Topology in categories of (\mathbb{T}, V) -Categories

Walter Tholen*

York University, Toronto, Canada

CT 2011, Vancouver, Canada

*Based on joint work with Dirk Hofmann, University of Averio, Portugal

1 "Topology" on a category

 \bigcirc Prop(\mathbb{T}, V) and Open(\mathbb{T}, V)

3 V-Closure

"Topology" on a category

$$\mathcal{P}\subseteq\mathsf{mor}\mathfrak{X}\quad \text{``\mathcal{E}-topology on \mathfrak{X}''}$$

- contains all isomorphisms
- closed under composition
- stable under pullback
- ullet right-cancellable w.r.t. \mathcal{E} $(p.e \in \mathcal{P}, e \in \mathcal{E} \Rightarrow p \in \mathcal{P})$

 $(\mathfrak{X} \text{ finitely complete, } \mathcal{E} \text{ an } \mathcal{E}\text{-topology on } \mathfrak{X})$

DERIVED TOPOLOGY, FIBREWISE TOPOLOGY

$$\mathcal{P}':=\{f:X o Y\mid (\delta_f:X o X imes_YX)\in\mathcal{P}\}$$
 is an $(\mathcal{E}\cap\mathcal{P})$ -topology on \mathfrak{X}

$$\mathcal{P}_Y := \sum_Y^{-1}(\mathcal{P})$$
 is an \mathcal{E}_Y -topology on \mathfrak{X}/Y $(Y \in \mathsf{ob}\mathfrak{X}, \ \sum_Y : \mathfrak{X}/Y \to \mathfrak{X})$

Compact, Hausdorff

$$X \mathcal{P}$$
-compact $:\iff (X \to 1) \in \mathcal{P}$
 $(f: X \to Y) \mathcal{P}_{Y}$ -compact $\iff f \in \mathcal{P} \iff: f \mathcal{P}$ -proper

$$X \mathcal{P}$$
-Hausdorff : $\iff (X \to 1) \in \mathcal{P}'$
 $(f: X \to Y) \mathcal{P}_Y$ -Hausdorff $\iff f \in \mathcal{P}' \iff f \mathcal{P}$ -Hausdorff

FUNDAMENTAL PROPOSITION

$$X$$
 $\mathcal{P}\text{-compact}$ \iff $\forall f: X \to Y, \ Y$ $\mathcal{P}\text{-Hausdorff: } f$ $\mathcal{P}\text{-proper}$ \iff $\exists f: X \to Y$ $\mathcal{P}\text{-proper}, \ Y$ $\mathcal{P}\text{-compact}$ \iff $\forall Y: (X \times Y \to Y)$ $\mathcal{P}\text{-proper}$ \iff $\forall Y$ $\mathcal{P}\text{-compact: } X \times Y$ $\mathcal{P}\text{-compact}$ \iff $\forall f: X \to Y \text{ in } \mathcal{E}\text{: } Y$ $\mathcal{P}\text{-compact}$

FUNDAMENTAL COROLLARY

FUNDAMENTAL PROPOSITION, DERIVED VERSION

$$X \mathcal{P} ext{-Hausdorff} \iff \forall f: X o Y \colon f \mathcal{P} ext{-Hausdorff}$$
 $\iff \exists f: X o Y \mathcal{P} ext{-Hausdorff}, \ Y \mathcal{P} ext{-Hausdorff}$ $\iff \forall Y \colon (X \times Y o Y) \mathcal{P} ext{-Hausdorff}$ $\iff \forall Y \mathcal{P} ext{-Hausdorff}$ $\iff \forall f: X o Y \mathcal{P} ext{-proper in } \mathcal{E} \colon Y \mathcal{P} ext{-Hausdorff}$

\mathcal{P} -OPEN MAPS

$$f: X \to Y \mathcal{P}$$
-dense $:\iff \forall f = p.h: (p \in \mathcal{P} \Rightarrow p \in \mathcal{E})$

$$f:X o Y$$
 $\mathcal P$ -open $:\iff \forall f':X o Y$ pb of $f:$ $(f')^*:\mathfrak X/Y' o\mathfrak X/X'$ pres. $\mathcal P$ -density

 $\mathcal{P}^{\circ} := \{\mathcal{P}\text{-open morphisms}\}$ is an $\mathcal{E}\text{-topology}$

\mathcal{P}° -COMPACT, \mathcal{P}° -HAUSDORFF

$$\left(\sum_{x:1\to X}1\to X\right)\in\mathcal{E}\quad\Longrightarrow\quad X\;\mathcal{P}^\circ\text{-compact}$$
 $(\mathfrak{X}\;\text{extensive})$

$$X \mathcal{P}$$
-discrete : $\iff X \mathcal{P}^{\circ}$ -Hausdorff

SEAL 2005

$$\mathbb{T} = (T, m, e)$$
 monad on **Set**

$$V = (V, \otimes, k)$$
 (comm.) quantale

 $\widehat{\mathbb{T}}$ a lax extension of \mathbb{T} to V-Rel

- $\widehat{T}X = TX$, \widehat{T} lax functor
- ullet $e:1
 ightarrow \widehat{T},\ m:\widehat{T}\widehat{T}
 ightarrow \widehat{T}$ op-lax
- $(Tf)_{\circ} \leq \widehat{T}(f_{\circ}), (Tf)^{\circ} \leq \widehat{T}(f^{\circ})$

Hofmann $2007 \hookrightarrow \text{Seal}$

$\xi: TV \to V$

(\mathbb{T}, V) -Cat

$$f.a \le b.Tf$$

 $a.(Tf)^{\circ} \le f^{\circ}.b$

◆□ > ◆□ > ◆ ≥ > ◆ ≥ > □ ● の へ ○

$\operatorname{Prop}(\mathbb{T}, V)$, $\operatorname{Open}(\mathbb{T}, V)$

$$\begin{split} \mathsf{Prop}(\mathbb{T},\,V) \colon & \quad f.a = b.\,Tf \\ \mathcal{E}\text{-topology on } (\mathbb{T},\,V)\text{-}\mathbf{Cat} & \quad \text{(if V cartesian closed)} \end{split}$$

$$\begin{aligned} & \mathsf{Open}(\mathbb{T},V) \colon \quad a.(Tf)^\circ = f^\circ.b \\ & \mathcal{E}\text{-topology on } (\mathbb{T},V)\text{-}\mathbf{Cat} \quad \text{(if V c.c. , T sat's BC)} \end{aligned}$$

Characterize such morphisms!

$M: (\mathbb{T}, V)\text{-}\mathbf{Cat} \longrightarrow V\text{-}\mathbf{Cat}$

 \mathbb{T} can be lifted from **Set** to *V*-**Cat**:

$$T(X, a) = (TX, \widehat{T}a)$$

$$(\mathbb{T}, V)\text{-Cat} \xrightarrow{\qquad \qquad \qquad } (V\text{-Cat})^{\mathbb{T}} \longrightarrow V\text{-Cat}$$

$$(X, a) \longmapsto (TX, \widehat{T}a.m_{x}^{\circ}, m_{x}) \longmapsto (TX, \widehat{T}a.m_{x}^{\circ})$$

$$= (TX, \widehat{a})$$

Reduction to the case $\mathbb{T} = \mathbb{I}$

$$f^{-}(\mathbb{T},V)$$
-proper \Longrightarrow $Mf^{-}V$ -proper $(\widehat{T}(g.r)=Tg.\widehat{T}r,\ m\ \text{satisfies\ BC})$

$$f$$
 (\mathbb{T},V) -open \iff Mf V -open $(\widehat{T}(r.f^\circ)=\widehat{T}r.(Tf)^\circ)$

$Top=(\beta, 2)$ -Cat, $App=(\beta, \mathbb{P}_+)$ -Cat

$$M: \mathbf{Top} o \mathbf{Ord}, \quad X \longmapsto (eta X, \leq)$$

$$\mathfrak{x} \leq \mathfrak{y} \quad : \iff \quad \forall A \text{ closed } (A \in \mathfrak{x} \Rightarrow A \in \mathfrak{y})$$

$$\iff \quad \forall B \text{ open } (B \in \mathfrak{y} \Rightarrow B \in \mathfrak{x})$$

$$M: \mathbf{App} o \mathbf{Met}, \qquad X \longmapsto (eta X, d)$$

$$d(\mathfrak{x}, \mathfrak{y}) := \inf\{v \in [0, \infty] \mid \forall A \in \mathfrak{x} : A^{(v)} \in \mathfrak{y}\}$$

$$A^{(v)} = \{y \in X \mid \inf_{\mathfrak{x} \ni A} a(\mathfrak{x}, y) \le v\}$$

$$= \{y \in X \mid \delta(A, y) \le v\}$$

PROPER AND OPEN FOR **Ord** AND **Met** ($\mathbb{T} = \mathbb{I}, V = 2, \mathbb{P}_+$)

$$b(f(x), y) = \inf\{a(x, z) \mid z \in f^{-1}y\}$$
$$b(y, f(x)) = \inf\{a(z, x) \mid z \in f^{-1}y\}$$

PROPER AND OPEN FOR **Top** AND **App** $(\mathbb{T} = \beta, V = 2, \mathbb{P}_+)$

$$Mf$$
 proper \iff f is a closed map (in the usual sense) f proper \iff f is stably closed f open \iff Mf open \iff f open (in the usual sense)

"Same" for **App** $f: (X, \delta) \to (Y, \delta') \text{ closed:} \quad \delta'(f(A), y) \ge \inf\{\delta(A, x) \mid x \in f^{-1}y\}$ $\text{open:} \quad \delta(f^{-1}(B), x) < \delta'(B, f(x))$

v-closure, Grand closure

$$A \subseteq (X, a), \quad \bot < v \le k$$

$$A^{(v)} = \{ y \in X \mid v \le \bigvee_{\mathfrak{x} \in TA} a(\mathfrak{x}, y) \}$$

$$\overline{A} = \{ y \in X \mid \exists \mathfrak{x} \in TA : a(\mathfrak{x}, y) > \bot \} = \bigcup_{v > \bot} A^{(v)}$$

PROPER AND OPEN VIA CLOSURE

$$f(\mathbb{T},V)$$
-proper \Longrightarrow $\overline{f(A)}=f(\overline{A})$
$$f(A)^{(v)}=\bigcap_{u\leqslant v}f(A^{(u)}) \qquad \qquad (V\ \mathrm{ccd})$$

$$f\left(\mathbb{T},V\right)$$
-open \Longrightarrow $\overline{f^{\text{-}1}(B)}=f^{\text{-}1}(\overline{B})$ $(T \text{ taut})$
$$f^{\text{-}1}(B)^{(v)}=\bigcap_{u\ll v}f^{\text{-}1}(B^{(u)}) \qquad (V \text{ ccd})$$

Tychonoff

V completely distributive

 $\implies \mathsf{Prop}(\mathbb{T}, V)$ closed under products (Schubert 2005)

 $\mathsf{Open}(\mathbb{T},V)$ closed under coproducts