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Equivariant Homotopy

Fix a (compact Lie) group G.
We get a category of G-spaces and equivariant maps f : X → Y
such that f (gx) = gf (x).

To study homotopy of this category:
Fixed sets X H = {x ∈ X | hx = x ∀ h ∈ H}

Th A G-map f : X → Y is a G-homotopy equivalence iff f H : X H → Y H

is a homotopy equivalence for all (closed) subgroups H
We think of G-spaces as diagrams of fixed sets.
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Orbit Category

These diagrams are organized by
OG: category with

objects the canonical orbits G/H
morphisms are G-maps

A map G/H → X is equivalent to x ∈ X H such that eH → x
MapG(G/H,X ) defines a contravariant functor OG → Spaces

Maps in OG are defined by multiplication by elements α ∈ G
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Orbit Category

Eg G = Z/2
OG has two types of orbits (free or fixed) so there are two objects,
G/G and G/e
two non-identity maps:

• a non-trivial self-map G/e→ G/e
• projection G/e→ G/G

G/e

ρ

��

τ

��
τ2 = id

G/G τρ = ρ



Categories in Equivariant Homotopy Non-Discrete Groups and Higher Structure Connections to Orbifolds

Orbit Category

Eg G = Z/2
OG has two types of orbits (free or fixed) so there are two objects,
G/G and G/e
two non-identity maps:

• a non-trivial self-map G/e→ G/e
• projection G/e→ G/G

G/e

ρ

��

τ

��
τ2 = id

G/G τρ = ρ



Categories in Equivariant Homotopy Non-Discrete Groups and Higher Structure Connections to Orbifolds

Example

Eg X = S1 with G = Z/2 action

X G is two points.
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Algebraic Invariants

We can apply an algebraic invariant to the diagram of fixed sets
The result will be a diagram of Abelian groups (or whatever)
ie. (contravariant) functors OG → Ab
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Diagrams of Fixed Sets

Bredon cohomology:
Apply the chain complex functor C∗ to the diagram {X H}

Cn(X )
��

Cn(X H)

99ssssssssss
Cn(X K )

eeKKKKKKKKKK

Cn(X G)

eeKKKKKKKKK

99sssssssss

If A is a coefficient system, a functor A : Oop
G → Ab,

then Hom(C∗(X ),A) is a chain complex
We define H∗G(X ) = H∗OG

(Hom(C∗(X ),A))
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Fundamental Groupoid

Fundamental groupoid Π(X ):
(homotopy classes of) paths between all points of X .

Sibling of more popular fundamental group π1(X ):
For a connected space, Π(X ) deformation retracts down to π1(X ) by
choosing a path to basepoint.
Fundamental groupoids of fixed sets give a functor Π : OG →Cat by

Π(G/H) = Π(X H)

Wrap up into a single category:
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Grothendieck semidirect product construction

Start with a functor F : Cop → Cat
To combine image categories F (C) into one category:
The Grothendieck semidirect product

∫
CF

objects: pairs (C,X ), with

C object of C
X object in F (C)

arrows: (C,X )→ (C′,Y ) are pairs (f , υ)

f : C → C′ an arrow in C
υ : X → F (f )(Y ) an arrow in F (C)

∫
CF has projection functor to C

turns a functor F : Cop → Cat into an object in the slice category
Cat /C
projection retains information about different F (C)
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Equivariant Fundamental Groupoid

Start with Π : OG →Cat by

Π(G/H) = Π(X H)

Grothendieck semidirect product construction
ΠG(X ) =

∫
OG

Π

• objects are pairs (G/H, x) for x ∈ Π(X H)
• arrows (G/H, x)→ (G/H ′, y) are pairs (α, γ) with α : G/H → G/H ′

and γ a path from x to αy

Defined by tom Dieck
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Example: X = S1 again
ΠG(X ) contains ’loops’ (α, γ) at x from a path γ : x → αx

Also has nontrivial constant paths from ‘relabel’
(α, cx ) : (G/H, x)→ (G/H, αx)

ΠG(X ) looks something like:

(G/e, x)
D∞/(α)'Z

&&MMMMMMMMMM
Z'D∞/(φ−1α)

xxqqqqqqqqqq

D∞

��

(G/G, y) (G/G, z)
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Simplicial Category
(Mordijk-Svensson) ∆X (G/H) is the category with
objects (

σ : ∆n → X H
)
.

arrows θ : (σ : ∆n → X H)→ (τ : ∆m → X H) are simplicial operators
∆n → ∆m such that the diagram

∆n

θ

��

σ

''OOOOOOOOOOOOO

X H

∆m

τ

77ooooooooooooo

The equivariant simplicial category ∆G(X ) =
∫
OG

∆ calculates
Bredon cohomology.
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Non-Discrete Groups

Things get more interesting if G itself has topology.

OG is a 2-category, with 2-cells the homotopies of maps
Goal: arrange definitions to discard topology of G, but retain
topology of action of G on X
In constructing algebraic invariants, we want to index over hOG

In Bredon cohomology, take chains of X H/(WH)0
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Disrete Equivariant Fundamental Groupoid
Instead of taking homotopy classes of paths, we take Π(X ) as a
2-category

2-category version of
∫
OG

Π:
A 2-cell is a pair (σ,Λ)
σ : α⇒ α′ in OG and Λ: γ ⇒ γ′ ◦ σ

x
γ //

Λ

αy

σy
��

x
γ′

// α′y

Identifying 2-cells gives Πd
G(X ) (also tom Dieck)

Remove relabelling loops coming from topology on G
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Discrete Simplicial Category

If H ≤ G a homotopy Λ: D × I → X H comes from G if there exists a
homotopy

Γ: D × I → G/H

such that

Γ(x ,0) = eH for all x ∈ D,
Λ(x , s) = Γ(x , s)Λ(x ,0) for all x ∈ D and 0 ≤ s ≤ 1.
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Let ∆X (G/H) be the category with
objects (

σ : ∆n → X H
)

arrows θ : (σ : ∆n → X H)→ (τ : ∆m → X H) are simplicial operators
∆n → ∆m such that the diagram

∆n

θ

��

σ

((QQQQQQQQQQQQQQQQ

'G X H

∆m

τ

66mmmmmmmmmmmmmmmm

commutes up to a homotopy coming from G.
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Define a 2-functor ∆X : OG → Cat
Arrows: α : G/H → G/K in OG give maps of simplices by
composition with α

2-cells: a homotopy γ from α to α′ in OG gives a natural
transformation with components ∆X (γ)(σ,∆n,K ) = (id∆n )

This works because the diagram

∆n

ασ

''NNNNNNNNNNNNN

X K

∆n
α′σ

77ppppppppppppp

commutes up to the homotopy γσ, which comes from G.
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Form the Grothendieck 2-category ∆G(X ) =
∫
OG

∆X over OG:

objects (G/H, σ : ∆n → X H)

arrows (α, θ) where α : G/H → G/K is an arrow in OG, and
θ : ∆n → ∆m a simplicial operator, such that the diagram

∆n

θ

��

σ

((QQQQQQQQQQQQQQQQ

'G X K

∆m

ατ

66mmmmmmmmmmmmmmmm

commutes up to homotopy from G.
2-cells of ∆G(X ) are of the form

(γ) : (α, θ)⇒ (α′, θ)

where γ is a path from α to α′ in OG.
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Form the discrete simplicial category ∆d
G(X ):

mod out by the 2-cells of ∆G(X )):
([α], θ) = ([α′], θ′) when [α] = [α′] in hOG and θ = θ′.
This lies over hOG.

If G discrete, both ∆G(X ) and ∆d
G(X ) agree with the construction

given by Moerdijk-Svensson
There are functors ∆G(X )→ ΠG(X ) and ∆d

G(X )→ Πd
G(X ) which lie

over OG and hOG respectively in the sense that the following
triangles commute:

∆G(X ) //

##FF
FF

FF
FF

F
ΠG(X )

{{xx
xx

xx
xx

x
∆d

G(X ) //

##HH
HH

HH
HH

H
Πd

G(X )

{{www
ww

ww
ww

OG hOG
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The cohomology of the category ∆d
G(X ) is the equivariant

cohomology of X as a G-space.
Coefficients for this cohomology are contravariant functors
A : ∆d

G(X )op → Ab.
coefficients are called
constant (with respect to X ) when it factors through hOG and
local if it factors through Πd

G(X ).
Th (Pronk-S) This definition agrees with the usual definition of Bredon

cohomology.
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Connection to Orbifolds

Many orbifolds can be represented by a compact Lie group acting on
a manifold with finite isotropy G n M
This representation is not unique:
Change-of-group Morita equivalences

A If K ⊆ G acts freely on X , then
G n X is equivalent to G/K n X/K

Z/2 n (I
∐

I) {e}n I

B If H ⊆ G, then
H n Y is equivalent to G n (G ×H Y )
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Theorem from Previous Paper

Define a (bi)category of fractions TrOrbiGrpd[W−1]:
• objects are transformation groupoids

• morphisms are spans G n X w← K n Y
φ→ H n Z where

• w is a change-of-groups (A or B)
• φ is an equivariant map

i.e. to define a map, replace G n X by an equivalent K n Y and then
map out.
Note that this means all change-of-groups are isos.

Th [Pronk–S] There is an equivalence of bicategories

rOrbiGrpd[W−1] ' TrOrbiGrpd[W−1]

representable orbifolds←→ (orbi) G-spaces
up to change of groups
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Orbifold Fundamental Groupoid

To get an orbifold invariant, we need invariance under
change-of-groups A and B.

Examine the disk fundamental groupoid category Πd
G carefully:

Th (Pronk-S)
Change of groups maps G n X → H n Y induce equivalence of
categories
Πd

G(X ) and Πd
H(Y )

∆d
G(X ) and ∆d

H(Y )

So we have orbifold invariants and a way of defining Bredon
cohomology with twisted coefficeints for orbifolds.
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