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Cohomology	and	central	extensions

Always	in	this	talk: Z an	object, A an	abelian	object

degree 1 H2(Z,A) � Centr1(Z,A)

� classical	for	groups: 0 ,2A � ,2 ,2X f � ,2Z ,20
f central	extension: regular	epimorphism	with [A, X] = 0

� semi-abelian	monadic	case: [Gran–VdL,	2008]

degree 2 H3(Z,A) � Centr2(Z,A)

� [Rodelo–VdL,	2010]	based	on	[Everaert–Gran–VdL,	2008]
and	G. Janelidze’s	work	on	categorical	Galois	theory

� left: cohomology	“without	projectives”	of	[Bourn	1999,
2002]	and	[Bourn–Rodelo, 2007], notion	of direction

� right: classes	of	double	central	extensions	of Z by A
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Cohomology	and	central	extensions

degrees n ¥ 2 Hn+1(Z,A) � Centrn(Z,A)

� the	subject	of	this	talk, recent	work	of	Rodelo–VdL
� first algebraic proof	for	groups, now	general	proof	which	is
geometric

� left: cohomology	as	classes	of	higher	torsors	[Duskin	1975,
1979]	and	[Glenn, 1982]
in	the	monadic	case, Barr–Beck	comonadic	cohomology

� right: classes	of	higher	central	extensions
� framework: semi-abelian	categories	+	(CC)
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Higher	central	extensions

A semi-abelian	category; 0 =H and n+ 1 = t0, . . . , nu

Cubes	and	extensions

� an n-cube in A is	a	functor F : (2n)op Ñ A

� an n-cube F is	an n-extension iff	for	allH � I � n
FI Ñ limJ�I FJ is	regular	epi

Inductive	definition	(Galois	theory, after	[Janelidze–Kelly, 1994])

� AbA � A full	reflective	subcategory
� CExt1A � Ext1A: central	w.r.t. AbA
� CExt2A � Ext2A: central	w.r.t. CExt1A
� CExtn+1A � Extn+1A: central	w.r.t. CExtnA

Gives	adjunctions CExtnA
� ,2
J ExtnA
In

lr



The	direction	of	a	three-fold	(central)	extension
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Higher	central	extensions

The	Brown–Ellis–Hopf	formulae	[Everaert–Gran–VdL,	2008]

Take	an	object Z of A and n ¥ 1. For	any n-presentation F of Z,

Hn+1(Z,AbA) �
xFny X

�
iPn K[fi]

Ln[F]

� Fn initial	object	of	the	cube, the fi the	initial	arrows

� exact	sequence 0 ,2xXy � ,2 ,2X
ηX � ,2abX ,20 for	any X

so xXy = [X, X], the	Huq	commutator
� an n-extension F is	central	iff Ln[F] = 0
�

�
iPn K[fi] = Kn[F] = D(n,Z)F is	the direction of F,

D(n,Z) : CExt
n
ZAÑ AbA : F ÞÑ D(n,Z)F =

£

iPn

K[fi]

� Hn+1(Z,AbA) � limD(n,Z) by	[Goedecke–VdL,	2009]
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The	commutator	condition	(CC)

Definition

A semi-abelian	category	satisfies	the commutator	condition	(CC)
when	for	all n ¥ 1, an n-fold	extension F is	central	iff[£

iPI

K[fi],
£

iPnzI

K[fi]
]
= 0

for	all I � n. (Hence Ln[F] =
�

I�n

[�
iPI K[fi],

�
iPnzI K[fi]

]
.)

� In	degree 1, all	semi-abelian	categories	satisfy	(CC)
� in	degree 2, (CC) is	weaker	than	(SH) “Smith	=	Huq”
by [Rodelo–VdL,	2010]

� so	far, in	degrees n ¥ 3, we	only	have	examples: groups,
non-unitary	rings, Lie	algebras, etc., besides	all	semi-abelian
arithmetical	and	all	abelian	categories

� Is	(CC) a	higher-dimensional	version	of	(SH)?



Main	theorem, consequences

Theorem

In	a	semi-abelian	category	with	(CC),	let Z be	an	object	and A an
abelian	object. Consider n ¥ 1. Then

Hn+1(Z,A) � Centrn(Z,A) = π0(D�1
(n,Z)A)

where Hn+1(Z,A) is	Duskin–Glenn	cohomology, and	Barr–Beck
comonadic	cohomology	in	the	monadic	case; Centrn(Z,A)
contains	equivalence	classes	of central	extensions	of Z by A.

� Long	exact	sequence	for Centrn(Z,�)
� Duality	in	the interpretations of	homology	and	cohomology:

Hn+1(Z,AbA) � limD(n,Z) Hn+1(Z,A) � π0(D�1
(n,Z)A)

where D(n,Z) : CExt
n
ZAÑ AbA : F ÞÑ D(n,Z)F =

�
iPn K[fi]
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Duskin	and	Glenn’s	torsors:
A “simplicial”	version	of	higher	central	extensions

torsor
central	extension

=
truncated	simplicial	resolution

extension
=

groupoid
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Duskin	and	Glenn’s	torsors:
Definition

� Let Z be	an	object, A an	abelian	object
� K(Z,A, n) is	the	augmented	simplicial	object

n+ 1 n n� 1 n� 2

An+1 � Z

Bn+1�1Z ,2
prn�1Z ,2

pr0�1Z

... ,2
A� Z

prZ ,2

prZ

... ,2 Z
... Z

where Bn+1 = (�1)n
°n

i=0(�1)
ipri

� an n-torsor	of Z by A is	an	augmented	simplicial	object T
together	with	a	morphism t : TÑ K(Z,A, n) such	that
(T1) t is	a	fibration, exact	from	degree n on;
(T2) T � Coskn�1T;
(T3) T is	a	simplicial	resolution

� (T1)	means △(T, n) � A�∧i(T, n) for	all i;
in	particular A �

�
iPn K[Bi]
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Duskin	and	Glenn’s	torsors:
Fundamental	results

Definition/Theorem	(Duskin–Glenn)

Hn+1(Z,A) � π0Torsn(Z,A) where Torsn(Z,A) is	considered	as	a
full	subcategory	of S+A/K(Z,A, n)

Theorem

A simplicial	object	is	an n-torsor	iff	its (n� 1)-truncation	is	an
n-fold	central	extension

ñ depends	on	(CC),	algebraic	proof
ð always	true, uses geometry	of	higher	central	extensions

Proposition

Every	central	extension	is	connected	with	a	central	truncated
simplicial	resolution: every	class	of D�1

(n,Z)A contains	a	torsor
of Z by A
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The	geometry	of	higher	central	extensions	in	degree	2:
box	operation, diamonds

extension

X

F

c � ,2

d_��

C

_��
D � ,2 Z

is	central	iff R[d]lR[c] � A� (R[d]�X R[c])

R[d]l R[c] contains diamonds
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notation R[d]�X R[c] = R[d]d0 R[c]



Higher-order	box	operation:
Ü

i R[fi] in	degree	3

Ü
iP3 R[fi]
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The	elements	of
Ü

i R[fi] in	degree 3

� in	degree	3, the	diamonds	are	octahedra, represented	by
matrices	of	order 2� 2� 2 = 23 via	geometric	duality:
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i R[fi] the	triangle b is	missing, since 3 = t0, 1, 2u
� if F is	central, this	triangle	is	(uniquely)	determined	by	an
element	of	the	direction A, as

Ü
i R[fi] � A�

Ô3
i R[fi]

� any	cycle	may	be	embedded	into	a	diamond
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Conclusion

In	a	semi-abelian	category A which	satisfies	(CC)

Correspondence	between	torsors	and	central	extensions

Hn+1(Z,A) � π0Torsn(Z,A) � Centrn(Z,A)

Duality	between	homology	and	cohomology

D(n,Z) : CExt
n
ZAÑ AbA : F ÞÑ D(n,Z)F =

£

iPn

K[fi]

Hn+1(Z,AbA) � limD(n,Z) Hn+1(Z,A) � π0(D�1
(n,Z)A)

To	do

Extend	to	non-trivial	coefficients
Characterise	the	commutator	condition	in	elementary	terms


