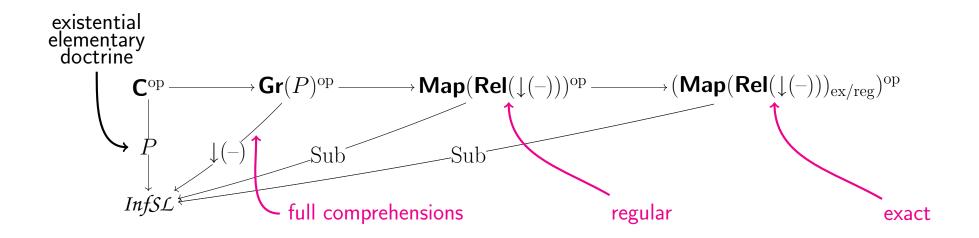
Quotients in hyperdoctrines

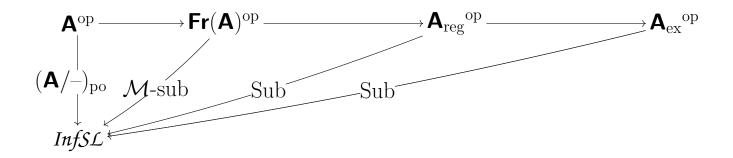
G. Rosolini joint work with Maria Emilia Maietti

Vancouver, 17-23 July 2011

Completing a preordered fibration to a subobject fibration



For **A** with finite products and weak equalizers



Equivalence relations in elementary doctrines

An elementary doctrine is $\mathbf{C}^{\mathrm{op}} \xrightarrow{P} InfSL$ such that

- C has binary products
- for each map $\operatorname{id}_X \times \Delta_A : X \times A \to X \times A \times A$ in **C**, the functor $P_{\operatorname{id}_X \times \Delta_A} : P(X \times A \times A) \to P(X \times A)$ has a left adjoint $\mathcal{A}_{\operatorname{id}_X \times \Delta_A}$ which satisfy

Beck-Chevalley Condition: for any arrow $f: A' \to A$ —producing a pullback diagram

$$\begin{array}{c|c} X' \times A & \xrightarrow{\operatorname{id}_{X'} \times \Delta_A} X' \times A \times A \\ f \times \operatorname{id}_A & & \downarrow f \times \operatorname{id}_A \times \operatorname{id}_A \\ & & \downarrow f \times \operatorname{id}_A \times \operatorname{id}_A \times A \\ & & X \times A & \xrightarrow{\operatorname{id}_X \times \Delta_A} X \times A \times A \end{array}$$

—for any β , the natural map

$$\mathcal{A}_{\mathrm{id}_{X'} \times \Delta_A} P_{f \times \mathrm{id}_A \times \mathrm{id}_A}(\beta) \leq P_{f \times \mathrm{id}_A} \mathcal{A}_{\mathrm{id}_X \times \Delta_A}(\beta) \quad \text{ is iso}$$

Frobenius Reciprocity: for α in $P(X \times A \times A)$, β in $P(X \times A)$, the natural map

 $\mathcal{I}_{\mathrm{id}_X\times\Delta_A}(P_{\mathrm{id}_X\times\Delta_A}(\alpha)\wedge\beta)\leq \alpha\wedge\mathcal{I}_{\mathrm{id}_X\times\Delta_A}(\beta)\quad\text{ is iso.}$

Equivalence relations in elementary doctrines

An elementary doctrine is $\mathbf{C}^{\mathrm{op}} \xrightarrow{P} InfSL$ such that

- C has binary products
- for each map $\operatorname{id}_X \times \Delta_A : X \times A \to X \times A \times A$ in **C**, the functor $P_{\operatorname{id}_X \times \Delta_A} : P(X \times A \times A) \to P(X \times A)$ has a left adjoint $\mathcal{A}_{\operatorname{id}_X \times \Delta_A}$ which satisfy

Beck-Chevalley Condition: for any arrow $f: A' \to A$ —producing a pullback diagram

$$\begin{array}{c|c} X' \times A & \xrightarrow{\operatorname{id}_{X'} \times \Delta_A} X' \times A \times A \\ f \times \operatorname{id}_A & & \downarrow f \times \operatorname{id}_A \times \operatorname{id}_A \\ & & \downarrow f \times \operatorname{id}_A \times \operatorname{id}_A \\ & & X \times A & \xrightarrow{\operatorname{id}_X \times \Delta_A} X \times A \times A \end{array}$$

—for any β , the natural map

$$\mathcal{A}_{\mathrm{id}_{X'} \times \Delta_A} P_{f \times \mathrm{id}_A \times \mathrm{id}_A}(\beta) \le P_{f \times \mathrm{id}_A} \mathcal{A}_{\mathrm{id}_X \times \Delta_A}(\beta) \quad \text{ is iso}$$

Frobenius Reciprocity: for α in $P(X \times A \times A)$, β in $P(X \times A)$, the natural map $\mathcal{A}_{\mathrm{id}_X \times \Delta_A}(P_{\mathrm{id}_X \times \Delta_A}(\alpha) \wedge \beta) \leq \alpha \wedge \mathcal{A}_{\mathrm{id}_X \times \Delta_A}(\beta)$ is iso.

A $P\text{-}\mathbf{equivalence}$ relation over A is an object ρ in $P(A\times A)$ such that

$$\begin{split} \delta_A &\leq \rho \\ \rho &\leq P_{\langle \mathrm{pr}_2, \mathrm{pr}_1 \rangle}(\rho) \\ P_{\langle \mathrm{pr}_1, \mathrm{pr}_2 \rangle}(\rho) \wedge P_{\langle \mathrm{pr}_2, \mathrm{pr}_3 \rangle}(\rho) &\leq P_{\langle \mathrm{pr}_1, \mathrm{pr}_3 \rangle}(\rho) \end{split}$$

Examples

• $X^{op} \longrightarrow InfSL$: the subobject functor on a category **X** with binary products and pullbacks

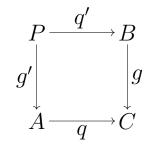
- $\mathbf{C}^{\mathrm{op}} \xrightarrow{T} InfSL$: a tripos on a category \mathbf{C} with finite products
- $V^{\text{op}} \xrightarrow{LT} InfSL$: the Lindenbaum-Tarski algebras of well-formed formulae of a first order theory on the category **V** of lists of typed variables and substitutions
- $\mathbf{A}^{\mathrm{op}} \xrightarrow{(\mathbf{A}/-)_{\mathrm{po}}} InfSL$: the poset reflections of the comma categories on a category \mathbf{A} with binary products and weak pullbacks
- $ML^{op} \xrightarrow{P^{ML}} InfSL$: the functor of propositions in context of Martin-Löf type theory on the category **ML** of closed types and terms in context

Quotients

A quotient of a *P*-equivalence relation ρ in $P(A \times A)$ is an arrow $q: A \to C$ in **C** such that

- $\rho \leq P_{q \times q}(\delta_C)$ and for every $h: A \to X$ in **C** such that $\rho \leq P_{h \times h}(\delta_X)$ there is a unique $k: C \to X$ in **C** such that $k \circ q = h$
- $P_{q \times q}(\delta_C) \le \rho$
- there is a bijection between P(C) and $\mathcal{D}es_{\rho}$, the sub-order of P(A) on those α such that $P_{\mathrm{pr}_1}(\alpha) \wedge \rho \leq P_{\mathrm{pr}_2}(\alpha)$

It is **stable** if, for $g: B \to C$, then there is a pullback



and $q': P \to B$ is a quotient of $P_{g' \times g'}(\rho)$

Trying to add quotients to an elementary doctrine

$$\begin{split} \mathbf{Q}_{P}^{\mathrm{op}} & _ \overline{P} \\ & \text{an object of } \mathbf{Q}_{P} \text{ is } (A, \rho) \text{ such that } A \text{ is an object in } \mathbf{C} \text{ and } \rho \text{ in } P(A \times A) \text{ is an equivalence relation} \\ & \text{an arrow of } \mathbf{Q}_{P} \text{ is } \left[f \right] : (A, \rho) \to (B, \sigma) \text{ is an equivalence class of arrows } f : A \to B \text{ in } \mathbf{C} \\ & \text{ such that } \rho \leq P_{f \times f}(\sigma) \\ & \text{ where } f \sim g \text{ when } \rho \leq_{A \times A} P_{f \times g}(\sigma) \end{split}$$

the semilattice $\overline{P}(A, \rho)$ is $\mathcal{D}es_{\rho}$.

The functor
$$\mathbf{C} \xrightarrow{J} \mathbf{Q}_P$$
 is full and $\overline{P} \circ J = P$.
 $A \longmapsto (A, \delta_A)$

When
$$\mathbf{C}^{\mathrm{op}} \xrightarrow{P} InfSL$$
 is $\mathbf{A}^{\mathrm{op}} \xrightarrow{(\mathbf{A}/-)_{\mathrm{po}}} InfSL$
 $\mathbf{Q}_{P}^{\mathrm{op}} \xrightarrow{\overline{P}} InfSL$ is $\mathbf{A}_{\mathrm{ex}}^{\mathrm{op}} \xrightarrow{\mathrm{Sub}} InfSL$

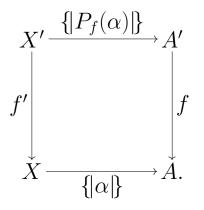
Comprehensions

For α in P(A), a weak comprehension of α is an arrow $\{|\alpha|\}: X \to A$ in **C** such that

- $\bullet \top_X \le P_{\{\!\!\{\alpha\}\!\!\}}(\alpha)$
- for every arrow $g: Y \to A$ such that $\top_Y \leq P_g(\alpha)$ there is a (not necessarily unique) $h: Y \to X$ such that

$$g = \{ |\alpha| \} \circ h$$

It is stable when, for every arrow $f: A' \to A$ in **C**, $P_{f'}(\alpha)$ has a weak comprehension and there is a weak pullback



Say that $P: \mathbb{C}^{\mathrm{op}} \longrightarrow InfSL$ is extensional if Δ_A is a comprehension of δ_A for every A in **A**.

Results

For an elementary doctrine $P: \mathbf{C}^{\mathrm{op}} \longrightarrow \mathit{InfSL}$

- If P: C^{op} → InfSL has weak comprehensions then P: Q_P^{op} → InfSL is an elementary doctrine with stable quotients and (strict) comprehensions. Moreover Q_P is a regular category.
- If $P: \mathbb{C}^{\mathrm{op}} \longrightarrow InfSL$ is extensional then $J: P \to \overline{P}$ is faithful. Moreover comprehensions are full in P if and only if they are so in \overline{P} .
- The assignment P → P determines a left biadjoint to the inclusion of extensional elementary doctrines with quotients and comprehensions into extensional elementary doctrines with comprehensions.
- If $P: \mathbb{C}^{\mathrm{op}} \longrightarrow InfSL$ is existential with weak comprehensions then $\overline{P}: \mathbb{Q}_P^{\mathrm{op}} \longrightarrow InfSL$ is existential.
- If $P: \mathbf{C}^{\mathrm{op}} \longrightarrow \mathit{InfSL}$ has full weak comprehensions and

- for every arrow f in **C**, the functor P_f has a right adjoint and these satisfy Beck-Chevalley condition

 $-\; \boldsymbol{\mathsf{C}}$ is weakly cartesian closed

then \mathbf{Q}_P is cartesian closed.

Comparing the two completions

For an elementary doctrine $P: \mathbf{C}^{\mathrm{op}} \longrightarrow \mathit{InfSL}$

