Generalized Tannakian duality

Daniel Schäppi

University of Chicago

22 July, 2011 International Category Theory Conference University of British Columbia

Outline

- 2 A bicategorical interpretation
- 3 The Tannakian biadjunction
- Applications

Classical Tannaka duality

Group-like objects

Categories equipped with suitable structures

Classical Tannaka duality

Group-like objects

Categories equipped with suitable structures

Reconstruction problem

Can a group-like object be reconstructed from its category of representations?

Classical Tannaka duality

Group-like objects

Categories equipped with suitable structures

Reconstruction problem

Can a group-like object be reconstructed from its category of representations?

Recognition problem

Which categories are equivalent to categories of representations for some group-like object?

Theorem

Every Hopf algebra can be reconstructed from the category of finite dimensional comodules.

Theorem

Every Hopf algebra can be reconstructed from the category of finite dimensional comodules.

Theorem (Saavedra Rivano, Deligne)

Let k be a field. If

Daniel Schäppi (University of Chicago)

Theorem

Every Hopf algebra can be reconstructed from the category of finite dimensional comodules.

Theorem (Saavedra Rivano, Deligne)

Let \boldsymbol{k} be a field. If

 $\bullet \ \mathscr{A}$ is an abelian autonomous symmetric monoidal k-linear category

Theorem

Every Hopf algebra can be reconstructed from the category of finite dimensional comodules.

Theorem (Saavedra Rivano, Deligne)

Let \boldsymbol{k} be a field. If

- $\bullet \ \mathscr{A}$ is an abelian autonomous symmetric monoidal k-linear category
- $w \colon \mathscr{A} \to \operatorname{Vect}_k$ is a faithful exact symmetric strong monoidal k-linear functor

Theorem

Every Hopf algebra can be reconstructed from the category of finite dimensional comodules.

Theorem (Saavedra Rivano, Deligne)

Let \boldsymbol{k} be a field. If

- $\bullet \ \mathscr{A}$ is an abelian autonomous symmetric monoidal k-linear category
- $w \colon \mathscr{A} \to \operatorname{Vect}_k$ is a faithful exact symmetric strong monoidal k-linear functor

then there exists a Hopf algebra H such that $\mathscr{A} \simeq \operatorname{Rep}(H)$.

The classical proof

Deligne's proof

The classical proof

Deligne's proof

• \mathscr{A} abelian, $w \colon \mathscr{A} \to \operatorname{Vect}_k$ faithful & exact $\rightsquigarrow \mathscr{A} \simeq \operatorname{Comod}(C)$

- \mathscr{A} abelian, $w \colon \mathscr{A} \to \operatorname{Vect}_k$ faithful & exact $\rightsquigarrow \quad \mathscr{A} \simeq \operatorname{Comod}(C)$
- \bullet symmetric monoidal structure $\quad \leadsto \quad$ bialgebra structure on C

- \mathscr{A} abelian, $w \colon \mathscr{A} \to \operatorname{Vect}_k$ faithful & exact $\rightsquigarrow \quad \mathscr{A} \simeq \operatorname{Comod}(C)$
- $\bullet\,$ symmetric monoidal structure $\quad \leadsto \quad$ bialgebra structure on C
- $\bullet \ \mathscr{A} \ \text{autonomous} \quad \rightsquigarrow \quad \text{Hopf algebra structure on } C$

- \mathscr{A} abelian, $w \colon \mathscr{A} \to \operatorname{Vect}_k$ faithful & exact $\rightsquigarrow \mathscr{A} \simeq \operatorname{Comod}(C)$
- $\bullet\,$ symmetric monoidal structure $\quad \leadsto \quad$ bialgebra structure on C
- $\bullet \ \mathscr{A} \text{ autonomous } \ \rightsquigarrow \ \ \text{Hopf algebra structure on } C$

Theorem (Street)

There is a biadjunction between k-linear categories over $Vect_k$ and coalgebras.

- \mathscr{A} abelian, $w \colon \mathscr{A} \to \operatorname{Vect}_k$ faithful & exact $\rightsquigarrow \mathscr{A} \simeq \operatorname{Comod}(C)$
- $\bullet\,$ symmetric monoidal structure $\quad \leadsto \quad$ bialgebra structure on C
- $\bullet \ \mathscr{A} \text{ autonomous } \quad \leadsto \quad \text{Hopf algebra structure on } C$

Theorem (Street)

There is a biadjunction between k-linear categories over Vect_k and coalgebras.

Reconstruction problem: when is the counit an isomorphism?

- \mathscr{A} abelian, $w \colon \mathscr{A} \to \operatorname{Vect}_k$ faithful & exact $\rightsquigarrow \mathscr{A} \simeq \operatorname{Comod}(C)$
- $\bullet\,$ symmetric monoidal structure $\quad \leadsto \quad$ bialgebra structure on C
- $\bullet \ \mathscr{A} \text{ autonomous } \quad \leadsto \quad \text{Hopf algebra structure on } C$

Theorem (Street)

There is a biadjunction between k-linear categories over Vect_k and coalgebras.

Reconstruction problem: when is the counit an isomorphism? Recognition problem: when is the unit an equivalence?

Definition

A cosmos is a complete and cocomplete symmetric monoidal closed category $\mathscr{V}.$

Definition

A cosmos is a complete and cocomplete symmetric monoidal closed category $\mathscr{V}.$

Definition

A profunctor (also known as distributor or module) $\mathscr{A} \to \mathscr{B}$ is a cocontinuous functor $[\mathscr{A}^{\mathrm{op}}, \mathscr{V}] \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$. The category of profunctors is denoted by $\mathbf{Prof}(\mathscr{V})$.

Definition

A cosmos is a complete and cocomplete symmetric monoidal closed category $\mathscr{V}.$

Definition

A profunctor (also known as distributor or module) $\mathscr{A} \to \mathscr{B}$ is a cocontinuous functor $[\mathscr{A}^{\mathrm{op}}, \mathscr{V}] \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$. The category of profunctors is denoted by $\mathbf{Prof}(\mathscr{V})$.

Observation

Coalgebras are precisely comonads $\mathscr{I} \twoheadrightarrow \mathscr{I}$ in $\mathbf{Prof}(\mathscr{V})$.

Definition

A left adjoint 1-cell in a bicategory is called a map.

Definition

A left adjoint 1-cell in a bicategory is called a map.

Lemma

Maps $\mathscr{A} \to \mathscr{B}$ in $\mathbf{Prof}(\mathscr{V})$ are in bijection with \mathscr{V} -functors $\mathscr{A} \to \overline{\mathscr{B}}$.

Definition

A left adjoint 1-cell in a bicategory is called a map.

Lemma

Maps $\mathscr{A} \to \mathscr{B}$ in $\mathbf{Prof}(\mathscr{V})$ are in bijection with \mathscr{V} -functors $\mathscr{A} \to \overline{\mathscr{B}}$.

Proof.

• Let $L \colon [\mathscr{A}^{\mathrm{op}}, \mathscr{V}] \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$ be cocontinuous.

Definition

A left adjoint 1-cell in a bicategory is called a map.

Lemma

Maps $\mathscr{A} \to \mathscr{B}$ in $\mathbf{Prof}(\mathscr{V})$ are in bijection with \mathscr{V} -functors $\mathscr{A} \to \overline{\mathscr{B}}$.

Proof.

- Let $L \colon [\mathscr{A}^{\mathrm{op}}, \mathscr{V}] \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$ be cocontinuous.
- Then there exists $w \colon \mathscr{A} \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$ such that $L = \operatorname{Lan}_Y w$.

Definition

A left adjoint 1-cell in a bicategory is called a map.

Lemma

Maps $\mathscr{A} \to \mathscr{B}$ in $\mathbf{Prof}(\mathscr{V})$ are in bijection with \mathscr{V} -functors $\mathscr{A} \to \overline{\mathscr{B}}$.

Proof.

- Let $L \colon [\mathscr{A}^{\mathrm{op}}, \mathscr{V}] \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$ be cocontinuous.
- Then there exists $w \colon \mathscr{A} \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$ such that $L = \operatorname{Lan}_Y w$.
- $\operatorname{Lan}_Y w$ has a right adjoint $X \mapsto \operatorname{Hom}(w-, X)$.

Definition

A left adjoint 1-cell in a bicategory is called a map.

Lemma

Maps $\mathscr{A} \to \mathscr{B}$ in $\mathbf{Prof}(\mathscr{V})$ are in bijection with \mathscr{V} -functors $\mathscr{A} \to \overline{\mathscr{B}}$.

Proof.

- Let $L \colon [\mathscr{A}^{\mathrm{op}}, \mathscr{V}] \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$ be cocontinuous.
- Then there exists $w \colon \mathscr{A} \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$ such that $L = \operatorname{Lan}_Y w$.
- $\operatorname{Lan}_Y w$ has a right adjoint $X \mapsto \operatorname{Hom}(w-, X)$.
- The right adjoint is cocontinuous $\Leftrightarrow w(A) \in \overline{\mathscr{B}}$ for all $A \in \mathscr{A}$.

Definition

A left adjoint 1-cell in a bicategory is called a map.

Lemma

Maps $\mathscr{A} \to \mathscr{B}$ in $\mathbf{Prof}(\mathscr{V})$ are in bijection with \mathscr{V} -functors $\mathscr{A} \to \overline{\mathscr{B}}$.

Proof.

- Let $L \colon [\mathscr{A}^{\mathrm{op}}, \mathscr{V}] \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$ be cocontinuous.
- Then there exists $w \colon \mathscr{A} \to [\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$ such that $L = \operatorname{Lan}_Y w$.
- $\operatorname{Lan}_Y w$ has a right adjoint $X \mapsto \operatorname{Hom}(w-, X)$.
- The right adjoint is cocontinuous $\Leftrightarrow w(A) \in \overline{\mathscr{B}}$ for all $A \in \mathscr{A}$.

Observation

The Cauchy completion of $\mathscr I$ is the full subcategory of dualizable objects in $\mathscr V.$

Daniel Schäppi (University of Chicago)

Question

Can we characterize Comod(C) in terms of a 2-categorical universal property in $Prof(\mathscr{V})$?

Definition

• A coaction of a comonad $c \colon B \to B$ is a morphism $v \colon A \to B$, together with a 2-cell $\rho \colon v \Rightarrow c.v$, compatible with the comonad structure.

Definition

- A coaction of a comonad $c \colon B \to B$ is a morphism $v \colon A \to B$, together with a 2-cell $\rho \colon v \Rightarrow c.v$, compatible with the comonad structure.
- A coaction (v, ρ) is called a map coaction if v is a map (left adjoint).

Definition

- A coaction of a comonad $c \colon B \to B$ is a morphism $v \colon A \to B$, together with a 2-cell $\rho \colon v \Rightarrow c.v$, compatible with the comonad structure.
- A coaction (v, ρ) is called a map coaction if v is a map (left adjoint).
- A morphism of (map) coactions $(v, \rho) \rightarrow (w, \sigma)$ is a 2-cell $\alpha : v \Rightarrow w$ compatible with ρ and σ .

Definition

- A coaction of a comonad $c \colon B \to B$ is a morphism $v \colon A \to B$, together with a 2-cell $\rho \colon v \Rightarrow c.v$, compatible with the comonad structure.
- A coaction (v, ρ) is called a map coaction if v is a map (left adjoint).
- A morphism of (map) coactions $(v, \rho) \rightarrow (w, \sigma)$ is a 2-cell $\alpha : v \Rightarrow w$ compatible with ρ and σ .

Definition

A Tannaka-Krein object is a $\mathit{universal}$ map coaction, i.e., a map coaction (v,ρ) such that

Definition

- A coaction of a comonad $c \colon B \to B$ is a morphism $v \colon A \to B$, together with a 2-cell $\rho \colon v \Rightarrow c.v$, compatible with the comonad structure.
- A coaction (v, ρ) is called a map coaction if v is a map (left adjoint).
- A morphism of (map) coactions $(v, \rho) \rightarrow (w, \sigma)$ is a 2-cell $\alpha : v \Rightarrow w$ compatible with ρ and σ .

Definition

A Tannaka-Krein object is a *universal* map coaction, i.e., a map coaction (v,ρ) such that

• Every map coaction is isomorphic to v.f for some map f.

Definition

- A coaction of a comonad $c \colon B \to B$ is a morphism $v \colon A \to B$, together with a 2-cell $\rho \colon v \Rightarrow c.v$, compatible with the comonad structure.
- A coaction (v, ρ) is called a map coaction if v is a map (left adjoint).
- A morphism of (map) coactions $(v, \rho) \rightarrow (w, \sigma)$ is a 2-cell $\alpha : v \Rightarrow w$ compatible with ρ and σ .

Definition

A Tannaka-Krein object is a $\mathit{universal}$ map coaction, i.e., a map coaction (v,ρ) such that

- Every map coaction is isomorphic to v.f for some map f.
- For all maps f and all 1-cells g, whiskering with v induces a bijection between 2-cells $g \Rightarrow f$ and morphisms of coactions $v.g \rightarrow v.f$.

Tannaka-Krein objects in $\mathbf{Prof}(\mathscr{V})$

Definition

Let C be a cocontinuous comonad on $[\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$. A Cauchy comodule of C is a comodule whose underlying object lies in $\overline{\mathscr{B}}$.

Definition

Let C be a cocontinuous comonad on $[\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$. A Cauchy comodule of C is a comodule whose underlying object lies in $\overline{\mathscr{B}}$. The \mathscr{V} -category of Cauchy comodules of C is denoted by $\operatorname{Rep}(C)$.

Definition

Let C be a cocontinuous comonad on $[\mathscr{B}^{\mathrm{op}}, \mathscr{V}]$. A Cauchy comodule of C is a comodule whose underlying object lies in $\overline{\mathscr{B}}$. The \mathscr{V} -category of Cauchy comodules of C is denoted by $\operatorname{Rep}(C)$.

Theorem (S.)

The forgetful functor $\operatorname{Rep}(C) \to \overline{\mathscr{B}}$ is a Tannaka-Krein object in $\operatorname{\mathbf{Prof}}(\mathscr{V})$

Tannakian biadjunction

11 / 17

Tannakian biadjunction

Theorem (S.)

If \mathcal{M} is a 2-category with Tannaka-Krein objects, then the functor

L: $\operatorname{Map}(\mathcal{M})/B \to \operatorname{\mathbf{Comon}}(B)$

given by $w \mapsto w.\overline{w}$ has a right biadjoint $\operatorname{Rep}(-)$ (which sends a comonad c to the Tannaka-Krein object of c).

Tannakian biadjunction

Theorem (S.)

If ${\mathscr M}$ is a 2-category with Tannaka-Krein objects, then the functor

 $L: \operatorname{Map}(\mathscr{M})/B \to \operatorname{\mathbf{Comon}}(B)$

given by $w \mapsto w.\overline{w}$ has a right biadjoint $\operatorname{Rep}(-)$ (which sends a comonad c to the Tannaka-Krein object of c).

• The category $\mathrm{Map}(\mathscr{M})/B$ has morphisms the triangles that commute up to invertible 2-cell.

If ${\mathscr M}$ is a 2-category with Tannaka-Krein objects, then the functor

 $L: \operatorname{Map}(\mathscr{M})/B \to \operatorname{\mathbf{Comon}}(B)$

given by $w \mapsto w.\overline{w}$ has a right biadjoint $\operatorname{Rep}(-)$ (which sends a comonad c to the Tannaka-Krein object of c).

- The category $\mathrm{Map}(\mathscr{M})/B$ has morphisms the triangles that commute up to invertible 2-cell.
- This theorem does not require the full strength of the definition of Tannaka-Krein objects.

Let \mathscr{M} be a monoidal 2-category, and $(B,m,u)\in\mathscr{M}$ a map pseudomonoid.

Let \mathscr{M} be a monoidal 2-category, and $(B,m,u)\in \mathscr{M}$ a map pseudomonoid. Given w and w' in $\operatorname{Map}(\mathscr{M})/B$, let $w\bullet w'$ be the composite

$$A \otimes A' \xrightarrow{w \otimes w'} B \otimes B \xrightarrow{m} B$$

12 / 17

Let \mathscr{M} be a monoidal 2-category, and $(B, m, u) \in \mathscr{M}$ a map pseudomonoid. Given w and w' in $Map(\mathscr{M})/B$, let $w \bullet w'$ be the composite

$$A \otimes A' \xrightarrow{w \otimes w'} B \otimes B \xrightarrow{m} B$$

Proposition

The above assignment endows $\mathrm{Map}(\mathscr{M})/B$ with the structure of a monoidal 2-category.

Let \mathscr{M} be a monoidal 2-category, let (A, d, e) be a pseudocomonoid in \mathscr{M} , and let (B, m, u) be pseudomonoid in \mathscr{M} .

Let $\mathscr M$ be a monoidal 2-category, let (A,d,e) be a pseudocomonoid in $\mathscr M$, and let (B,m,u) be pseudomonoid in $\mathscr M.$

Definition

The convolution product $f\star g$ of two 1-cells $f,g\in \mathscr{M}(A,B)$ is given by

$$A \xrightarrow{d} A \otimes A \xrightarrow{f \otimes g} B \otimes B \xrightarrow{m} B$$

13 / 17

Let $\mathscr M$ be a monoidal 2-category, let (A,d,e) be a pseudocomonoid in $\mathscr M$, and let (B,m,u) be pseudomonoid in $\mathscr M.$

Definition

The convolution product $f\star g$ of two 1-cells $f,g\in \mathscr{M}(A,B)$ is given by

$$A \xrightarrow{d} A \otimes A \xrightarrow{f \otimes g} B \otimes B \xrightarrow{m} B$$

Proposition

Let (B, m, u) be a map pseudomonoid in \mathscr{M} . Then $(B, \overline{m}, \overline{u})$ is a pseudocomonoid, and the convolution product on $\mathscr{M}(B, B)$ lifts to the category $\mathbf{Comon}(B)$ of comonads on B.

Let $\mathscr M$ be a monoidal 2-category, let (A,d,e) be a pseudocomonoid in $\mathscr M$, and let (B,m,u) be pseudomonoid in $\mathscr M.$

Definition

The convolution product $f\star g$ of two 1-cells $f,g\in \mathscr{M}(A,B)$ is given by

$$A \xrightarrow{d} A \otimes A \xrightarrow{f \otimes g} B \otimes B \xrightarrow{m} B$$

Proposition

Let (B, m, u) be a map pseudomonoid in \mathscr{M} . Then $(B, \overline{m}, \overline{u})$ is a pseudocomonoid, and the convolution product on $\mathscr{M}(B, B)$ lifts to the category $\mathbf{Comon}(B)$ of comonads on B.

A monoid in $\mathbf{Comon}(B)$ is precisely a monoidal comonad.

Daniel Schäppi (University of Chicago)

Theorem (S.)

If \mathscr{M} is a monoidal 2-category and (B,m,u) is a map pseudomonoid in \mathscr{M} , then the left adjoint of the Tannakian biadjunction is strong monoidal.

Theorem (S.)

If \mathcal{M} is a monoidal 2-category and (B, m, u) is a map pseudomonoid in *M*, then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let $w: A \to B$, $w': A' \to B$ be two objects in the domain of L.

Theorem (S.)

If \mathscr{M} is a monoidal 2-category and (B,m,u) is a map pseudomonoid in \mathscr{M} , then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let $w: A \to B$, $w': A' \to B$ be two objects in the domain of L. Since \otimes is a pseudofunctor, we have

$$L(w \bullet w') = B \xrightarrow{\overline{m}} B \otimes B \xrightarrow{\overline{w} \otimes \overline{w'}} A \otimes A' \xrightarrow{w \otimes w'} B \otimes B \xrightarrow{m} B$$

14 / 17

Theorem (S.)

If \mathscr{M} is a monoidal 2-category and (B,m,u) is a map pseudomonoid in \mathscr{M} , then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let $w: A \to B$, $w': A' \to B$ be two objects in the domain of L. Since \otimes is a pseudofunctor, we have

$$L(w \bullet w') = B \xrightarrow{\overline{m}} B \otimes B \xrightarrow{\overline{w} \otimes \overline{w'}} A \otimes A' \xrightarrow{w \otimes w'} B \otimes B \xrightarrow{m} B$$

By definition, $L(w)\star L(w')$ is given by

$$B \xrightarrow{\overline{m}} B \otimes B \xrightarrow{w.\overline{w} \otimes w'.\overline{w'}} B \otimes B \xrightarrow{m} B$$

Theorem (S.)

If \mathscr{M} is a monoidal 2-category and (B,m,u) is a map pseudomonoid in \mathscr{M} , then the left adjoint of the Tannakian biadjunction is strong monoidal.

Proof. Let $w: A \to B$, $w': A' \to B$ be two objects in the domain of L. Since \otimes is a pseudofunctor, we have

$$L(w \bullet w') = B \xrightarrow{\overline{m}} B \otimes B \xrightarrow{\overline{w} \otimes \overline{w'}} A \otimes A' \xrightarrow{w \otimes w'} B \otimes B \xrightarrow{m} B$$

By definition, $L(w)\star L(w^\prime)$ is given by

$$B \xrightarrow{\overline{m}} B \otimes B \xrightarrow{w.\overline{w} \otimes w'.\overline{w'}} B \otimes B \xrightarrow{m} B$$

Thus $L(w) \star L(w') \cong L(w \bullet w')$.

If ${\mathscr M}$ is braided and B is a braided map pseudomonoid, then

If \mathscr{M} is braided and B is a braided map pseudomonoid, then • $Map(\mathscr{M})/B$ is a braided 2-category.

If ${\mathscr M}$ is braided and B is a braided map pseudomonoid, then

- $\operatorname{Map}(\mathscr{M})/B$ is a braided 2-category.
- Comon(B) is a braided category.

If ${\mathscr M}$ is braided and B is a braided map pseudomonoid, then

- $Map(\mathcal{M})/B$ is a braided 2-category.
- Comon(B) is a braided category.
- The left adjoint of the Tannakian biadjunction is a *braided* strong monoidal 2-functor.

If ${\mathscr M}$ is braided and B is a braided map pseudomonoid, then

- $Map(\mathcal{M})/B$ is a braided 2-category.
- **Comon**(*B*) is a braided category.
- The left adjoint of the Tannakian biadjunction is a *braided* strong monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.

If ${\mathscr M}$ is braided and B is a braided map pseudomonoid, then

- $Map(\mathcal{M})/B$ is a braided 2-category.
- **Comon**(B) is a braided category.
- The left adjoint of the Tannakian biadjunction is a *braided* strong monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.

Corollary

If \mathcal{M} is (braided, sylleptic) monoidal, then the Tannakian biadjunction lifts to (braided, symmetric) pseudomonoids.

If ${\mathscr M}$ is braided and B is a braided map pseudomonoid, then

- $Map(\mathcal{M})/B$ is a braided 2-category.
- **Comon**(*B*) is a braided category.
- The left adjoint of the Tannakian biadjunction is a *braided* strong monoidal 2-functor.

Analogous facts hold for sylleptic and symmetric monoidal 2-categories.

Corollary

If \mathcal{M} is (braided, sylleptic) monoidal, then the Tannakian biadjunction lifts to (braided, symmetric) pseudomonoids.

Theorem (S.)

If A and B are autonomous map pseudomonoids, and $w\colon A\to B$ is a strong monoidal map, then $L(w)=w.\overline{w}$ is a Hopf monoidal comonad.

Daniel Schäppi (University of Chicago)

Hopf algebroids over an arbitrary commutative ring R

Let B be a commutative R-algebra, and let \mathscr{A} be an additive autonomous symmetric monoidal R-linear category.

Let B be a commutative R-algebra, and let \mathscr{A} be an additive autonomous symmetric monoidal R-linear category. Let $w \colon \mathscr{A} \to \operatorname{Mod}_B$ be a symmetric strong monoidal R-linear functor. Suppose that:

Let B be a commutative R-algebra, and let \mathscr{A} be an additive autonomous symmetric monoidal R-linear category. Let $w \colon \mathscr{A} \to \operatorname{Mod}_B$ be a symmetric strong monoidal R-linear functor. Suppose that:

- 0 w is faithful and reflects isomorphisms;
- 2 w is flat;
- (a) whenever the cokernel of w(f) is finitely generated projective, then the cokernel of f exists and is preserved by w.

Let B be a commutative R-algebra, and let \mathscr{A} be an additive autonomous symmetric monoidal R-linear category. Let $w \colon \mathscr{A} \to \operatorname{Mod}_B$ be a symmetric strong monoidal R-linear functor. Suppose that:

- 0 w is faithful and reflects isomorphisms;
- 2 w is flat;

(a) whenever the cokernel of w(f) is finitely generated projective, then the cokernel of f exists and is preserved by w.

Then there exists a Hopf algebroid (H,B) and an equivalence $\mathscr{A}\simeq \mathrm{Rep}(H,B).$

Summary

17 / 17

• The category of Cauchy comodules has the universal property of a TK-object in $\mathbf{Prof}(\mathscr{V})$.

- The category of Cauchy comodules has the universal property of a TK-object in $\mathbf{Prof}(\mathscr{V}).$
- The existence of TK-objects in \mathscr{M} implies that the Tannakian biadjunction exists.

- The category of Cauchy comodules has the universal property of a TK-object in Prof(𝒴).
- The existence of TK-objects in \mathscr{M} implies that the Tannakian biadjunction exists.
- If \mathcal{M} is monoidal, then the Tannakian biadjunction is monoidal.

- The category of Cauchy comodules has the universal property of a TK-object in Prof(𝒴).
- The existence of TK-objects in \mathscr{M} implies that the Tannakian biadjunction exists.
- If \mathscr{M} is monoidal, then the Tannakian biadjunction is monoidal.
- The same is true for braided, sylleptic and symmetric \mathcal{M} .

- The category of Cauchy comodules has the universal property of a TK-object in Prof(𝒴).
- The existence of TK-objects in *M* implies that the Tannakian biadjunction exists.
- If \mathcal{M} is monoidal, then the Tannakian biadjunction is monoidal.
- The same is true for braided, sylleptic and symmetric \mathcal{M} .
- This explains why the Tannakian biadjunction lifts to (braided or symmetric) pseudomonoids.

- The category of Cauchy comodules has the universal property of a TK-object in Prof(𝒴).
- The existence of TK-objects in \mathscr{M} implies that the Tannakian biadjunction exists.
- If \mathcal{M} is monoidal, then the Tannakian biadjunction is monoidal.
- $\bullet\,$ The same is true for braided, sylleptic and symmetric $\mathscr{M}.$
- This explains why the Tannakian biadjunction lifts to (braided or symmetric) pseudomonoids.

Thanks!