A Topological Theory of (T,V)-CATEGORies

Serdar Sozubek

York University, Toronto

CT2011, Vancouver

(1) (\mathbb{T}, V)-Categories

(2) L-CLOSURE
(3) L-COMPACTNESS
(4) L-SEPARATION
(5) L-COMPLETENESS

(T,V)-CATEGORIES

- $\mathbb{T}=(T, e, m)$ on Set

Eilenberg-Moore algebra $(X, a: T X \rightarrow X)$

- (V, \otimes, k) quantale

(T,V)-CATEGORIES

- $\mathbb{T}=(T, e, m)$ on Set

Eilenberg-Moore algebra $(X, a: T X \rightarrow X)$

- (V, \otimes, k) quantale
- a:TX $\nrightarrow X \quad V$-relation, $"="$ replaced by " $\leq "$
- (\mathbb{T}, V)-Cat $=$ Cat. of (\mathbb{T}, V)-categories and ($\mathbb{T}, \mathrm{V})$-functors

(T,V)-CATEGORIES

- $\mathbb{T}=(T, e, m)$ on Set

Eilenberg-Moore algebra $(X, a: T X \rightarrow X)$

- (V, \otimes, k) quantale
- $a: T X \nrightarrow X \quad V$-relation, $\quad "="$ replaced by " $\leq "$
- (\mathbb{T}, V)-Cat $=$ Cat. of (\mathbb{T}, V)-categories and ($\mathbb{T}, \mathrm{V})$-functors

Assumptions

Strict Topological Theory (Hofmann 2007)

Assumptions

Strict Topological Theory (Hofmann 2007)

- $\mathbb{T}=(T, e, m): T, m$ satisfy $B C, \quad(T 1=1)$
- V quantale
- $\xi: T V \rightarrow V$ compatible with \mathbb{T} and V
- $1_{V}=\xi . e_{V}$
- $\xi \cdot T \xi=\xi \cdot m_{V}$
- $k .!=\xi \cdot T k$
- $\otimes .<\xi . T \pi_{1}, \xi . T \pi_{2}>=\xi . T(\otimes)$
- $\left(\xi_{x}\right)_{x}: P_{V} \rightarrow P_{V} T$ nat. trans.

Assumptions

Strict Topological Theory (Hofmann 2007)

- $\mathbb{T}=(T, e, m): T, m$ satisfy $B C, \quad(T 1=1)$
- V quantale
- $\xi: T V \rightarrow V$ compatible with \mathbb{T} and V
- $1_{V}=\xi . e_{V}$
- $\xi \cdot T \xi=\xi \cdot m_{V}$
- $k .!=\xi . T k$
- $\otimes .<\xi . T \pi_{1}, \xi . T \pi_{2}>=\xi . T(\otimes)$
- $\left(\xi_{x}\right)_{x}: P_{V} \rightarrow P_{V} T$ nat. trans.
- $r: X \nrightarrow Y$

$$
T(X \times Y) \xrightarrow{\left\langle T \pi_{1}, T \pi_{2}\right\rangle} T X \times T Y
$$

ExAMPLES

Examples

$$
\begin{array}{ll}
\mathbb{T}=\mathbb{I} & \Longrightarrow V \text {-enriched categories } \\
V=2 & \Longrightarrow \quad \text { Ord } \\
V=\mathbb{P}_{+}=[0, \infty]^{o p} & \Longrightarrow \quad \text { Met }
\end{array}
$$

Examples

$$
\begin{array}{ll}
\mathbb{T}=\mathbb{I} & \Longrightarrow V \text {-enriched categories } \\
V=2 & \Longrightarrow \quad \text { Ord } \\
V=\mathbb{P}_{+}=[0, \infty]^{o p} & \Longrightarrow \quad \text { Met }
\end{array}
$$

$$
\begin{array}{lll}
\mathbb{T}=U, V=2 \quad & \Longrightarrow \quad \text { Top } \\
\mathbb{T}=U, V=\mathbb{P}_{+} & \Longrightarrow &
\end{array}
$$

Examples

$$
\begin{array}{ll}
\mathbb{T}=\mathbb{I} & \Longrightarrow V \text {-enriched categories } \\
V=2 & \Longrightarrow \\
V=\mathbb{P}_{+}=[0, \infty]^{o p} & \Longrightarrow
\end{array}
$$

$$
\begin{aligned}
& \mathbb{T}=U, V=2 \quad \Longrightarrow \quad \text { Top } \\
& \mathbb{T}=U, V=\mathbb{P}_{+} \quad \Longrightarrow \quad \underline{\text { App }} \quad \text { (Clementino \& Hofmann, 2003) }
\end{aligned}
$$

L-CLOSURE

- L-closure: symmetrized closure

Closed maps: $\mathcal{F}=\left\{f: X \rightarrow Y \mid f\left(\bar{M}^{\mathscr{L}}\right)=\overline{f(M)}^{\mathscr{L}}\right\}$

L-CLOSURE

- L-closure: symmetrized closure

Closed maps: $\mathcal{F}=\left\{f: X \rightarrow Y \mid f\left(\bar{M}^{\mathscr{L}}\right)=\overline{f(M)}{ }^{\mathscr{L}}\right\}$

- $M \subseteq X, y \in X$

Met,

$$
y \in \bar{M} \quad \Longleftrightarrow \quad 0 \geq d(y, M)=\inf _{z \in M} d(y, z)
$$

V-Cat, $\quad y \in \bar{M} \quad \Longleftrightarrow \quad k \leq \bigvee_{z \in M} a(y, z)$

$$
y \in \bar{M}^{\mathscr{L}} \Longleftrightarrow k \leq \bigvee_{z \in M} a(y, z) \otimes a(z, y)
$$

L-CLOSURE

- L-closure: symmetrized closure

Closed maps: $\mathcal{F}=\left\{f: X \rightarrow Y \mid f\left(\bar{M}^{\mathscr{L}}\right)=\overline{f(M)}{ }^{\mathscr{L}}\right\}$

- $M \subseteq X, y \in X$

Met, $\quad y \in \bar{M} \quad \Longleftrightarrow 0 \geq d(y, M)=\inf _{z \in M} d(y, z)$
V-Cat, $\quad y \in \bar{M} \quad \Longleftrightarrow \quad k \leq \bigvee_{z \in M} a(y, z)$

$$
y \in \bar{M}^{\mathscr{L}} \Longleftrightarrow k \leq \bigvee_{z \in M} a(y, z) \otimes a(z, y)
$$

(T,V)-Cat, $\quad y \in \bar{M} \quad \Longleftrightarrow \quad k \leq \bigvee_{\mathfrak{x} \in T M} a(\mathfrak{x}, y)$

$$
y \in \bar{M}^{\mathscr{L}} \Longleftrightarrow \quad k \leq \bigvee_{\mathfrak{x} \in T M} a(\mathfrak{x}, y) \otimes ?
$$

L-CLOSURE

- $A \dashv S:(\mathbb{T}, V)$-Cat $\rightarrow V$-Cat
(Specialization :Top $\rightarrow \underline{\text { Ord, } \quad \text { Alexandroff }: \underline{\text { Ord }} \rightarrow \underline{\text { Top }}) ~}$
$A\left(S(X)^{o p}\right)=\left(X,\left(\widehat{T} a \cdot T e_{x} \cdot e_{x}\right)^{\circ}\right)$
- $y \in \bar{M}^{\mathscr{L}} \Longleftrightarrow \quad k \leq \bigvee_{\mathfrak{x} \in T M} a(\mathfrak{x}, y) \otimes \widehat{T} a T e_{x}\left(e_{x}(y), \mathfrak{x}\right)$

L-CLOSURE

- $A \dashv S:(\mathbb{T}, V)$-Cat $\rightarrow V$-Cat
(Specialization :Top $\rightarrow \underline{\text { Ord, } \quad \text { Alexandroff }: \underline{\text { Ord }} \rightarrow \underline{\text { Top }}) ~}$
$A\left(S(X)^{o p}\right)=\left(X,\left(\widehat{T} a \cdot T e_{x} \cdot e_{x}\right)^{\circ}\right)$
- $y \in \bar{M}^{\mathscr{L}} \Longleftrightarrow \quad k \leq \bigvee_{\mathfrak{x} \in T M} a(\mathfrak{x}, y) \otimes \widehat{T} a T e_{x}\left(e_{x}(y), \mathfrak{x}\right)$
- $\mathscr{L}:(\mathbb{T}, \mathrm{V})$-Cat $\rightarrow \underline{\text { Top }} \quad(k \vee$-irreducible \& T preserves finite sums)

L-CLOSURE

- $A \dashv S:(\mathbb{T}, V)$-Cat $\rightarrow V$-Cat
(Specialization : Top $\rightarrow \underline{\text { Ord, }} \quad$ Alexandroff $: \underline{\text { Ord }} \rightarrow$ Top)
$A\left(S(X)^{o p}\right)=\left(X,\left(\widehat{T} a \cdot T e_{x} \cdot e_{x}\right)^{\circ}\right)$
- $y \in \bar{M}^{\mathscr{L}} \Longleftrightarrow \quad k \leq \bigvee_{\mathfrak{r} \in T M} a(\mathfrak{r}, y) \otimes \hat{T}_{a} T_{x}\left(e_{x}(y), \mathfrak{x}\right)$
- $\mathscr{L}:(\mathbb{T}, \mathrm{V})$-Cat $\rightarrow \underline{\text { Top }} \quad(k \vee$-irreducible \& T preserves finite sums)

TOP (B-CLOSURE)

$y \in \bar{M}^{b} \Longleftrightarrow \forall U$ open nbhd of $y, \quad U \cap M \cap \overline{\{y\}} \neq \emptyset$

App (Zariski closure, Giuli 2006)

$y \in \bar{M}^{z} \Longleftrightarrow \forall \alpha, \beta \in \mathscr{R}\left(\alpha_{\mid M}=\beta_{\mid M} \Rightarrow \alpha(y)=\beta(y)\right)$
$(X, d), \quad y \in \bar{M}^{Z} \Longleftrightarrow \quad \forall \varepsilon>0, d\left(y, M \cap\{y\}^{(\varepsilon)}\right)=0$

L-COMPACTNESS

- $\mathcal{F}=\left\{f: X \rightarrow Y \mid f\left(\bar{M}^{\mathscr{L}}\right)=\overline{f(M)}{ }^{\mathscr{L}}\right\}$

L-COMPACTNESS

- $\mathcal{F}=\left\{f: X \rightarrow Y \mid f\left(\bar{M}^{\mathscr{L}}\right)=\overline{f(M)}^{\mathscr{L}}\right\}$
- (Top) $\quad X$ compact $\Longleftrightarrow \forall Y, \pi_{Y}: X \times Y \rightarrow Y$ closed

DEFINITION
 X L-compact $\Longleftrightarrow \forall Y, \pi_{Y}: X \times Y \rightarrow Y \in \mathcal{F}$

L-COMPACTNESS

- $\mathcal{F}=\left\{f: X \rightarrow Y \mid f\left(\bar{M}^{\mathscr{L}}\right)=\overline{f(M)}^{\mathscr{L}}\right\}$
- (Top) X compact $\Longleftrightarrow \forall Y, \pi_{Y}: X \times Y \rightarrow Y$ closed

DEFINITION

X L-compact $\Longleftrightarrow \forall Y, \pi_{Y}: X \times Y \rightarrow Y \in \mathcal{F}$

Theorem

\mathscr{L} preserves finite products, X is L-compact $\Longleftrightarrow \mathscr{L}(X)$ is compact

L-COMPACTNESS

- $\mathcal{F}=\left\{f: X \rightarrow Y \mid f\left(\bar{M}^{\mathscr{L}}\right)=\overline{f(M)}{ }^{\mathscr{L}}\right\}$
- (Top) $\quad X$ compact $\Longleftrightarrow \forall Y, \pi_{Y}: X \times Y \rightarrow Y$ closed

Definition

X L-compact $\Longleftrightarrow \forall Y, \pi_{Y}: X \times Y \rightarrow Y \in \mathcal{F}$

Theorem

\mathscr{L} preserves finite products, X is L-compact $\Longleftrightarrow \mathscr{L}(X)$ is compact

ExAMPLES

Top b-topology of X is compact App Zariski compact?

L-COMPACTNESS

- $y \in \bar{M}^{\mathscr{L}} \Longleftrightarrow \quad k \leq \bigvee_{\mathfrak{x} \in T M} a(\mathfrak{x}, y) \otimes \hat{T}_{a} T e_{x}\left(e_{x}(y), \mathfrak{x}\right)$

$$
\begin{array}{ll}
y \in \bar{M}:= & k \leq \bigvee_{\mathfrak{x} \in T M} a(\mathfrak{x}, y)
\end{array}>\tau
$$

L-COMPACTNESS

- $y \in \bar{M}^{\mathscr{L}} \Longleftrightarrow \quad k \leq \bigvee_{\mathfrak{r} \in T M} a(\mathfrak{x}, y) \otimes \hat{T}_{a} T_{x}\left(e_{x}(y), \mathfrak{x}\right)$

$$
\begin{aligned}
& y \in \bar{M}:=\quad k \leq \bigvee_{\mathfrak{x} \in T M} a(\mathfrak{x}, y) \\
& y \in \bar{M}^{d}:=k \leq \bigvee_{\mathfrak{r} \in T M} \widehat{T}_{a} T e_{x}\left(e_{x}(y), \mathfrak{x}\right) \Longrightarrow \tau^{d}
\end{aligned}
$$

$$
B(X):=\left(X, \tau, \tau^{d}\right), \quad J\left(X, \tau, \tau^{d}\right):=\left(X, \tau \vee \tau^{d}\right)
$$

L-COMPACTNESS

- $y \in \bar{M}^{\mathscr{L}} \Longleftrightarrow \quad k \leq \bigvee_{\mathfrak{x} \in T M} a(\mathfrak{x}, y) \otimes \widehat{T} a T e_{x}\left(e_{x}(y), \mathfrak{x}\right)$

$$
\begin{array}{ll}
y \in \bar{M}:= & k \leq \bigvee_{\mathfrak{x} \in T M} a(\mathfrak{x}, y)
\end{array} \Longrightarrow \tau
$$

$$
B(X):=\left(X, \tau, \tau^{d}\right), \quad J\left(X, \tau, \tau^{d}\right):=\left(X, \tau \vee \tau^{d}\right)
$$

APP

X Zariski compact \Longleftrightarrow i) Every τ-closed set is τ^{d}-compact
ii) Every τ^{d}-closed set is τ-compact

L-SEPARATION

Definition

X L-separated $\Longleftrightarrow \delta_{X}: X \rightarrow X \times X \in \mathcal{F}$

L-SEPARATION

Definition

X L-separated $\Longleftrightarrow \delta_{X}: X \rightarrow X \times X \in \mathcal{F}$

$$
\begin{array}{ll}
\varphi:(X, a) \rightharpoonup(Y, b)(\mathbb{T}, \mathrm{V}) \text {-module }: \Longleftrightarrow & \varphi: T X \nrightarrow Y \\
& \varphi \circ a=\varphi \& b \circ \varphi=\varphi \\
f:(X, a) \rightarrow(Y, b) \Longrightarrow \quad \begin{array}{l}
f_{*}: X \rightharpoonup Y,
\end{array} & \begin{array}{l}
* *(x, y)=b(T f(\mathfrak{x}), y) \\
f^{*}: Y \rightharpoonup X,
\end{array} \\
& f^{*}(\eta, x)=b(\eta, f(x))
\end{array}
$$

L-SEPARATION

Definition

X L-separated $\Longleftrightarrow \delta_{X}: X \rightarrow X \times X \in \mathcal{F}$

$$
\begin{aligned}
& \varphi:(X, a) \rightharpoonup(Y, b)(\mathbb{T}, \mathrm{V}) \text {-module }: \Longleftrightarrow \varphi: T X \nrightarrow Y \\
& \varphi \circ a=\varphi \& b \circ \varphi=\varphi \\
& f:(X, a) \rightarrow(Y, b) \Longrightarrow \quad f_{*}: X \rightharpoonup Y, \quad f_{*}(\mathfrak{x}, y)=b(T f(\mathfrak{x}), y) \\
& f^{*}: Y \rightharpoonup X, \quad f^{*}(\eta, x)=b(\eta, f(x))
\end{aligned}
$$

Proposition

(X, a) L-separated $\Longleftrightarrow \forall x, z \in X\left(x_{*}=z_{*} \Longrightarrow x=z\right)$

L-SEPARATION

Definition

X L-separated $\Longleftrightarrow \delta_{X}: X \rightarrow X \times X \in \mathcal{F}$

$$
\left.\begin{array}{rl}
\varphi:(X, a) \rightharpoonup(Y, b)(\mathbb{T}, V) \text {-module }: \Longleftrightarrow & \varphi: T X \nrightarrow Y \\
& \varphi \circ a=\varphi \& b \circ \varphi=\varphi \\
f:(X, a) \rightarrow(Y, b) \Longrightarrow \begin{array}{l}
f_{*}: X \rightharpoonup Y,
\end{array} \\
& f_{*}:(\mathfrak{x}, y)=b(T f(\mathfrak{x}), y)
\end{array}\right)
$$

Proposition

(X, a) L-separated $\Longleftrightarrow \forall x, z \in X\left(x_{*}=z_{*} \Longrightarrow x=z\right)$

ExAMPLES

Top X is T_{0}
App Top. coreflection of X is T_{0}

L-COMPLETENESS

LaWVERe (1973)

L-COMPLETENESS

Lawvere (1973)

$$
\left(x_{n}\right) \text { Cauchy } \longmapsto\left\{\begin{array}{l}
\varphi(x)=\lim _{n \rightarrow \infty} d\left(x_{n}, x\right) \\
\psi(x)=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right) \\
\varphi \dashv \psi: X \rightharpoonup\{\star\}
\end{array}\right.
$$

L-COMPLETENESS

LaWvere (1973)

$$
\left(x_{n}\right) \text { Cauchy } \longmapsto\left\{\begin{array}{l}
\varphi(x)=\lim _{n \rightarrow \infty} d\left(x_{n}, x\right) \\
\psi(x)=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right) \\
\varphi \dashv \psi: X \rightarrow\{\star\}
\end{array}\right.
$$

$\varphi \dashv \psi \quad \longmapsto$ Eq. class of Cauchy seq.

L-COMPLETENESS

LaWvere (1973)

$$
\left(x_{n}\right) \text { Cauchy } \longmapsto\left\{\begin{array}{l}
\varphi(x)=\lim _{n \rightarrow \infty} d\left(x_{n}, x\right) \\
\psi(x)=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right) \\
\varphi \dashv \psi: X \rightharpoonup\{\star\}
\end{array}\right.
$$

$\varphi \dashv \psi \quad \longmapsto$ Eq. class of Cauchy seq.

$$
\left(x_{n}\right) \rightarrow x \quad \Longleftrightarrow \varphi=x_{*} \quad\left(\Leftrightarrow \psi=x^{*}\right)
$$

L-COMPLETENESS

Lawvere (1973)

$$
\left(x_{n}\right) \text { Cauchy } \longmapsto\left\{\begin{array}{l}
\varphi(x)=\lim _{n \rightarrow \infty} d\left(x_{n}, x\right) \\
\psi(x)=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right) \\
\varphi \dashv \psi: X \rightharpoonup\{\star\}
\end{array}\right.
$$

$$
\varphi \dashv \psi \quad \longmapsto \text { Eq. class of Cauchy seq. }
$$

$$
\left(x_{n}\right) \rightarrow x \Longleftrightarrow \varphi=x_{*} \quad\left(\Leftrightarrow \psi=x^{*}\right)
$$

DEFINITION

(X, a) L-complete $: \Longleftrightarrow \forall \varphi \dashv \psi:(X, a) \rightharpoonup(E, k), \quad \exists x \in X: \varphi=x_{*}$

L-COMPLETENESS

LAWVERE (1973)

$$
\left(x_{n}\right) \text { Cauchy } \longmapsto\left\{\begin{array}{l}
\varphi(x)=\lim _{n \rightarrow \infty} d\left(x_{n}, x\right) \\
\psi(x)=\lim _{n \rightarrow \infty} d\left(x, x_{n}\right) \\
\varphi \dashv \psi: X \rightharpoonup\{\star\}
\end{array}\right.
$$

$$
\varphi \dashv \psi \quad \longmapsto \text { Eq. class of Cauchy seq. }
$$

$$
\left(x_{n}\right) \rightarrow x \Longleftrightarrow \varphi=x_{*} \quad\left(\Leftrightarrow \psi=x^{*}\right)
$$

DEFINITION

(X, a) L-complete $: \Longleftrightarrow \forall \varphi \dashv \psi:(X, a) \rightharpoonup(E, k), \quad \exists x \in X: \varphi=x_{*}$

TOP

X L-complete $\Longleftrightarrow X$ weakly sober

L-COMPLETE MORPHISMS

- X L-complete \& M L-closed $\Longrightarrow M$ L-complete X L-separated \& M L-complete $\Longrightarrow M$ L-closed

L-COMPLETE MORPHISMS

- X L-complete \& M L-closed $\Longrightarrow M$ L-complete X L-separated \& M L-complete $\Longrightarrow M$ L-closed
- compact object un proper map

L-complete object $u \rightarrow$?

L-COMPLETE MORPHISMS

- X L-complete \& M L-closed $\Longrightarrow M$ L-complete X L-separated \& M L-complete $\Longrightarrow M$ L-closed
- compact object $4 \rightarrow$ proper map L-complete object \nVdash ?

Definition (L-COMPLETE (\mathbb{T}, V) FUNCTOR)
$f:(X, a) \rightarrow(Y, b): \quad \forall \varphi \dashv \psi: X \rightarrow E \quad \& \quad \forall y \in Y$
$(E, k) \xrightarrow{\varphi}(X, a)$

$$
\Longrightarrow \exists x \in X: \varphi=x_{*} \& f(x)=y
$$

L-COMPLETE MORPHISMS

- X L-complete \& M L-closed $\Longrightarrow M$ L-complete X L-separated \& M L-complete $\Longrightarrow M$ L-closed
- compact object $4 \rightarrow$ proper map L-complete object

Definition (L-COMPLETE (\mathbb{T}, V) FUNCTOR)

$f:(X, a) \rightarrow(Y, b): \quad \forall \varphi \dashv \psi: X \rightarrow E \quad \& \quad \forall y \in Y$

$\Longrightarrow \exists x \in X: \varphi=x_{*} \& f(x)=y$

- (X, a) L-complete $\Longleftrightarrow!_{x}:(X, a) \longrightarrow(1, \top)$ L-complete

L-COMPLETE MORPHISMS

Met

$$
\overline{\overline{\text { TOP }}} \overline{\overline{f(A)}}=\overline{\{y\}} \Longrightarrow \exists x \in X: A=\overline{\{x\}} \& f(x)=y
$$

L-COMPLETE MORPHISMS

MET

TOP

$$
\overline{f(A)}=\overline{\{y\}} \Longrightarrow \exists x \in X: A=\overline{\{x\}} \& f(x)=y
$$

Properties

- Pullback stable
- X L-complete, Y L-sep. $\Longrightarrow \forall f: X \rightarrow Y$ L-complete
- Cancellation w.r.t. L-separated maps,

$$
f: X \rightarrow Y \text { L-sep. } \Longleftrightarrow \forall x, z \in X\left(x_{*}=z_{*} \& f(x)=f(z) \Rightarrow x=z\right)
$$

Factorization System

Factorization System

- $\beta:$ Tych \rightarrow CpctHaus

Factorization Sys. on Tych: (antiperfect, perfect)
Antiperfect $=\beta^{-1}\{$ Iso $\}$, Perfect $=$ Proper \& separated

Factorization System

- $\beta:$ Tych \rightarrow CpctHaus

Factorization Sys. on Tych: (antiperfect, perfect)
Antiperfect $=\beta^{-1}\{$ Iso $\}$, Perfect $=$ Proper \& separated

- $\mathcal{Y}:(\mathbb{T}, \mathrm{V})$-Cat $\rightarrow(\mathbb{T}, \mathrm{V})$ - Cat $_{\text {cpl }}$ \& sep

Factorization Sys. on ($\mathbb{T}, \mathrm{V})$-Cat : $\left(\mathcal{Y}^{-1}\{\right.$ Iso $\}$, L-comp \& L-sep)
$\mathcal{Y}^{-1}\{$ lso $\}=\left\{f \mid f_{*} \circ f^{*}=1, f^{*} \circ f_{*}=1\right\}$

