Topology in categories of (\mathbb{T}, V)-Categories

Walter Tholen*
York University, Toronto, Canada
CT 2011, Vancouver, Canada

*Based on joint work with Dirk Hofmann, University of Averio, Portugal

(1) "TOPOLOGY" ON A CATEGORY

(2) $\operatorname{Prop}(\mathbb{T}, V)$ and $\operatorname{Open}(\mathbb{T}, V)$

(3) v-Closure

"Topology" on A category

$\mathcal{P} \subseteq$ mor $\mathfrak{X} \quad$ " \mathcal{E}-topology on $\mathfrak{X} "$

- contains all isomorphisms
- closed under composition
- stable under pullback
- right-cancellable w.r.t. $\mathcal{E} \quad(p . e \in \mathcal{P}, e \in \mathcal{E} \Rightarrow p \in \mathcal{P})$
(\mathfrak{X} finitely complete, \mathcal{E} an \mathcal{E}-topology on \mathfrak{X})

Derived topology, fibrewise topology

$\mathcal{P}^{\prime}:=\left\{f: X \rightarrow Y \mid\left(\delta_{f}: X \rightarrow X{ }_{Y} X\right) \in \mathcal{P}\right\}$
is an $(\mathcal{E} \cap \mathcal{P})$-topology on \mathfrak{X}
$\mathcal{P}_{Y}:=\sum_{Y}^{-1}(\mathcal{P})$
is an \mathcal{E}_{Y}-topology on \mathfrak{X} / Y
$\left(Y \in \operatorname{ob} \mathfrak{X}, \quad \sum_{Y}: \mathfrak{X} / Y \rightarrow \mathfrak{X}\right)$

Compact, Hausdorff

$X \mathcal{P}$-compact $: \Longleftrightarrow(X \rightarrow 1) \in \mathcal{P}$
$(f: X \rightarrow Y) \mathcal{P}_{Y \text {-compact }} \Longleftrightarrow f \in \mathcal{P} \Longleftrightarrow: f \mathcal{P}$-proper
$X \mathcal{P}$-Hausdorff $: \Longleftrightarrow(X \rightarrow 1) \in \mathcal{P}^{\prime}$
$(f: X \rightarrow Y) \mathcal{P}_{Y}$-Hausdorff $\Longleftrightarrow f \in \mathcal{P}^{\prime} \Longleftrightarrow: f \mathcal{P}$-Hausdorff

Fundamental Proposition

$X \mathcal{P}$-compact $\Longleftrightarrow \forall f: X \rightarrow Y, Y \mathcal{P}$-Hausdorff: $f \mathcal{P}$-proper
$\Longleftrightarrow \quad \exists f: X \rightarrow Y \mathcal{P}$-proper, $Y \mathcal{P}$-compact
$\Longleftrightarrow \quad \forall Y:(X \times Y \rightarrow Y) \mathcal{P}$-proper
$\Longleftrightarrow \quad \forall Y \mathcal{P}$-compact: $X \times Y \mathcal{P}$-compact
$\Longleftrightarrow \quad \forall f: X \rightarrow Y$ in $\mathcal{E}: Y \mathcal{P}$-compact

Fundamental Corollary

Fundamental Proposition, Derived version

$X \mathcal{P}$-Hausdorff $\Longleftrightarrow \quad \forall f: X \rightarrow Y: f \mathcal{P}$-Hausdorff
$\Longleftrightarrow \quad \exists f: X \rightarrow Y \mathcal{P}$-Hausdorff, $Y \mathcal{P}$-Hausdorff
$\Longleftrightarrow \quad \forall Y:(X \times Y \rightarrow Y) \mathcal{P}$-Hausdorff
$\Longleftrightarrow \quad \forall Y \mathcal{P}$-Hausdorff: $X \times Y \mathcal{P}$-Hausdorff
$\Longleftrightarrow \quad \forall f: X \rightarrow Y \mathcal{P}$-proper in $\mathcal{E}: Y \mathcal{P}$-Hausdorff

\mathcal{P}-OPEN MAPS

$f: X \rightarrow Y \mathcal{P}$-dense $\quad: \Longleftrightarrow \quad \forall f=p . h:(p \in \mathcal{P} \Rightarrow p \in \mathcal{E})$
$f: X \rightarrow Y \mathcal{P}$-open
$\forall f^{\prime}: X \rightarrow Y$ pb of $f:$
$\left(f^{\prime}\right)^{*}: \mathfrak{X} / Y^{\prime} \rightarrow \mathfrak{X} / X^{\prime}$ pres. \mathcal{P}-density
$\mathcal{P}^{\circ}:=\{\mathcal{P}$-open morphisms $\}$ is an \mathcal{E}-topology

\mathcal{P}°-compact, \mathcal{P}°-HaUSDORFF

$$
\begin{aligned}
& \left(\sum_{x: 1 \rightarrow x} 1 \rightarrow X\right) \in \mathcal{E} \Rightarrow X \mathcal{P}^{\circ} \text {-compact } \\
& (\mathfrak{X} \text { extensive) }
\end{aligned}
$$

$X \mathcal{P}$-discrete $\quad: \Longleftrightarrow X \mathcal{P}^{\circ}$-Hausdorff

Seal 2005

$$
\begin{aligned}
& \mathbb{T}=(T, m, e) \text { monad on Set } \\
& V=(V, \otimes, k) \text { (comm.) quantale }
\end{aligned}
$$

$\widehat{\mathbb{T}}$ a lax extension of \mathbb{T} to V-Rel

- $\widehat{T} X=T X, \widehat{T}$ lax functor
- $e: 1 \rightarrow \widehat{T}, m: \widehat{T} \widehat{T} \rightarrow \widehat{T}$ op-lax
- $(T f)_{\circ} \leq \widehat{T}\left(f_{\circ}\right),(T f)^{\circ} \leq \widehat{T}\left(f^{\circ}\right)$

Hofmann $2007 \hookrightarrow$ Seal

$$
x \xrightarrow[+]{+} y
$$

$$
X \times y \xrightarrow{\vec{r}} V
$$

$$
X \times Y \xrightarrow{\stackrel{\tilde{r}}{\longrightarrow}} 1
$$

$\xi: T V \rightarrow V$

(\mathbb{T}, V)-Cat

$\operatorname{Prop}(\mathbb{T}, V), \operatorname{Open}(\mathbb{T}, V)$

$\operatorname{Prop}(\mathbb{T}, V): \quad f . a=b . T f$
\mathcal{E}-topology on (\mathbb{T}, V)-Cat (if V cartesian closed)
$\operatorname{Open}(\mathbb{T}, V): \quad a .(T f)^{\circ}=f^{\circ} . b$
\mathcal{E}-topology on (\mathbb{T}, V)-Cat (if V c.c. , T sat's $B C$)

Characterize such morphisms!

$M:(\mathbb{T}, V)$-Cat $\longrightarrow V$-Cat

\mathbb{T} can be lifted from Set to V-Cat:

$$
T(X, a)=(T X, \widehat{T} a)
$$

(\mathbb{T}, V)-Cat $\frac{K}{L}(V \text {-Cat })^{\mathbb{T}} \longrightarrow V$-Cat

$$
\begin{aligned}
(X, a) \longmapsto\left(T X, \widehat{T} a \cdot m_{x}^{\circ}, m_{x}\right) \longmapsto & \left(T X, \widehat{T} a \cdot m_{x}^{\circ}\right) \\
& =(T X, \widehat{a})
\end{aligned}
$$

Reduction to the case $\mathbb{T}=\mathbb{I}$

$f(\mathbb{T}, V)$-proper $\quad \Longrightarrow \quad M f \quad V$-proper
$(\widehat{T}(g . r)=T g . \widehat{T} r, m$ satisfies BC)
$f \quad(\mathbb{T}, V)$-open $\Longleftrightarrow M f \quad V$-open
$\left(\widehat{T}\left(r . f^{\circ}\right)=\widehat{T} r .(T f)^{\circ}\right)$

$\mathbf{T o p}=(\beta, 2)$-Cat, $\mathbf{A p p}=\left(\beta, \mathbb{P}_{+}\right)-$Cat

$M:$ Top \rightarrow Ord, $\quad X \longmapsto(\beta X, \leq)$

$$
\begin{aligned}
\mathfrak{x} \leq \mathfrak{y} & : \Longleftrightarrow \forall A \text { closed }(A \in \mathfrak{x} \Rightarrow A \in \mathfrak{y}) \\
& \Longleftrightarrow \forall B \text { open }(B \in \mathfrak{y} \Rightarrow B \in \mathfrak{x})
\end{aligned}
$$

$M: \mathbf{A p p} \rightarrow$ Met,$\quad X \longmapsto(\beta X, d)$

$$
\begin{aligned}
& d(\mathfrak{x}, \mathfrak{y}):=\inf \left\{v \in[0, \infty] \mid \forall A \in \mathfrak{x}: A^{(v)} \in \mathfrak{y}\right\} \\
& \begin{aligned}
A^{(v)} & =\left\{y \in X \mid \inf _{\mathfrak{l} \ni A} a(\mathfrak{x}, y) \leq v\right\} \\
& =\{y \in X \mid \delta(A, y) \leq v\}
\end{aligned}
\end{aligned}
$$

Proper and Open

 For Ord And $\operatorname{Met}\left(\mathbb{T}=\mathbb{I}, V=2, \mathbb{P}_{+}\right)$

$$
\begin{align*}
& b(f(x), y)=\inf \left\{a(x, z) \mid z \in f^{-1} y\right\} \tag{X,a}\\
& b(y, f(x))=\inf \left\{a(z, x) \mid z \in f^{-1} y\right\}
\end{align*}
$$

Proper and Open For Top and App $\left(\mathbb{T}=\beta, V=2, \mathbb{P}_{+}\right)$

Mf proper $\Longleftrightarrow f$ is a closed map (in the usual sense)
f proper $\Longleftrightarrow f$ is stably closed
f open $\Longleftrightarrow M f$ open $\Longleftrightarrow f$ open (in the usual sense)
"Same" for App
$f:(X, \delta) \rightarrow\left(Y, \delta^{\prime}\right)$ closed: $\quad \delta^{\prime}(f(A), y) \geq \inf \left\{\delta(A, x) \mid x \in f^{-1} y\right\}$ open: $\quad \delta\left(f^{-1}(B), x\right) \leq \delta^{\prime}(B, f(x))$

v-Closure, Grand closure

$$
\begin{aligned}
& A \subseteq(X, a), \quad \perp<v \leq k \\
& A^{(v)}=\left\{y \in X \mid v \leq \bigvee_{\mathfrak{x} \in T A} a(\mathfrak{x}, y)\right\} \\
& \bar{A}=\{y \in X \mid \exists \mathfrak{x} \in T A: a(\mathfrak{x}, y)>\perp\}=\bigcup_{v>\perp} A^{(v)}
\end{aligned}
$$

Proper and Open via closure

$f(\mathbb{T}, V)$-proper $\Longrightarrow \overline{f(A)}=f(\bar{A})$

$$
f(A)^{(v)}=\bigcap_{u \ll v} f\left(A^{(u)}\right)
$$

(V ccd)
$f(\mathbb{T}, V)$-open $\quad \Longrightarrow \overline{f^{-1}(B)}=f^{-1}(\bar{B})$
(T taut)

$$
f^{-1}(B)^{(v)}=\bigcap_{u \ll v} f^{-1}\left(B^{(u)}\right)
$$

($V \mathrm{ccd}$)

Tychonoff

V completely distributive
$\Longrightarrow \operatorname{Prop}(\mathbb{T}, V)$ closed under products (Schubert 2005)

Open (\mathbb{T}, V) closed under coproducts

