Fort Lewis COLLEGE Non-Discrete Groups and Higher Structure

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Twisted Equivariant Cohomology and Orbifolds

Laura Scull

Fort Lewis College

joint with Dorette Pronk (Dalhousie University) July 2011

Non-Discrete Groups and Higher Structure

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Categories in Equivariant Homotopy Introduction to Equivariant Homotopy Creating Algebraic Invariants

Non-Discrete Groups and Higher Structure

Discrete Fundamental Category Discrete Simplicial Category Bredon Cohomology

Connections to Orbifolds Creating Orbifold Invariants

Connections to Orbifolds

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Equivariant Homotopy

Fix a (compact Lie) group G.

We get a category of *G*-spaces and equivariant maps $f : X \to Y$ such that f(gx) = gf(x).

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Equivariant Homotopy

Fix a (compact Lie) group G.

We get a category of *G*-spaces and equivariant maps $f : X \to Y$ such that f(gx) = gf(x).

To study homotopy of this category:

Fixed sets $X^H = \{x \in X \mid hx = x \forall h \in H\}$

Connections to Orbifolds

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Equivariant Homotopy

Fix a (compact Lie) group G.

We get a category of *G*-spaces and equivariant maps $f : X \to Y$ such that f(gx) = gf(x).

To study homotopy of this category:

Fixed sets $X^H = \{x \in X \mid hx = x \forall h \in H\}$

Th A *G*-map $f : X \to Y$ is a *G*-homotopy equivalence iff $f^H : X^H \to Y^H$ is a homotopy equivalence for all (closed) subgroups *H* We think of *G*-spaces as diagrams of fixed sets.

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Orbit Category

These diagrams are organized by

 \mathcal{O}_G : category with

objects the canonical orbits G/H morphisms are G-maps

A map $G/H \rightarrow X$ is equivalent to $x \in X^H$ such that $eH \rightarrow x$

 $Map_G(G/H, X)$ defines a contravariant functor $\mathcal{O}_G \rightarrow$ Spaces

Connections to Orbifolds

A D F A 同 F A E F A E F A Q A

Orbit Category

These diagrams are organized by

 \mathcal{O}_G : category with

objects the canonical orbits G/H morphisms are G-maps

A map $G/H \rightarrow X$ is equivalent to $x \in X^H$ such that $eH \rightarrow x$

 $Map_G(G/H, X)$ defines a contravariant functor $\mathcal{O}_G \rightarrow$ Spaces

Maps in \mathcal{O}_{G} are defined by multiplication by elements $\alpha \in G$

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Orbit Category

Eg $G = \mathbb{Z}/2$

 \mathcal{O}_{G} has two types of orbits (free or fixed) so there are two objects, G/G and G/e

two non-identity maps:

- a non-trivial self-map $G/e \rightarrow G/e$
- projection $G/e \rightarrow G/G$

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Orbit Category

Eg $G = \mathbb{Z}/2$

 \mathcal{O}_{G} has two types of orbits (free or fixed) so there are two objects, G/G and G/e

two non-identity maps:

- a non-trivial self-map $G/e \rightarrow G/e$
- projection $G/e \rightarrow G/G$

$$\begin{array}{c} \stackrel{\tau}{\bigcap} \\ \textbf{G/e} \\ \downarrow^{\rho} \\ \textbf{G/G} \end{array} \qquad \tau^{2} = i\textbf{d} \\ \tau^{2} = i\textbf{d} \\$$

Non-Discrete Groups and Higher Structure

Connections to Orbifolds

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example

Eg $X = S^1$ with $G = \mathbb{Z}/2$ action

 X^G is two points.

Non-Discrete Groups and Higher Structure

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Algebraic Invariants

We can apply an algebraic invariant to the diagram of fixed sets The result will be a diagram of Abelian groups (or whatever) ie. (contravariant) functors $\mathcal{O}_G \to Ab$

Connections to Orbifolds

Diagrams of Fixed Sets

Bredon cohomology:

Apply the chain complex functor C_* to the diagram $\{X^H\}$

If <u>A</u> is a *coefficient system*, a functor <u>A</u> : $\mathcal{O}_{G}^{op} \to Ab$, then $Hom(\underline{C}_{*}(X), \underline{A})$ is a chain complex We define $H_{G}^{*}(X) = H_{\mathcal{O}_{G}}^{*}(Hom(\underline{C}_{*}(X), \underline{A}))$

Connections to Orbifolds

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Fundamental Groupoid

Fundamental groupoid $\Pi(X)$:

(homotopy classes of) paths between all points of X.

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fundamental Groupoid

Fundamental groupoid $\Pi(X)$:

(homotopy classes of) paths between all points of X.

Sibling of more popular fundamental group $\pi_1(X)$:

For a connected space, $\Pi(X)$ deformation retracts down to $\pi_1(X)$ by choosing a path to basepoint.

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Fundamental Groupoid

Fundamental groupoid $\Pi(X)$:

(homotopy classes of) paths between all points of X.

Sibling of more popular fundamental group $\pi_1(X)$:

For a connected space, $\Pi(X)$ deformation retracts down to $\pi_1(X)$ by choosing a path to basepoint.

Fundamental groupoids of fixed sets give a functor $\underline{\Pi} : \mathcal{O}_G \rightarrow \mathbf{Cat}$ by

$$\underline{\Pi}(G/H) = \Pi(X^H)$$

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Fundamental Groupoid

Fundamental groupoid $\Pi(X)$:

(homotopy classes of) paths between all points of X.

Sibling of more popular fundamental group $\pi_1(X)$:

For a connected space, $\Pi(X)$ deformation retracts down to $\pi_1(X)$ by choosing a path to basepoint.

Fundamental groupoids of fixed sets give a functor $\underline{\Pi} : \mathcal{O}_G \rightarrow \mathbf{Cat}$ by

$$\underline{\Pi}(G/H) = \Pi(X^H)$$

Wrap up into a single category:

Connections to Orbifolds

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Grothendieck semidirect product construction

Start with a functor $F : \mathcal{C}^{op} \to \mathbf{Cat}$

To combine image categories F(C) into one category:

The Grothendieck semidirect product $\int_{C} F$

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Grothendieck semidirect product construction

- Start with a functor $F : \mathcal{C}^{op} \rightarrow Cat$
- To combine image categories F(C) into one category:
- The Grothendieck semidirect product $\int_{C} F$
- **objects:** pairs (C, X), with
 - C object of CX object in F(C)

Grothendieck semidirect product construction

```
Start with a functor F : \mathcal{C}^{op} \rightarrow Cat
```

```
To combine image categories F(C) into one category:
```

```
The Grothendieck semidirect product \int_{C} F
```

```
objects: pairs (C, X), with
```

```
C object of C
```

```
X object in F(C)
```

```
arrows: (C, X) \rightarrow (C', Y) are pairs (f, v)
```

```
f: \mathcal{C} \to \mathcal{C}' an arrow in \mathcal{C}
```

```
v: X \to F(f)(Y) an arrow in F(C)
```

Grothendieck semidirect product construction

```
Start with a functor F : \mathcal{C}^{op} \rightarrow Cat
```

```
To combine image categories F(C) into one category:
```

```
The Grothendieck semidirect product \int_{C} F
```

```
objects: pairs (C, X), with
```

```
C object of C
```

X object in F(C)

```
arrows: (C, X) \rightarrow (C', Y) are pairs (f, v)
```

```
f: \mathcal{C} \to \mathcal{C}' an arrow in \mathcal{C}
```

```
v: X \to F(f)(Y) an arrow in F(C)
```

 $\int_{\mathcal{C}} F$ has projection functor to \mathcal{C}

turns a functor $F:\mathcal{C}^{\textit{op}}\to \textbf{Cat}$ into an object in the slice category $\textbf{Cat}\;/\mathcal{C}$

projection retains information about different F(C)

Connections to Orbifolds

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Equivariant Fundamental Groupoid

Start with $\underline{\Pi} : \mathcal{O}_G \rightarrow \mathbf{Cat}$ by

 $\underline{\Pi}(G/H) = \Pi(X^H)$

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Equivariant Fundamental Groupoid

Start with $\underline{\Pi} : \mathcal{O}_{\boldsymbol{G}} \rightarrow \boldsymbol{Cat}$ by

$$\underline{\Pi}(G/H) = \Pi(X^H)$$

Grothendieck semidirect product construction

 $\Pi_G(X) = \int_{\mathcal{O}_G} \underline{\Pi}$

- objects are pairs (G/H, x) for $x \in \Pi(X^H)$
- arrows (G/H, x) → (G/H', y) are pairs (α, γ) with α : G/H → G/H' and γ a path from x to αy

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Equivariant Fundamental Groupoid

Start with $\underline{\Pi} : \mathcal{O}_{\boldsymbol{G}} \rightarrow \boldsymbol{Cat}$ by

$$\underline{\Pi}(G/H) = \Pi(X^H)$$

Grothendieck semidirect product construction

 $\Pi_G(X) = \int_{\mathcal{O}_G} \underline{\Pi}$

- objects are pairs (G/H, x) for $x \in \Pi(X^H)$
- arrows (G/H, x) → (G/H', y) are pairs (α, γ) with α : G/H → G/H' and γ a path from x to αy Defined by tom Dieck

Non-Discrete Groups and Higher Structure

Connections to Orbifolds

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Example: $X = S^1$ again

 $\Pi_{G}(X)$ contains 'loops' (α, γ) at *x* from a path $\gamma : x \to \alpha x$

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Example: $X = S^1$ again

 $\Pi_G(X)$ contains 'loops' (α, γ) at *x* from a path $\gamma : x \to \alpha x$

Also has nontrivial constant paths from 'relabel' $(\alpha, c_x) : (G/H, x) \rightarrow (G/H, \alpha x)$

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Example: $X = S^1$ again

 $\Pi_G(X)$ contains 'loops' (α, γ) at *x* from a path $\gamma : x \to \alpha x$

Also has nontrivial constant paths from 'relabel' $(\alpha, c_x) : (G/H, x) \rightarrow (G/H, \alpha x)$ $\Pi_G(X)$ looks something like:

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Simplicial Category

(Mordijk-Svensson) $\underline{\Delta}_X(G/H)$ is the category with **objects**

$$\left(\sigma\colon\Delta^n\to X^H\right).$$

arrows $\theta: (\sigma: \Delta^n \to X^H) \to (\tau: \Delta^m \to X^H)$ are simplicial operators $\Delta^n \to \Delta^m$ such that the diagram

Connections to Orbifolds

Simplicial Category

(Mordijk-Svensson) $\underline{\Delta}_X(G/H)$ is the category with **objects**

$$\left(\sigma\colon\Delta^n\to X^H\right).$$

arrows $\theta: (\sigma: \Delta^n \to X^H) \to (\tau: \Delta^m \to X^H)$ are simplicial operators $\Delta^n \to \Delta^m$ such that the diagram

The equivariant simplicial category $\Delta_G(X) = \int_{\mathcal{O}_G} \Delta$ calculates Bredon cohomology.

Non-Discrete Groups and Higher Structure

Connections to Orbifolds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Non-Discrete Groups

Things get more interesting if *G* itself has topology.

Non-Discrete Groups and Higher Structure

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Non-Discrete Groups

Things get more interesting if *G* itself has topology. \mathcal{O}_G is a 2-category, with 2-cells the homotopies of maps

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Non-Discrete Groups

Things get more interesting if *G* itself has topology.

 \mathcal{O}_G is a 2-category, with 2-cells the homotopies of maps

Goal: arrange definitions to discard topology of G, but retain topology of action of G on X

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Non-Discrete Groups

Things get more interesting if *G* itself has topology.

- \mathcal{O}_G is a 2-category, with 2-cells the homotopies of maps
- Goal: arrange definitions to discard topology of G, but retain topology of action of G on X
- In constructing algebraic invariants, we want to index over $h\mathcal{O}_G$ In Bredon cohomology, take chains of $X^H/(WH)_0$

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Disrete Equivariant Fundamental Groupoid

Instead of taking homotopy classes of paths, we take $\Pi(X)$ as a 2-category

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Disrete Equivariant Fundamental Groupoid

Instead of taking homotopy classes of paths, we take $\Pi(X)$ as a 2-category

2-category version of $\int_{\mathcal{O}_G} \underline{\Pi}$: A 2-cell is a pair (σ, Λ) $\sigma: \alpha \Rightarrow \alpha'$ in \mathcal{O}_G and $\Lambda: \gamma \Rightarrow \gamma' \circ \sigma$

Connections to Orbifolds

Disrete Equivariant Fundamental Groupoid

Instead of taking homotopy classes of paths, we take $\Pi(X)$ as a 2-category

2-category version of $\int_{\mathcal{O}_G} \underline{\Pi}$: A 2-cell is a pair (σ, Λ) $\sigma \colon \alpha \Rightarrow \alpha'$ in \mathcal{O}_G and $\Lambda \colon \gamma \Rightarrow \gamma' \circ \sigma$

Identifying 2-cells gives $\Pi_G^d(X)$ (also tom Dieck) Remove relabelling loops coming from topology on G_{res} , r_{res} , r_{res

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Discrete Simplicial Category

If $H \leq G$ a homotopy $\Lambda : D \times I \rightarrow X^H$ comes from G if there exists a homotopy

 $\Gamma: D \times I \rightarrow G/H$

such that

 $\begin{array}{rcl} \Gamma(x,0) &= & eH & \mbox{ for all } x \in D, \\ \Lambda(x,s) &= & \Gamma(x,s)\Lambda(x,0) & \mbox{ for all } x \in D \mbox{ and } 0 \leq s \leq 1. \end{array}$

Non-Discrete Groups and Higher Structure

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Let $\Delta_X(G/H)$ be the category with **objects**

$$\left(\sigma\colon\Delta^n\to X^H\right)$$

arrows $\theta: (\sigma: \Delta^n \to X^H) \to (\tau: \Delta^m \to X^H)$ are simplicial operators $\Delta^n \to \Delta^m$ such that the diagram

commutes up to a homotopy coming from G.

Non-Discrete Groups and Higher Structure

Connections to Orbifolds

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Define a 2-functor $\underline{\Delta}_X : \mathcal{O}_G \to \mathbf{Cat}$ **Arrows:** $\alpha : G/H \to G/K$ in \mathcal{O}_G give maps of simplices by composition with α

Connections to Orbifolds

Define a 2-functor $\underline{\Delta}_X \colon \mathcal{O}_G \to \mathbf{Cat}$

Arrows: α : $G/H \rightarrow G/K$ in \mathcal{O}_G give maps of simplices by composition with α

2-cells: a homotopy γ from α to α' in \mathcal{O}_G gives a natural transformation with components $\Delta_X(\gamma)_{(\sigma,\Delta^n,\mathcal{K})} = (\mathsf{id}_{\Delta^n})$

This works because the diagram

commutes up to the homotopy $\gamma\sigma$, which comes from *G*.

Non-Discrete Groups and Higher Structure

Connections to Orbifolds

(日) (日) (日) (日) (日) (日) (日)

Form the Grothendieck 2-category $\Delta_G(X) = \int_{\mathcal{O}_G} \underline{\Delta}_X$ over \mathcal{O}_G : **objects** $(G/H, \sigma \colon \Delta^n \to X^H)$ **arrows** (α, θ) where $\alpha \colon G/H \to G/K$ is an arrow in \mathcal{O}_G , and $\theta \colon \Delta^n \to \Delta^m$ a simplicial operator, such that the diagram

commutes up to homotopy from *G*. **2-cells** of $\Delta_G(X)$ are of the form

$$(\gamma)$$
: $(\alpha, \theta) \Rightarrow (\alpha', \theta)$

where γ is a path from α to α' in \mathcal{O}_{G} .

Non-Discrete Groups and Higher Structure

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Form the discrete simplicial category $\Delta_G^d(X)$: mod out by the 2-cells of $\Delta_G(X)$): $([\alpha], \theta) = ([\alpha'], \theta')$ when $[\alpha] = [\alpha']$ in $h\mathcal{O}_G$ and $\theta = \theta'$. This lies over $h\mathcal{O}_G$.

Connections to Orbifolds

Form the discrete simplicial category $\Delta_G^d(X)$: mod out by the 2-cells of $\Delta_G(X)$): $([\alpha], \theta) = ([\alpha'], \theta')$ when $[\alpha] = [\alpha']$ in $h\mathcal{O}_G$ and $\theta = \theta'$. This lies over $h\mathcal{O}_G$.

If *G* discrete, both $\Delta_G(X)$ and $\Delta_G^d(X)$ agree with the construction given by Moerdijk-Svensson

Connections to Orbifolds

Form the discrete simplicial category $\Delta_G^d(X)$: mod out by the 2-cells of $\Delta_G(X)$): $([\alpha], \theta) = ([\alpha'], \theta')$ when $[\alpha] = [\alpha']$ in $h\mathcal{O}_G$ and $\theta = \theta'$.

This lies over $h\mathcal{O}_G$.

If *G* discrete, both $\Delta_G(X)$ and $\Delta_G^d(X)$ agree with the construction given by Moerdijk-Svensson

There are functors $\Delta_G(X) \to \Pi_G(X)$ and $\Delta_G^d(X) \to \Pi_G^d(X)$ which lie over \mathcal{O}_G and $h\mathcal{O}_G$ respectively in the sense that the following triangles commute:

Connections to Orbifolds

(ロ) (同) (三) (三) (三) (三) (○) (○)

The cohomology of the category $\Delta_G^d(X)$ is the equivariant cohomology of *X* as a *G*-space.

Coefficients for this cohomology are contravariant functors \underline{A} : $\Delta^d_G(X)^{\mathsf{op}} \to \mathbf{Ab}$.

coefficients are called

constant (with respect to X) when it factors through $h\mathcal{O}_G$ and

local if it factors through $\prod_{G}^{d}(X)$.

Th (Pronk-S) This definition agrees with the usual definition of Bredon cohomology.

Connections to Orbifolds • 0 0

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Connection to Orbifolds

Many orbifolds can be represented by a compact Lie group acting on a manifold with finite isotropy $G \ltimes M$

This representation is not unique:

Change-of-group Morita equivalences

A If $K \subseteq G$ acts freely on X, then $G \ltimes X$ is equivalent to $G/K \ltimes X/K$

ℤ/2 ⋉ (/∐/)

 $\{e\} \ltimes I$

Connections to Orbifolds • 0 0

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Connection to Orbifolds

Many orbifolds can be represented by a compact Lie group acting on a manifold with finite isotropy $G \ltimes M$

This representation is not unique:

Change-of-group Morita equivalences

A If $K \subseteq G$ acts freely on X, then $G \ltimes X$ is equivalent to $G/K \ltimes X/K$

Connections to Orbifolds $\circ \bullet \circ$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem from Previous Paper

Define a (bi)category of fractions **TrOrbiGrpd**[W^{-1}]:

- objects are transformation groupoids
- morphisms are spans $G \ltimes X \stackrel{w}{\leftarrow} K \ltimes Y \stackrel{\phi}{\rightarrow} H \ltimes Z$ where
 - w is a change-of-groups (A or B)
 - ϕ is an equivariant map
 - i.e. to define a map, replace $G \ltimes X$ by an equivalent $K \ltimes Y$ and then map out.

Note that this means all change-of-groups are isos.

Connections to Orbifolds $\circ \bullet \circ$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Theorem from Previous Paper

Define a (bi)category of fractions **TrOrbiGrpd**[W^{-1}]:

- objects are transformation groupoids
- morphisms are spans $G \ltimes X \stackrel{w}{\leftarrow} K \ltimes Y \stackrel{\phi}{\rightarrow} H \ltimes Z$ where
 - w is a change-of-groups (A or B)
 - ϕ is an equivariant map

i.e. to define a map, replace $G \ltimes X$ by an equivalent $K \ltimes Y$ and then map out.

Note that this means all change-of-groups are isos.

Th [Pronk-S] There is an equivalence of bicategories

$rOrbiGrpd[W^{-1}] \simeq TrOrbiGrpd[W^{-1}]$

representable orbifolds \longleftrightarrow (orbi) *G*-spaces up to change of groups

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Orbifold Fundamental Groupoid

To get an orbifold invariant, we need invariance under change-of-groups **A** and **B**.

Connections to Orbifolds

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Orbifold Fundamental Groupoid

To get an orbifold invariant, we need invariance under change-of-groups ${\bf A}$ and ${\bf B}$.

Examine the disk fundamental groupoid category Π^d_G carefully:

Th (Pronk-S)

Connections to Orbifolds

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Orbifold Fundamental Groupoid

To get an orbifold invariant, we need invariance under change-of-groups ${\bf A}$ and ${\bf B}$.

Examine the disk fundamental groupoid category Π_G^d carefully:

Th (Pronk-S)

Change of groups maps $G \ltimes X \to H \ltimes Y$ induce equivalence of categories

 $\Pi^d_G(X)$ and $\Pi^d_H(Y)$ $\Delta^d_G(X)$ and $\Delta^d_H(Y)$

Connections to Orbifolds

Orbifold Fundamental Groupoid

To get an orbifold invariant, we need invariance under change-of-groups ${\bf A}$ and ${\bf B}$.

Examine the disk fundamental groupoid category Π_G^d carefully:

Th (Pronk-S)

Change of groups maps $G \ltimes X \to H \ltimes Y$ induce equivalence of categories

 $\Pi^d_G(X)$ and $\Pi^d_H(Y)$

 $\Delta^d_G(X)$ and $\Delta^d_H(Y)$

So we have orbifold invariants and a way of defining Bredon cohomology with twisted coefficients for orbifolds.