Higher central extensions and cohomology

Diana Rodelo and Tim Van der Linden

Centre for Mathematics of the University of Coimbra University of Algarve, Portugal

CT2011, Vancouver, 17-23 July 2011

Cohomology and central extensions

Always in this talk: Z an object, A an abelian object
degree $1 \quad \mathrm{H}^{2}(Z, A) \cong \operatorname{Centr}^{1}(Z, A)$

- classical for groups: $0 \longrightarrow A \triangleright X \longrightarrow Z \longrightarrow 0$
f central extension: regular epimorphism with $[A, X]=0$
- semi-abelian monadic case: [Gran-VdL, 2008]
degree 2

$$
\mathrm{H}^{3}(Z, A) \cong \operatorname{Centr}^{2}(Z, A)
$$

- [Rodelo-VdL, 2010] based on [Everaert-Gran-VdL, 2008] and G. Janelidze's work on categorical Galois theory
- left: cohomology "without projectives" of [Bourn 1999, 2002] and [Bourn-Rodelo, 2007], notion of direction
- right: classes of double central extensions of Z by A

Cohomology and central extensions

Always in this talk: Z an object, A an abelian object

$$
\text { degree } 1 \quad \mathrm{H}^{2}(Z, A) \cong \operatorname{Centr}^{1}(Z, A)
$$

- classical for groups: $0 \longrightarrow A \triangleright X \xrightarrow{f} Z \longrightarrow 0$ f central extension: regular epimorphism with $[A, X]=0$
- semi-abelian monadic case: [Gran-VdL, 2008]

degree 2
 $H^{3}(Z, A) \cong \operatorname{Centr}^{2}(Z, A)$

- [Rodelo-VdL, 2010] based on [Everaert-Gran-VdL, 2008] and G. Janelidze's work on categorical Galois theory
- left: cohomology "without projectives" of [Bourn 1999, 2002] and [Bourn-Rodelo, 2007], notion of direction right: classes of double central extensions of 7 by A

Cohomology and central extensions

Always in this talk: Z an object, A an abelian object

$$
\text { degree } 1 \quad \mathrm{H}^{2}(Z, A) \cong \operatorname{Centr}^{1}(Z, A)
$$

- classical for groups: $0 \longrightarrow A \triangleright X \xrightarrow{f} Z \longrightarrow 0$ f central extension: regular epimorphism with $[A, X]=0$
- semi-abelian monadic case: [Gran-VdL, 2008]
degree $2 \quad \mathrm{H}^{3}(Z, A) \cong \operatorname{Centr}^{2}(Z, A)$
- [Rodelo-VdL, 2010] based on [Everaert-Gran-VdL, 2008] and G. Janelidze's work on categorical Galois theory
- left: cohomology "without projectives" of [Bourn 1999, 2002] and [Bourn-Rodelo, 2007], notion of direction
- right: classes of double central extensions of Z by A

Cohomology and central extensions

degrees $n \geqslant 2 \quad \mathrm{H}^{n+1}(Z, A) \cong \operatorname{Centr}^{n}(Z, A)$

- the subject of this talk, recent work of Rodelo-VdL
- first algebraic proof for groups, now general proof which is geometric
- left: cohomology as classes of higher torsors [Duskin 1975, 1979] and [Glenn, 1982]
in the monadic case, Barr-Beck comonadic cohomology
- right: classes of higher central extensions
- framework: semi-abelian categories + (CC)

Cohomology and central extensions

degrees $n \geqslant 2 \quad \mathrm{H}^{n+1}(Z, A) \cong \operatorname{Centr}^{n}(Z, A)$

- the subject of this talk, recent work of Rodelo-VdL
- first algebraic proof for groups, now general proof which is geometric
left: cohomology as classes of higher torsors [Duskin 1975, 1979] and [Glenn, 1982]
in the monadic case, Barr-Beck comonadic cohomology
* right: classes of higher central extensions
- framework: semi-abelian categories + (CC)

Cohomology and central extensions

degrees $n \geqslant 2 \quad \mathrm{H}^{n+1}(Z, A) \cong \operatorname{Centr}^{n}(Z, A)$

- the subject of this talk, recent work of Rodelo-VdL
- first algebraic proof for groups, now general proof which is geometric
- left: cohomology as classes of higher torsors [Duskin 1975, 1979] and [Glenn, 1982]
in the monadic case, Barr-Beck comonadic cohomology
- right: classes of higher central extensions
- framework: semi-abelian categories + (CC)

Cohomology and central extensions

degrees $n \geqslant 2 \quad \mathrm{H}^{n+1}(Z, A) \cong \operatorname{Centr}^{n}(Z, A)$

- the subject of this talk, recent work of Rodelo-VdL
- first algebraic proof for groups, now general proof which is geometric
- left: cohomology as classes of higher torsors [Duskin 1975, 1979] and [Glenn, 1982]
in the monadic case, Barr-Beck comonadic cohomology
- right: classes of higher central extensions
- framework: semi-abelian categories + (CC)

Higher central extensions

\mathcal{A} semi-abelian category; $0=\varnothing$ and $n+1=\{0, \ldots, n\}$

Cubes and extensions

- an n-cube in \mathcal{A} is a functor $F:\left(2^{n}\right)^{\mathrm{op}} \rightarrow \mathcal{A}$
- an n-cube F is an n-extension iff for all $\varnothing \neq I \subseteq n$ $F_{I} \rightarrow \lim _{\not \subset I} F_{I}$ is regular epi

Inductive definition (Galois theory, after [Janelidze-Kelly, 1994])

- $\mathrm{Ab} \mathcal{A} \subset \mathcal{A}$ full reflective subcategory
- $\mathrm{CExt}{ }^{1} \mathcal{A} \subset$ Ext $^{1} \mathcal{A}$: central w.r.t. Ab \mathcal{A}
- $\mathrm{CExt}^{2} \mathcal{A} \subset \operatorname{Ext}^{2} \mathcal{A}$: central w.r.t. CExt ${ }^{1} \mathcal{A}$
- $\mathrm{CExt}^{n+1} \mathcal{A} \subset \mathrm{Ext}^{n+1} \mathcal{A}$: central w.r.t. EExt $^{n} \mathcal{A}$

Gives adjunctions CExt $^{n} \mathcal{A} \underset{I_{n}}{\stackrel{C}{T}}$ Ext $^{n} \mathcal{A}$

The direction of a three-fold (central) extension

Higher central extensions

The Brown-Ellis-Hopf formulae [Everaert-Gran-VdL, 2008]
Take an object Z of \mathcal{A} and $n \geqslant 1$. For any n-presentation F of Z,

$$
\mathrm{H}_{n+1}(Z, \mathrm{Ab} \mathcal{A}) \cong \frac{\left\langle F_{n}\right\rangle \cap \bigcap_{i \in n} \mathrm{~K}\left[f_{i}\right]}{L_{n}[F]}
$$

- F_{n} initial object of the cube, the f_{i} the initial arrows

Higher central extensions

The Brown-Ellis-Hopf formulae [Everaert-Gran-VdL, 2008]

Take an object Z of \mathcal{A} and $n \geqslant 1$. For any n-presentation F of Z,

$$
\mathrm{H}_{n+1}(Z, \mathrm{Ab} \mathcal{A}) \cong \frac{\left\langle F_{n}\right\rangle \cap \bigcap_{i \in n} \mathrm{~K}\left[f_{i}\right]}{L_{n}[F]}
$$

- F_{n} initial object of the cube, the f_{i} the initial arrows
- exact sequence $0 \longrightarrow\langle X\rangle \longmapsto X \xrightarrow{\eta_{X}} \longleftrightarrow \mathrm{ab} X \longrightarrow 0$ for any X so $\langle X\rangle=[X, X]$, the Huq commutator
- an n-extension F is central iff $L_{n}[F]=0$
* $\bigcap_{i \in n} K\left[f_{i}\right]=K^{n}[F]=D_{(n, Z)} F$ is the direction of F,

\square
$\mathrm{H}_{n+1}(Z, \mathrm{Ab} \mathcal{A}) \cong \lim \mathrm{D}_{(n, Z)}$ b
by
[Goedecke-VdL, 2009]

Higher central extensions

The Brown-Ellis-Hopf formulae [Everaert-Gran-VdL, 2008]

Take an object Z of \mathcal{A} and $n \geqslant 1$. For any n-presentation F of Z,

$$
\mathrm{H}_{n+1}(Z, \mathrm{Ab} \mathcal{A}) \cong \frac{\left\langle F_{n}\right\rangle \cap \bigcap_{i \in n} \mathrm{~K}\left[f_{i}\right]}{L_{n}[F]}
$$

- F_{n} initial object of the cube, the f_{i} the initial arrows
- exact sequence $0 \longrightarrow\langle X\rangle \longmapsto X \xrightarrow{\eta_{X}} \mathrm{ab} X \longrightarrow 0$ for any X so $\langle X\rangle=[X, X]$, the Huq commutator
- an n-extension F is central iff $L_{n}[F]=0$
- $\bigcap_{i \in n} \mathrm{~K}\left[f_{i}\right]=\mathrm{K}^{n}[F]=\mathrm{D}_{(n, Z)} F$ is the direction of F,

$$
\mathrm{D}_{(n, Z)}: \operatorname{CExt}_{Z}^{n} \mathcal{A} \rightarrow \operatorname{Ab} \mathcal{A}: F \mapsto \mathrm{D}_{(n, Z)} F=\bigcap_{i \in n} \mathrm{~K}\left[f_{i}\right]
$$

- $\mathrm{H}_{n+1}(Z, \mathrm{Ab} \mathcal{A}) \cong \lim \mathrm{D}_{(n, Z)}$ by [Goedecke-VdL, 2009]

The commutator condition (CC)

Definition

A semi-abelian category satisfies the commutator condition (CC) when for all $n \geqslant 1$, an n-fold extension F is central iff

$$
\left[\bigcap_{i \in I} \mathrm{~K}\left[f_{i}\right], \bigcap_{i \in n \backslash l} \mathrm{~K}\left[f_{i}\right]\right]=0
$$

for all $I \subseteq n$. (Hence $L_{n}[F]=\bigcup_{I \subseteq n}\left[\bigcap_{i \in I} K\left[f_{i}\right], \bigcap_{i \in n \backslash I} K\left[f_{i}\right]\right]$.)

- In degree 1, all semi-abelian categories satisfy (CC)
- in degree 2, (CC) is weaker than (SH) "Smith = Huq" by [Rodelo-VdL, 2010]
- so far, in degrees $n \geqslant 3$, we only have examples: groups, non-unitary rings, Lie algebras, etc., besides all semi-abelian arithmetical and all abelian categories
- Is (CC) a higher-dimensional version of (SH)?

Main theorem, consequences

Theorem

In a semi-abelian category with (CC), let Z be an object and A an abelian object. Consider $n \geqslant 1$. Then

$$
\mathrm{H}^{n+1}(Z, A) \cong \operatorname{Centr}^{n}(Z, A)=\pi_{0}\left(\mathrm{D}_{(n, Z)}^{-1} A\right)
$$

where $\mathrm{H}^{n+1}(Z, A)$ is Duskin-Glenn cohomology, and Barr-Beck comonadic cohomology in the monadic case; Centr ${ }^{n}(Z, A)$ contains equivalence classes of central extensions of Z by A.

$$
\begin{aligned}
& \text { Long exact sequence for } \operatorname{Centr}^{n}(Z,-) \\
& \text { Duality in the interpretations of homology and cohomology: } \\
& \qquad H_{n+1}(Z, \operatorname{Ab} \mathcal{A}) \cong \lim \mathrm{D}_{(n, Z)} \quad \mathrm{H}^{n+1}(Z, A) \cong \pi_{0}\left(\mathrm{D}_{(n, Z)}^{-1} A\right) \\
& \text { where } \mathrm{D}_{(n, Z)}: \operatorname{CExt}_{Z}^{n} \mathcal{A} \rightarrow \operatorname{Ab} \mathcal{A}: F \mapsto \mathrm{D}_{(n, Z)} F=\bigcap_{i \in n} \mathrm{~K}\left[f_{i}\right]
\end{aligned}
$$

Main theorem, consequences

Theorem

In a semi-abelian category with (CC), let Z be an object and A an abelian object. Consider $n \geqslant 1$. Then

$$
\mathrm{H}^{n+1}(Z, A) \cong \operatorname{Centr}^{n}(Z, A)=\pi_{0}\left(\mathrm{D}_{(n, Z)}^{-1} A\right)
$$

where $\mathrm{H}^{n+1}(Z, A)$ is Duskin-Glenn cohomology, and Barr-Beck comonadic cohomology in the monadic case; Centr ${ }^{n}(Z, A)$ contains equivalence classes of central extensions of Z by A.

- Long exact sequence for $\operatorname{Centr}^{n}(Z,-)$
- Duality in the interpretations of homology and cohomology:

$$
\mathrm{H}_{n+1}(Z, \operatorname{Ab} \mathcal{A}) \cong \lim \mathrm{D}_{(n, Z)} \quad \mathrm{H}^{n+1}(Z, A) \cong \pi_{0}\left(\mathrm{D}_{(n, Z)}^{-1} A\right)
$$

where $\mathrm{D}_{(n, Z)}: \operatorname{CExt}_{Z}^{n} \mathcal{A} \rightarrow \operatorname{Ab\mathcal {A}}: F \mapsto \mathrm{D}_{(n, Z)} F=\bigcap_{i \in n} \mathrm{~K}\left[f_{i}\right]$

The direction of a three-fold (central) extension

Duskin and Glenn's torsors:

A "simplicial" version of higher central extensions

$$
\frac{\text { torsor }}{\text { central extension }}=\frac{\text { truncated simplicial resolution }}{\text { extension }}=\frac{\text { groupoid }}{\text { pregroupoid }}
$$

Duskin and Glenn's torsors:

A "simplicial" version of higher central extensions

$$
\frac{\text { torsor }}{\text { central extension }}=\frac{\text { truncated simplicial resolution }}{\text { extension }}=\frac{\text { groupoid }}{\text { pregroupoid }}
$$

groupoid
G_{1}

G_{0}
multiplication, identities only one object of objects

pregroupoid

Mal'tsev operation two objects of objects

Duskin and Glenn's torsors: Definition

- Let Z be an object, A an abelian object
- $\mathbb{K}(Z, A, n)$ is the augmented simplicial object

$$
\begin{array}{llll}
n+1 & n & n-1 & n-2
\end{array}
$$

$$
A^{n+1} \times Z \xrightarrow[\operatorname{pr}_{0} \times 1_{Z}]{\stackrel{\partial_{n+1} \times 1_{Z}}{-\mathrm{pr}_{n} \times 1_{z} \rightarrow} \vdots} A \times Z \xrightarrow[\mathrm{pr}_{z}]{\stackrel{\mathrm{pr}_{Z}}{\vdots}} Z \xlongequal{\Longrightarrow \quad \vdots} Z
$$

$$
\text { where } \partial_{n+1}=(-1)^{n} \sum_{i=0}^{n}(-1)^{i} \mathrm{pr}_{i}
$$

Duskin and Glenn's torsors: Definition

- Let Z be an object, A an abelian object
- $\mathbb{K}(Z, A, n)$ is the augmented simplicial object

$$
\begin{array}{llll}
n+1 & n & n-1 & n-2
\end{array}
$$

$$
A^{n+1} \times Z \underset{\operatorname{pr}_{0} \times 1_{z}}{\stackrel{\partial_{n+1} \times 1_{Z}}{-\mathrm{pr}_{n} \times 1_{z} \rightarrow}} A \times Z \xrightarrow[\operatorname{pr}_{Z}]{\stackrel{\mathrm{pr}_{Z}}{\vdots}} Z \xlongequal[=\vdots]{\Longrightarrow} Z
$$

where $\partial_{n+1}=(-1)^{n} \sum_{i=0}^{n}(-1)^{i} \mathrm{pr}_{i}$

- an n-torsor of Z by A is an augmented simplicial object \mathbb{T} together with a morphism $\mathbb{E}: \mathbb{T} \rightarrow \mathbb{K}(Z, A, n)$ such that
(T1) \mathbb{E} is a fibration, exact from degree n on;
(T2) $\mathbb{T} \cong \operatorname{Cosk}_{n-1} \mathbb{T}$;
(T3) \mathbb{T} is a simplicial resolution

in particular $A \cong \bigcap_{i \in n} K\left[\partial_{i}\right]$

Duskin and Glenn's torsors: Definition

- Let Z be an object, A an abelian object
- $\mathbb{K}(Z, A, n)$ is the augmented simplicial object

$$
\begin{array}{llll}
n+1 & n & n-1 & n-2
\end{array}
$$

$$
A^{n+1} \times Z \underset{\mathrm{pr}_{0} \times 1_{z}}{\stackrel{\partial_{n+1} \times 1_{z}}{-\mathrm{pr}_{n} \times 1_{z} \rightarrow} \vdots} A \times Z \xrightarrow[\mathrm{pr}_{Z}]{\stackrel{\mathrm{pr}_{Z}}{\vdots}} Z \xlongequal{\Longrightarrow \quad \vdots} Z
$$

where $\partial_{n+1}=(-1)^{n} \sum_{i=0}^{n}(-1)^{i} \mathrm{pr}_{i}$

- an n-torsor of Z by A is an augmented simplicial object \mathbb{T} together with a morphism $\mathbb{E}: \mathbb{T} \rightarrow \mathbb{K}(Z, A, n)$ such that
(T1) \mathbb{E} is a fibration, exact from degree n on;
(T2) $\mathbb{T} \cong \operatorname{Cosk}_{n-1} \mathbb{T}$;
(T3) \mathbb{T} is a simplicial resolution
- (T1) means $\triangle(\mathbb{T}, n) \cong A \times \wedge^{i}(\mathbb{T}, n)$ for all i; in particular $A \cong \bigcap_{i \in n} K\left[\partial_{i}\right]$

Duskin and Glenn's torsors: Fundamental results

Definition/Theorem (Duskin-Glenn)

$\mathrm{H}^{n+1}(Z, A) \cong \pi_{0} \operatorname{Tors}^{n}(Z, A)$ where $\operatorname{Tors}^{n}(Z, A)$ is considered as a full subcategory of $\mathrm{S}^{+} \mathcal{A} / \mathbb{K}(Z, A, n)$

Theorem

A simnlicial object is an n-torsor iff its $(n-1)$-truncation is an n-fold central extension
\Rightarrow depends on (CC), algebraic proof
\Leftarrow always true, uses geometry of higher central extensions \square

Proposition

Every central extension is connected with a central truncated simplicial resolution: every class of $\mathrm{D}_{(n, 7)}^{-1} A$ contains a torsor of Z by A

Duskin and Glenn's torsors: Fundamental results

Definition/Theorem (Duskin-Glenn)

$\mathrm{H}^{n+1}(Z, A) \cong \pi_{0} \operatorname{Tors}^{n}(Z, A)$ where $\operatorname{Tors}^{n}(Z, A)$ is considered as a full subcategory of $\mathrm{S}^{+} \mathcal{A} / \mathbb{K}(Z, A, n)$

Theorem

A simplicial object is an n-torsor iff its $(n-1)$-truncation is an n-fold central extension
\Rightarrow depends on (CC), algebraic proof
\Leftarrow always true, uses geometry of higher central extensions

Every central extension is connected with a central truncated simplicial resolution: every class of $\mathrm{D}_{(n-7)}^{-1} A$ contains a torsor of Z by A

Duskin and Glenn's torsors: Fundamental results

Definition/Theorem (Duskin-Glenn)

$\mathrm{H}^{n+1}(Z, A) \cong \pi_{0} \operatorname{Tors}^{n}(Z, A)$ where $\operatorname{Tors}^{n}(Z, A)$ is considered as a full subcategory of $\mathrm{S}^{+} \mathcal{A} / \mathbb{K}(Z, A, n)$

Theorem

A simplicial object is an n-torsor iff its $(n-1)$-truncation is an n-fold central extension
\Rightarrow depends on (CC), algebraic proof
\Leftarrow always true, uses geometry of higher central extensions

Proposition

Every central extension is connected with a central truncated simplicial resolution: every class of $\mathrm{D}_{(n, Z)}^{-1} A$ contains a torsor of Z by A box operation, diamonds

extension | X | |
| ---: | :--- |
| $\underset{\nabla}{X}$ | |
| $\underset{D}{C}$ | |

$R[d] \square R[c]$ contains diamonds

$\mathrm{R}[d] \times_{x} \mathrm{R}[c]$ diamonds with one arrow missing .

notation $\mathrm{R}[d] \times_{X} \mathrm{R}[c]=\mathrm{R}[d] \square^{0} \mathrm{R}[c]$

Higher-order box operation: $\square_{i} R\left[f_{i}\right]$ in degree 3

$\square_{i \in 3} \mathrm{R}\left[f_{i}\right] \geq \geq \geq \mathrm{P}\left[\left[_{1}\right] \square \mathrm{R}\left[\left[_{2}\right]\right.\right.$

The elements of $\square_{i} R\left[f_{i}\right]$ in degree 3

- in degree 3, the diamonds are octahedra, represented by matrices of order $2 \times 2 \times 2=2^{3}$ via geometric duality:

The elements of $\square_{i} R\left[f_{i}\right]$ in degree 3

- in degree 3, the diamonds are octahedra, represented by matrices of order $2 \times 2 \times 2=2^{3}$ via geometric duality:

- in $\square_{i}^{3} \mathrm{R}\left[f_{i}\right]$ the triangle b is missing, since $3=\{0,1,2\}$
- if F is central, this triangle is (uniquely) determined by an element of the direction A, as $\square_{i} \mathrm{R}\left[f_{i}\right] \cong A \times \bullet_{i}^{3} \mathrm{R}\left[f_{i}\right]$

The elements of $\square_{i} R\left[f_{i}\right]$ in degree 3

- in degree 3, the diamonds are octahedra, represented by matrices of order $2 \times 2 \times 2=2^{3}$ via geometric duality:

- in $\square_{i}^{3} R\left[f_{i}\right]$ the triangle b is missing, since $3=\{0,1,2\}$
- if F is central, this triangle is (uniquely) determined by an element of the direction A, as $\square_{i} \mathrm{R}\left[f_{i}\right] \cong A \times \square_{i}^{3} \mathrm{R}\left[f_{i}\right]$
- any cycle may be embedded into a diamond

Conclusion

In a semi-abelian category \mathcal{A} which satisfies (CC)
Correspondence between torsors and central extensions

$$
\mathrm{H}^{n+1}(Z, A) \cong \pi_{0} \operatorname{Tors}^{n}(Z, A) \cong \operatorname{Centr}^{n}(Z, A)
$$

Duality between homology and cohomology

$$
\begin{aligned}
& \mathrm{D}_{(n, Z)}: \operatorname{CExt}_{Z}^{n} \mathcal{A} \rightarrow \mathrm{Ab} \mathcal{A}: F \mapsto \mathrm{D}_{(n, Z)} F=\bigcap_{i \in n} \mathrm{~K}\left[f_{i}\right] \\
& \mathrm{H}_{n+1}(Z, \mathrm{Ab} \mathcal{A}) \cong \lim \mathrm{D}_{(n, Z)} \quad \quad \mathrm{H}^{n+1}(Z, A) \cong \pi_{0}\left(\mathrm{D}_{(n, Z)}^{-1} \mathcal{A}\right)
\end{aligned}
$$

To do

Extend to non-trivial coefficients
Characterise the commutator condition in elementary terms

