofunctors $L, R: \mathcal{M}^2 \rightrightarrows \mathcal{M}^2$ with $\epsilon: L \Rightarrow 1, \eta: 1 \Rightarrow R$.

Algebraic left and right maps

Left maps are coalgebras and right maps are algebras, resp., for the pointed endofunctors $L, R: \mathcal{M}^2 \rightrightarrows \mathcal{M}^2$ with $\epsilon: L \Rightarrow 1, \eta: 1 \Rightarrow R$.

Algebraic left maps

Recall

$$i \in \mathcal{L}$$
 iff $i \bigvee_{s} \stackrel{Li}{\swarrow} Ri$ $f \in \mathcal{R}$ iff $Lf \bigvee_{Rf} \stackrel{t}{\swarrow} f$

Constructing lifts

Given a coalgebra $\left(i,s\right)$ and an algebra $\left(f,t\right)\!,$ any lifting problem

Algebraic lifts

Recall

$$i \in \mathcal{L}$$
 iff $i \bigvee_{\swarrow \ s} Ri$ $f \in \mathcal{R}$ iff $Lf \bigvee_{\swarrow \ Rf} f$

Constructing lifts

Given a coalgebra (i, s) and an algebra (f, t), any lifting problem

Emily Riehl (University of Chicago)

Cellularity, composition, and awfs

An algebraic weak factorization system (awfs) (\mathbb{L},\mathbb{R}) on a category \mathcal{M} :

An algebraic weak factorization system (awfs) (\mathbb{L}, \mathbb{R}) on a category \mathcal{M} :

 \bullet a comonad $\mathbb{L}=(L,\epsilon,\delta)$ and a monad $\mathbb{R}=(R,\eta,\mu)$

An algebraic weak factorization system (awfs) (\mathbb{L}, \mathbb{R}) on a category \mathcal{M} :

• a comonad
$$\mathbb{L} = (L,\epsilon,\delta)$$
 and a monad $\mathbb{R} = (R,\eta,\mu)$

such that

 $\bullet~(L,\epsilon)$ and (R,η) come from a functorial factorization

An algebraic weak factorization system (awfs) (\mathbb{L}, \mathbb{R}) on a category \mathcal{M} :

• a comonad
$$\mathbb{L} = (L,\epsilon,\delta)$$
 and a monad $\mathbb{R} = (R,\eta,\mu)$

such that

- (L,ϵ) and (R,η) come from a functorial factorization
- the canonical map $LR \Rightarrow RL$ is a distributive law.

An algebraic weak factorization system (awfs) (\mathbb{L}, \mathbb{R}) on a category \mathcal{M} :

• a comonad
$$\mathbb{L} = (L,\epsilon,\delta)$$
 and a monad $\mathbb{R} = (R,\eta,\mu)$

such that

- (L,ϵ) and (R,η) come from a functorial factorization
- the canonical map $LR \Rightarrow RL$ is a distributive law.

 $\mathbb L\text{-}coalgebras$ lift against $\mathbb R\text{-}algebras$

An algebraic weak factorization system (awfs) (\mathbb{L}, \mathbb{R}) on a category \mathcal{M} :

• a comonad
$$\mathbb{L} = (L,\epsilon,\delta)$$
 and a monad $\mathbb{R} = (R,\eta,\mu)$

such that

- (L,ϵ) and (R,η) come from a functorial factorization
- the canonical map $LR \Rightarrow RL$ is a distributive law.

 $\mathbbm{L}\mbox{-}{\rm coalgebras}$ lift against $\mathbbm{R}\mbox{-}{\rm algebras}\mbox{-}{\rm but}$ so do $(L,\epsilon)\mbox{-}{\rm coalgebras}$ and $(R,\eta)\mbox{-}{\rm algebras}.$

An algebraic weak factorization system (awfs) (\mathbb{L}, \mathbb{R}) on a category \mathcal{M} :

• a comonad
$$\mathbb{L} = (L,\epsilon,\delta)$$
 and a monad $\mathbb{R} = (R,\eta,\mu)$

such that

- (L,ϵ) and (R,η) come from a functorial factorization
- the canonical map $LR \Rightarrow RL$ is a distributive law.

 \mathbb{L} -coalgebras lift against \mathbb{R} -algebras—but so do (L,ϵ) -coalgebras and (R,η) -algebras. Hence the underlying wfs has

- $\mathcal{L} = \text{ retract closure of the } \mathbb{L}\text{-coalgebras}$
- $\mathcal{R}=\ \text{retract}$ closure of the $\mathbb{R}\text{-algebras}$

Cellularity

Cellular maps

A map in the left class of an underlying wfs of an awfs (\mathbb{L},\mathbb{R}) is cellular if it admits an \mathbb{L} -coalgebra structure.

Cellular maps

A map in the left class of an underlying wfs of an awfs (\mathbb{L}, \mathbb{R}) is cellular if it admits an \mathbb{L} -coalgebra structure.

Examples

• In Top, there is an awfs such that the relative cell complexes are the cellular maps.

Cellular maps

A map in the left class of an underlying wfs of an awfs (\mathbb{L}, \mathbb{R}) is cellular if it admits an \mathbb{L} -coalgebra structure.

Examples

- In Top, there is an awfs such that the relative cell complexes are the cellular maps.
- In sSet, there is an awfs such that the left class is the monomorphisms, all of which are cellular.

Cellular maps

A map in the left class of an underlying wfs of an awfs (\mathbb{L}, \mathbb{R}) is cellular if it admits an \mathbb{L} -coalgebra structure.

Examples

- In **Top**, there is an awfs such that the relative cell complexes are the cellular maps.
- In sSet, there is an awfs such that the left class is the monomorphisms, all of which are cellular.

Lemma (R.)

In a cofibrantly generated awfs, all right maps admit $\mathbb R\text{-algebra structures}.$

Cofibrantly generated algebraic weak factorization systems

Cofibrantly generated wfs

A wfs $(\mathcal{L}, \mathcal{R})$ is cofibrantly generated if there exists a set \mathcal{J} such that $\mathcal{J}^{\boxtimes} = \mathcal{R}$.

A wfs $(\mathcal{L}, \mathcal{R})$ is cofibrantly generated if there exists a set \mathcal{J} such that $\mathcal{J}^{\square} = \mathcal{R}$. Quillen's small object argument constructs the factorizations.

A wfs $(\mathcal{L}, \mathcal{R})$ is cofibrantly generated if there exists a set \mathcal{J} such that $\mathcal{J}^{\square} = \mathcal{R}$. Quillen's small object argument constructs the factorizations.

Theorem (Garner)

A small category of arrows ${\mathcal J}$ generates an awfs $({\mathbb L},{\mathbb R})$ such that

A wfs $(\mathcal{L}, \mathcal{R})$ is cofibrantly generated if there exists a set \mathcal{J} such that $\mathcal{J}^{\square} = \mathcal{R}$. Quillen's small object argument constructs the factorizations.

Theorem (Garner)

A small category of arrows ${\mathcal J}$ generates an awfs $({\mathbb L},{\mathbb R})$ such that

 \bullet there is a canonical isomorphism $\mathbb{R}\text{-}\mathbf{alg}\cong\mathcal{J}^{\boxtimes}$

A wfs $(\mathcal{L}, \mathcal{R})$ is cofibrantly generated if there exists a set \mathcal{J} such that $\mathcal{J}^{\square} = \mathcal{R}$. Quillen's small object argument constructs the factorizations.

Theorem (Garner)

A small category of arrows ${\mathcal J}$ generates an awfs $({\mathbb L},{\mathbb R})$ such that

- \bullet there is a canonical isomorphism $\mathbb{R}\text{-}\mathbf{alg}\cong\mathcal{J}^{\boxtimes}$
- there exists a canonical functor $\mathcal{J} \to \mathbb{L}\text{-coalg}$ over \mathcal{M}^2 , universal among morphisms of awfs

A wfs $(\mathcal{L}, \mathcal{R})$ is cofibrantly generated if there exists a set \mathcal{J} such that $\mathcal{J}^{\square} = \mathcal{R}$. Quillen's small object argument constructs the factorizations.

Theorem (Garner)

A small category of arrows ${\mathcal J}$ generates an awfs $({\mathbb L},{\mathbb R})$ such that

- \bullet there is a canonical isomorphism $\mathbb{R}\text{-}\mathbf{alg}\cong\mathcal{J}^{\boxtimes}$
- there exists a canonical functor $\mathcal{J} \to \mathbb{L}\text{-coalg}$ over \mathcal{M}^2 , universal among morphisms of awfs

This second universal property says

• morphisms of awfs $(\mathbb{L},\mathbb{R}) \to (\mathbb{L}',\mathbb{R}') \leftrightsquigarrow \mathcal{J} \to \mathbb{L}'\text{-coalg}$

A wfs $(\mathcal{L}, \mathcal{R})$ is cofibrantly generated if there exists a set \mathcal{J} such that $\mathcal{J}^{\square} = \mathcal{R}$. Quillen's small object argument constructs the factorizations.

Theorem (Garner)

A small category of arrows ${\mathcal J}$ generates an awfs $({\mathbb L},{\mathbb R})$ such that

- \bullet there is a canonical isomorphism $\mathbb{R}\text{-}\mathbf{alg}\cong\mathcal{J}^{\mathbb{Z}}$
- there exists a canonical functor $\mathcal{J} \to \mathbb{L}\text{-coalg}$ over \mathcal{M}^2 , universal among morphisms of awfs

This second universal property says

- morphisms of awfs $(\mathbb{L},\mathbb{R}) \to (\mathbb{L}',\mathbb{R}') \leftrightsquigarrow \mathcal{J} \to \mathbb{L}'\text{-coalg}$
- i.e., a morphism exists iff the generators $\mathcal J$ are cellular for $\mathbb L'$.

Theorem (R.)

|-|: sSet \rightleftharpoons Top: S is an adjunction of awfs.

• left class in sSet are the monomorphisms, all uniquely cellular

Theorem (R.)

- left class in sSet are the monomorphisms, all uniquely cellular
- map via |-| to relative cell complexes

Theorem (R.)

- ullet left class in \mathbf{sSet} are the monomorphisms, all uniquely cellular
- map via | | to relative cell complexes with a specified coalgebra structure, here a cellular (in fact CW-) decomposition

Theorem (R.)

- ullet left class in \mathbf{sSet} are the monomorphisms, all uniquely cellular
- map via | | to relative cell complexes with a specified coalgebra structure, here a cellular (in fact CW-) decomposition
- right class in **Top** are the algebraic trivial fibrations, equipped with chosen lifted contractions

Theorem (R.)

|-|: sSet \rightleftharpoons Top: S is an adjunction of awfs.

- ullet left class in \mathbf{sSet} are the monomorphisms, all uniquely cellular
- map via | | to relative cell complexes with a specified coalgebra structure, here a cellular (in fact CW-) decomposition
- right class in **Top** are the algebraic trivial fibrations, equipped with chosen lifted contractions

• map via S to algebraic trivial fibrations with chosen sphere fillers

Given $F \colon \mathcal{K} \rightleftharpoons \mathcal{M} \colon U$ and wfs on \mathcal{K} and \mathcal{M}

Given $F \colon \mathcal{K} \rightleftharpoons \mathcal{M} \colon U$ and wfs on \mathcal{K} and \mathcal{M}

• F preserves the left class iff U preserves the right class

Given $F \colon \mathcal{K} \rightleftharpoons \mathcal{M} \colon U$ and wfs on \mathcal{K} and \mathcal{M}

• F preserves the left class iff U preserves the right class

In an adjunction of awfs, want:

Given $F \colon \mathcal{K} \rightleftharpoons \mathcal{M} \colon U$ and wfs on \mathcal{K} and \mathcal{M}

• F preserves the left class iff U preserves the right class

In an adjunction of awfs, want:

- a lift of U to a functor between the categories of algebras
- \bullet a lift of F to a functor between the categories of coalgebras

Given $F \colon \mathcal{K} \rightleftharpoons \mathcal{M} \colon U$ and wfs on \mathcal{K} and \mathcal{M}

• F preserves the left class iff U preserves the right class

$$\operatorname{in} \mathcal{M} \qquad Fi \bigvee_{i \neq j} \stackrel{}{\xrightarrow{}} f \qquad \longleftrightarrow \qquad i \bigvee_{i \neq j} \stackrel{}{\xrightarrow{}} \bigcup_{i \neq j} Uf \quad \operatorname{in} \mathcal{K}$$

In an adjunction of awfs, want:

- ullet a lift of U to a functor between the categories of algebras
- \bullet a lift of F to a functor between the categories of coalgebras
- the lifts to somehow determine each other

Given $F \colon \mathcal{K} \rightleftharpoons \mathcal{M} \colon U$ and wfs on \mathcal{K} and \mathcal{M}

• F preserves the left class iff U preserves the right class

$$\operatorname{in} \mathcal{M} \qquad F_{i} \bigvee_{i} \bigvee_{j} \bigvee_{i} \bigvee_{j} \bigvee_{i} \bigvee_{j} \bigvee_{i} \bigvee_{j} \bigvee_{i} \bigvee_{j} \bigvee_{i} \bigvee_{i} \bigvee_{j} \bigvee_{i} \bigvee_{$$

In an adjunction of awfs, want:

- ullet a lift of U to a functor between the categories of algebras
- \bullet a lift of F to a functor between the categories of coalgebras
- the lifts to somehow determine each other

One way to make this precise uses the theory of mates. Alternatively ...

Lemma (Garner)

An awfs (\mathbb{L}, \mathbb{R}) gives rise to and can be recovered from either of two double categories $\mathbb{C}oalg(\mathbb{L})$ or $\mathbb{A}lg(\mathbb{R})$.

Lemma (Garner)

An awfs (\mathbb{L}, \mathbb{R}) gives rise to and can be recovered from either of two double categories $\mathbb{C}oalg(\mathbb{L})$ or $\mathbb{A}lg(\mathbb{R})$.

$$\mathbb{Alg}(\mathbb{R}): \qquad \mathbb{R}\text{-}\mathbf{alg} \times_{\mathcal{M}} \mathbb{R}\text{-}\mathbf{alg} \xrightarrow{\circ} \mathbb{R}\text{-}\mathbf{alg} \xrightarrow{s}_{t} \mathcal{M}$$

Lemma (Garner)

An awfs (\mathbb{L}, \mathbb{R}) gives rise to and can be recovered from either of two double categories $\mathbb{C}oalg(\mathbb{L})$ or $\mathbb{A}lg(\mathbb{R})$.

$$\mathbb{Alg}(\mathbb{R}): \qquad \mathbb{R}\text{-}\mathbf{alg} \times_{\mathcal{M}} \mathbb{R}\text{-}\mathbf{alg} \xrightarrow{\circ} \mathbb{R}\text{-}\mathbf{alg} \xrightarrow{s} \mathcal{M}$$

 $\bullet\,$ objects and horizontal 1-cells are the objects and morphisms of ${\cal M}$
Lemma (Garner)

An awfs (\mathbb{L}, \mathbb{R}) gives rise to and can be recovered from either of two double categories $\mathbb{C}oalg(\mathbb{L})$ or $\mathbb{A}lg(\mathbb{R})$.

$$\mathbb{Alg}(\mathbb{R}): \qquad \mathbb{R}\text{-}\mathbf{alg} \times_{\mathcal{M}} \mathbb{R}\text{-}\mathbf{alg} \xrightarrow{\circ} \mathbb{R}\text{-}\mathbf{alg} \xrightarrow{s}_{t} \mathcal{M}$$

objects and horizontal 1-cells are the objects and morphisms of *M*vertical 1-cells and squares the the objects and morphisms of *R*-alg

Lemma (Garner)

An awfs (\mathbb{L}, \mathbb{R}) gives rise to and can be recovered from either of two double categories $\mathbb{C}oalg(\mathbb{L})$ or $\mathbb{A}lg(\mathbb{R})$.

$$\mathbb{Alg}(\mathbb{R}): \qquad \mathbb{R}\text{-}\mathbf{alg} \times_{\mathcal{M}} \mathbb{R}\text{-}\mathbf{alg} \xrightarrow{\circ} \mathbb{R}\text{-}\mathbf{alg} \xrightarrow{s}_{t} \mathcal{M}$$

objects and horizontal 1-cells are the objects and morphisms of *M*vertical 1-cells and squares the the objects and morphisms of *R*-alg

There is a forgetful double functor $Alg(\mathbb{R}) \to Sq(\mathcal{M})$.

Vertical composition of awfs algebras and coalgebras

The essential point is that there is a canonical vertical composition law for algebras functorial with respect to \mathbb{R} -algebra morphisms:

Example: (\mathbb{L},\mathbb{R}) generated by $\mathcal J$

Example: (\mathbb{L},\mathbb{R}) generated by \mathcal{J}

Example: (\mathbb{L},\mathbb{R}) generated by $\mathcal J$

Example: (\mathbb{L},\mathbb{R}) generated by \mathcal{J}

Example: (\mathbb{L},\mathbb{R}) generated by \mathcal{J}

Algebra structures for $f, g \in \mathbb{R}$ -alg $\cong \mathcal{J}^{\boxtimes}$ are lifting functions ϕ_f, ϕ_g against all $j \in \mathcal{J}$.

This composition law encodes the comultiplication for \mathbb{L} (and dually).

Given an adjunction $F: \mathcal{K} \rightleftharpoons \mathcal{M}: U$ together with awfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} and $(\mathbb{L}', \mathbb{R}')$ on \mathcal{M} , the following data are equivalent and define an adjunction of awfs $(F, U): (\mathbb{L}, \mathbb{R}) \to (\mathbb{L}', \mathbb{R}')$.

Given an adjunction $F : \mathcal{K} \rightleftharpoons \mathcal{M} : U$ together with awfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} and $(\mathbb{L}', \mathbb{R}')$ on \mathcal{M} , the following data are equivalent and define an adjunction of awfs $(F, U) : (\mathbb{L}, \mathbb{R}) \to (\mathbb{L}', \mathbb{R}')$.

• a double functor $\mathbb{C}\mathbf{oalg}(\mathbb{L}) \to \mathbb{C}\mathbf{oalg}(\mathbb{L}')$ lifting F

Given an adjunction $F: \mathcal{K} \rightleftharpoons \mathcal{M}: U$ together with awfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} and $(\mathbb{L}', \mathbb{R}')$ on \mathcal{M} , the following data are equivalent and define an adjunction of awfs $(F, U): (\mathbb{L}, \mathbb{R}) \to (\mathbb{L}', \mathbb{R}')$.

- \bullet a double functor $\mathbb{C}\mathbf{oalg}(\mathbb{L}) \to \mathbb{C}\mathbf{oalg}(\mathbb{L}')$ lifting F
- a double functor $Alg(\mathbb{R}') \to Alg(\mathbb{R})$ lifting U

Given an adjunction $F: \mathcal{K} \rightleftharpoons \mathcal{M}: U$ together with awfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} and $(\mathbb{L}', \mathbb{R}')$ on \mathcal{M} , the following data are equivalent and define an adjunction of awfs $(F, U): (\mathbb{L}, \mathbb{R}) \to (\mathbb{L}', \mathbb{R}')$.

- a double functor $\mathbb{C}\mathbf{oalg}(\mathbb{L}) \to \mathbb{C}\mathbf{oalg}(\mathbb{L}')$ lifting F
- a double functor $\mathbb{A}\mathbf{lg}(\mathbb{R}') \to \mathbb{A}\mathbf{lg}(\mathbb{R})$ lifting U
- functors $F \colon \mathbb{L}\text{-coalg} \to \mathbb{L}'\text{-coalg}$ and $U \colon \mathbb{R}'\text{-alg} \to \mathbb{R}\text{-alg}$ whose characterizing natural transformations are mates

Given an adjunction $F: \mathcal{K} \rightleftharpoons \mathcal{M}: U$ together with awfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} and $(\mathbb{L}', \mathbb{R}')$ on \mathcal{M} , the following data are equivalent and define an adjunction of awfs $(F, U): (\mathbb{L}, \mathbb{R}) \to (\mathbb{L}', \mathbb{R}')$.

- \bullet a double functor $\mathbb{C}\mathbf{oalg}(\mathbb{L}) \to \mathbb{C}\mathbf{oalg}(\mathbb{L}')$ lifting F
- \bullet a double functor $\mathbb{A}\mathbf{lg}(\mathbb{R}') \to \mathbb{A}\mathbf{lg}(\mathbb{R})$ lifting U
- functors $F : \mathbb{L}\text{-coalg} \to \mathbb{L}'\text{-coalg}$ and $U : \mathbb{R}'\text{-alg} \to \mathbb{R}\text{-alg}$ whose characterizing natural transformations are mates

Corollary (composition criterion)

A lifted right adjoint $U : \mathbb{R}' - alg \to \mathbb{R} - alg$ defines an adjunction of awfs iff it preserves vertical composition of algebras.

Theorem (R.)

Given $F \colon \mathcal{K} \rightleftharpoons \mathcal{M} \colon U$, an awfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} generated by \mathcal{J} , an awfs $(\mathbb{L}', \mathbb{R}')$ on \mathcal{M} ,

Theorem (R.)

Given $F : \mathcal{K} \rightleftharpoons \mathcal{M} : U$, an awfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} generated by \mathcal{J} , an awfs $(\mathbb{L}', \mathbb{R}')$ on \mathcal{M} ,

• $F \dashv U$ is an adjunction of awfs iff $F\mathcal{J}$ is cellular, i.e., iff there exists

Theorem (R.)

Given $F \colon \mathcal{K} \rightleftharpoons \mathcal{M} \colon U$, an awfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} generated by \mathcal{J} , an awfs $(\mathbb{L}', \mathbb{R}')$ on \mathcal{M} ,

• $F \dashv U$ is an adjunction of awfs iff $F\mathcal{J}$ is cellular, i.e., iff there exists

• Furthermore, the adjunction of awfs is determined by the coalgebra structures assigned to elements of $F\mathcal{J}$.

Theorem (R.)

Given $F \colon \mathcal{K} \rightleftharpoons \mathcal{M} \colon U$, an awfs (\mathbb{L}, \mathbb{R}) on \mathcal{K} generated by \mathcal{J} , an awfs $(\mathbb{L}', \mathbb{R}')$ on \mathcal{M} ,

• $F \dashv U$ is an adjunction of awfs iff $F\mathcal{J}$ is cellular, i.e., iff there exists

$$\mathcal{J} \longrightarrow \mathbb{L}' \text{-coalg} \\ \downarrow \qquad \qquad \downarrow \\ \mathcal{K}^2 \xrightarrow{F} \mathcal{M}^2$$

• Furthermore, the adjunction of awfs is determined by the coalgebra structures assigned to elements of $F\mathcal{J}$.

Corollary (R.)

The functor $\mathcal{J} \to \mathbb{L}\text{-}\mathbf{coalg}$ constructed by Garner's small object argument is universal among adjunctions of awfs.

Emily Riehl (University of Chicago)

Proof:

Proof:

 \bullet define $\mathbb{R}'\text{-}\mathbf{alg}\to\mathbb{R}\text{-}\mathbf{alg}\cong\mathcal{J}^{\boxtimes}$ to be the composite

$$\mathbb{R}'\text{-}\mathbf{alg} \xrightarrow{\text{lift}} (\mathbb{L}'\text{-}\mathbf{coalg})^{\boxtimes} \xrightarrow{\text{res}} (F\mathcal{J})^{\boxtimes} \xrightarrow{\text{adj}} \mathcal{J}^{\boxtimes}$$

Proof:

 \bullet define $\mathbb{R}'\text{-}\mathbf{alg}\to\mathbb{R}\text{-}\mathbf{alg}\cong\mathcal{J}^{\boxtimes}$ to be the composite

$$\mathbb{R}'\text{-}\mathbf{alg} \xrightarrow{\text{lift}} (\mathbb{L}'\text{-}\mathbf{coalg})^{\boxtimes} \xrightarrow{\text{res}} (F\mathcal{J})^{\boxtimes} \xrightarrow{\text{adj}} \mathcal{J}^{\boxtimes}$$

• each functor preserves vertical composition

Definition

A two-variable adjunction consists of pointwise adjoint bifunctors

 $\otimes \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N} \quad \hom_{\ell} \colon \mathcal{K}^{\mathrm{op}} \times \mathcal{N} \to \mathcal{M} \quad \hom_{r} \colon \mathcal{M}^{\mathrm{op}} \times \mathcal{N} \to \mathcal{K}$

Definition

A two-variable adjunction consists of pointwise adjoint bifunctors

 $\otimes \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N} \quad \hom_{\ell} \colon \mathcal{K}^{\mathrm{op}} \times \mathcal{N} \to \mathcal{M} \quad \hom_{r} \colon \mathcal{M}^{\mathrm{op}} \times \mathcal{N} \to \mathcal{K}$

Examples

A closed monoidal structure $(\otimes, \hom_{\ell}, \hom_{r}) \colon \mathcal{V} \times \mathcal{V} \to \mathcal{V}$.

Definition

A two-variable adjunction consists of pointwise adjoint bifunctors

 $\otimes \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N} \quad \hom_{\ell} \colon \mathcal{K}^{\mathrm{op}} \times \mathcal{N} \to \mathcal{M} \quad \hom_{r} \colon \mathcal{M}^{\mathrm{op}} \times \mathcal{N} \to \mathcal{K}$

Examples

A closed monoidal structure $(\otimes, \hom_{\ell}, \hom_{r}) \colon \mathcal{V} \times \mathcal{V} \to \mathcal{V}$. A tensored and cotensored enriched category $(\odot, \{\}, \hom) \colon \mathcal{V} \times \mathcal{M} \to \mathcal{M}$.

Definition

A two-variable adjunction consists of pointwise adjoint bifunctors

 $\otimes \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N} \quad \hom_{\ell} \colon \mathcal{K}^{\mathrm{op}} \times \mathcal{N} \to \mathcal{M} \quad \hom_{r} \colon \mathcal{M}^{\mathrm{op}} \times \mathcal{N} \to \mathcal{K}$

Examples

A closed monoidal structure $(\otimes, \hom_{\ell}, \hom_{r}) : \mathcal{V} \times \mathcal{V} \to \mathcal{V}$. A tensored and cotensored enriched category $(\odot, \{\}, \hom): \mathcal{V} \times \mathcal{M} \to \mathcal{M}.$

Induced two-variable adjunctions

 $(\hat{\otimes}, \hat{\hom}_{\ell}, \hat{\hom}_{r}) \colon \mathcal{K}^{2} \times \mathcal{M}^{2} \to \mathcal{N}^{2}$ e.g., $(\Lambda_1^2 \to \Delta^2) \hat{\otimes} (\partial \Delta^1 \to \Delta^1)$ is CT 2011 Vancouver 20 / 24

Emily Riehl (University of Chicago)

Cellularity, composition, and awfs

Definition (R.)

A two-variable adjunction of awfs consists of

Definition (R.)

A two-variable adjunction of awfs consists of

• a two-variable adjunction $(\otimes, \hom_{\ell}, \hom_{r}) \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N}$

Definition (R.)

A two-variable adjunction of awfs consists of

- a two-variable adjunction $(\otimes, \hom_{\ell}, \hom_{r}) \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N}$
- \bullet awfs (\mathbb{L},\mathbb{R}) on \mathcal{K} , $(\mathbb{L}',\mathbb{R}')$ on $\mathcal{M},$ and $(\mathbb{L}'',\mathbb{R}'')$ on \mathcal{N}

Definition (R.)

A two-variable adjunction of awfs consists of

- a two-variable adjunction $(\otimes, \hom_{\ell}, \hom_{r}) \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N}$
- \bullet awfs (\mathbb{L},\mathbb{R}) on \mathcal{K} , $(\mathbb{L}',\mathbb{R}')$ on $\mathcal{M},$ and $(\mathbb{L}'',\mathbb{R}'')$ on \mathcal{N}
- lifted functors

 $-\hat{\otimes}-: \mathbb{L}\text{-coalg} \times \mathbb{L}'\text{-coalg} \to \mathbb{L}''\text{-coalg}$ $\hat{\hom_{\ell}}(-,-): \mathbb{L}\text{-coalg}^{\operatorname{op}} \times \mathbb{R}''\text{-alg} \to \mathbb{R}'\text{-alg}$ $\hat{\hom_{r}}(-,-): \mathbb{L}'\text{-coalg}^{\operatorname{op}} \times \mathbb{R}''\text{-alg} \to \mathbb{R}\text{-alg}$

Definition (R.)

A two-variable adjunction of awfs consists of

- a two-variable adjunction $(\otimes, \hom_{\ell}, \hom_{r}) \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N}$
- \bullet awfs (\mathbb{L},\mathbb{R}) on \mathcal{K} , $(\mathbb{L}',\mathbb{R}')$ on $\mathcal{M},$ and $(\mathbb{L}'',\mathbb{R}'')$ on \mathcal{N}
- lifted functors

$$\begin{split} -\hat{\otimes}-: \mathbb{L}\text{-coalg} \times \mathbb{L}'\text{-coalg} \to \mathbb{L}''\text{-coalg} \\ \hat{\hom_{\ell}(-,-)}: \mathbb{L}\text{-coalg}^{\operatorname{op}} \times \mathbb{R}''\text{-alg} \to \mathbb{R}'\text{-alg} \\ \hat{\hom_{r}(-,-)}: \mathbb{L}'\text{-coalg}^{\operatorname{op}} \times \mathbb{R}''\text{-alg} \to \mathbb{R}\text{-alg} \end{split}$$

such that their characterizing natural transformations are parameterized mates.

Definition (R.)

A two-variable adjunction of awfs consists of

- a two-variable adjunction $(\otimes, \hom_{\ell}, \hom_{r}) \colon \mathcal{K} \times \mathcal{M} \to \mathcal{N}$
- \bullet awfs (\mathbb{L},\mathbb{R}) on \mathcal{K} , $(\mathbb{L}',\mathbb{R}')$ on $\mathcal{M},$ and $(\mathbb{L}'',\mathbb{R}'')$ on \mathcal{N}
- lifted functors

 $-\hat{\otimes}-: \mathbb{L}\text{-coalg} \times \mathbb{L}'\text{-coalg} \to \mathbb{L}''\text{-coalg}$ $\hat{\hom_{\ell}}(-,-): \mathbb{L}\text{-coalg}^{\operatorname{op}} \times \mathbb{R}''\text{-alg} \to \mathbb{R}'\text{-alg}$ $\hat{\hom_{r}}(-,-): \mathbb{L}'\text{-coalg}^{\operatorname{op}} \times \mathbb{R}''\text{-alg} \to \mathbb{R}\text{-alg}$

such that their characterizing natural transformations are parameterized mates.

Sadly, the lifted functors don't even preserve *composability* of (co)algebras.

A lifted functor $\hat{\hom}(-,-)$: \mathbb{L}' -coalg^{op} $\times \mathbb{R}''$ -alg $\to \mathbb{R}$ -alg determines a two-variable adjunction of awfs iff,

A lifted functor $\hat{\hom}(-,-)$: \mathbb{L}' -coalg^{op} $\times \mathbb{R}''$ -alg $\to \mathbb{R}$ -alg determines a two-variable adjunction of awfs iff, given $i \in \mathbb{L}'$ -coalg and composable $f, g \in \mathbb{R}''$ -alg,

A lifted functor $\hat{\hom}(-,-)$: \mathbb{L}' -coalg^{op} $\times \mathbb{R}''$ -alg $\to \mathbb{R}$ -alg determines a two-variable adjunction of awfs iff, given $i \in \mathbb{L}'$ -coalg and composable $f, g \in \mathbb{R}''$ -alg, $\hat{\hom}(i, gf) \in \mathbb{R}$ -alg solves a lifting problem against $j \in \mathbb{L}$ -coalg as follows:

A lifted functor $\hat{\hom}(-,-)$: \mathbb{L}' -coalg^{op} $\times \mathbb{R}''$ -alg $\to \mathbb{R}$ -alg determines a two-variable adjunction of awfs iff, given $i \in \mathbb{L}'$ -coalg and composable $f, g \in \mathbb{R}''$ -alg, $\hat{\hom}(i, gf) \in \mathbb{R}$ -alg solves a lifting problem against $j \in \mathbb{L}$ -coalg as follows:

A lifted functor $\hat{\hom}(-,-)$: \mathbb{L}' -coalg^{op} $\times \mathbb{R}''$ -alg $\to \mathbb{R}$ -alg determines a two-variable adjunction of awfs iff, given $i \in \mathbb{L}'$ -coalg and composable $f, g \in \mathbb{R}''$ -alg, $\hat{\hom}(i, gf) \in \mathbb{R}$ -alg solves a lifting problem against $j \in \mathbb{L}$ -coalg as follows:

A lifted functor $\hat{\hom}(-,-)$: \mathbb{L}' -coalg^{op} $\times \mathbb{R}''$ -alg $\to \mathbb{R}$ -alg determines a two-variable adjunction of awfs iff, given $i \in \mathbb{L}'$ -coalg and composable $f, g \in \mathbb{R}''$ -alg, $\hat{\hom}(i, gf) \in \mathbb{R}$ -alg solves a lifting problem against $j \in \mathbb{L}$ -coalg as follows:

and also satisfies a dual condition in the first variable.

Emily Riehl (University of Chicago)

Cellularity, composition, and awfs

Theorem (R.)

Given a two-variable adjunction $\otimes : \mathcal{K} \times \mathcal{M} \to \mathcal{N}$, awfs (\mathbb{L}, \mathbb{R}) and $(\mathbb{L}', \mathbb{R}')$ on \mathcal{K} and \mathcal{M} generated by \mathcal{J} and \mathcal{J}' , and an awfs $(\mathbb{L}'', \mathbb{R}'')$ on \mathcal{N} ,

Theorem (R.)

Given a two-variable adjunction $\otimes : \mathcal{K} \times \mathcal{M} \to \mathcal{N}$, awfs (\mathbb{L}, \mathbb{R}) and $(\mathbb{L}', \mathbb{R}')$ on \mathcal{K} and \mathcal{M} generated by \mathcal{J} and \mathcal{J}' , and an awfs $(\mathbb{L}'', \mathbb{R}'')$ on \mathcal{N} ,

• \otimes is a two-variable adjunction of awfs iff $\mathcal{J}\hat{\otimes}\mathcal{J}'$ is cellular, i.e., iff there exists

Theorem (R.)

Given a two-variable adjunction $\otimes : \mathcal{K} \times \mathcal{M} \to \mathcal{N}$, awfs (\mathbb{L}, \mathbb{R}) and $(\mathbb{L}', \mathbb{R}')$ on \mathcal{K} and \mathcal{M} generated by \mathcal{J} and \mathcal{J}' , and an awfs $(\mathbb{L}'', \mathbb{R}'')$ on \mathcal{N} ,

• \otimes is a two-variable adjunction of awfs iff $\mathcal{J}\hat{\otimes}\mathcal{J}'$ is cellular, i.e., iff there exists

$$\mathcal{J} imes \mathcal{J}' - imes \mathbb{L}'' ext{-coalg} \ igvee \mathcal{J} \ igvee \mathcal{J} \ igvee \mathcal{J}' \ igvee \mathcal{J}'' \ igvee \mathcal{J}''' \ igvee \mathcal{J}'' \ igvee$$

 Furthermore, the two-variable adjunction of awfs is determined by the coalgebra structures assigned to elements of J^ˆ⊗J'.

Theorem (R.)

Given a two-variable adjunction $\otimes : \mathcal{K} \times \mathcal{M} \to \mathcal{N}$, awfs (\mathbb{L}, \mathbb{R}) and $(\mathbb{L}', \mathbb{R}')$ on \mathcal{K} and \mathcal{M} generated by \mathcal{J} and \mathcal{J}' , and an awfs $(\mathbb{L}'', \mathbb{R}'')$ on \mathcal{N} ,

• \otimes is a two-variable adjunction of awfs iff $\mathcal{J}\hat{\otimes}\mathcal{J}'$ is cellular, i.e., iff there exists

 Furthermore, the two-variable adjunction of awfs is determined by the coalgebra structures assigned to elements of J^ˆ⊗J['].

Sample Theorems (R.)

Quillen's model structure on sSet and the folk model structure on Cat are (cartesian) monoidal algebraic model structures.

Emily Riehl (University of Chicago)

Cellularity, composition, and awfs

Thanks

Thanks to the organizers, Eugenia Cheng, Richard Garner, Martin Hyland, Peter May, Mike Shulman, and the members of the category theory seminars at Chicago, Macquarie, and Sheffield.

Further details

Further details can be found in

- "Algebraic model structures" New York J. Math 17 (2011) 173-231
- "Monoidal algebraic model structures" a preprint available at www.math.uchicago.edu/~eriehl
- my Ph.D. thesis "Algebraic model structures" available at www.math.uchicago.edu/~eriehl