2-bicategories of polynomials

Mark Weber

CT2011 Vancouver July 2011

Background on Iccc's

2-bicategories
of polynomials

Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Recall given $f: X \rightarrow Y$ in \mathcal{E} a category with pullbacks

When Δ_{f} has a further right adjoint, denoted Π_{f}, f is said to be exponentiable.

Background on Iccc's

2-bicategories
of polynomials
Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Recall given $f: X \rightarrow Y$ in \mathcal{E} a category with pullbacks

When Δ_{f} has a further right adjoint, denoted Π_{f}, f is said to be exponentiable. When \mathcal{E} has finite limits and all its morphisms are exponentiable, \mathcal{E} is said to be locally cartesian closed.

Background on Iccc's

2-bicategories
of polynomials
Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Recall given $f: X \rightarrow Y$ in \mathcal{E} a category with pullbacks

When Δ_{f} has a further right adjoint, denoted Π_{f}, f is said to be exponentiable. When \mathcal{E} has finite limits and all its morphisms are exponentiable, \mathcal{E} is said to be locally cartesian closed. Toposes are I.c.c but CAT is not.

Key notions

2-bicategories of polynomials

Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More examples

The polynomial functor $\mathcal{E} / X \rightarrow \mathcal{E} / Y$ associated to a polynomial

$$
p: \quad X \stackrel{p_{1}}{\leftarrow} A \xrightarrow{p_{2}} B \xrightarrow{p_{3}} Y
$$

is the composite $\mathbf{P}(p):=\Sigma_{p_{3}} \Pi_{p_{2}} \Delta_{p_{1}}$.

Key notions

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisation

Iterability
2-bicategories
Examples
More examples

The polynomial functor $\mathcal{E} / X \rightarrow \mathcal{E} / Y$ associated to a polynomial

$$
p: \quad X \stackrel{p_{1}}{\leftarrow} A \xrightarrow{p_{2}} B \xrightarrow{p_{3}} Y
$$

is the composite $\mathbf{P}(p):=\Sigma_{p_{3}} \Pi_{p_{2}} \Delta_{p_{1}}$. A morphism of polynomials is a diagram of the form

and induces a cartesian transformation $\mathbf{P}(p) \rightarrow \mathbf{P}(q)$.

Monoid monad on Set

2-bicategories of polynomials

Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Example

Monoid monad on Set

2-bicategories of polynomials

Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Example

gives rise to the multiplication for the monoid monad.

2-bicategories
of polynomials
Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More

examples

Theorem
(Gambino and Kock 2009) Let \mathcal{E} be locally cartesian closed.
1 Objects of \mathcal{E}, polynomials over \mathcal{E} and morphisms of polynomials form a bicategory Poly $_{\mathcal{E}}$.

2-bicategories
of polynomials
Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More examples

Theorem

(Gambino and Kock 2009) Let \mathcal{E} be locally cartesian closed.
1 Objects of \mathcal{E}, polynomials over \mathcal{E} and morphisms of polynomials form a bicategory Poly P $_{\mathcal{E}}$.
2 The construction of polynomial functors from polynomials gives a homomorphism $\mathbf{P}_{\mathcal{E}}:$ Poly $_{\mathcal{E}} \rightarrow \mathbf{C A T}$.

2-bicategories
of polynomials
Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Theorem

(Gambino and Kock 2009) Let \mathcal{E} be locally cartesian closed.
1 Objects of \mathcal{E}, polynomials over \mathcal{E} and morphisms of polynomials form a bicategory Poly P $_{\mathcal{E}}$.
2 The construction of polynomial functors from polynomials gives a homomorphism $\mathbf{P}_{\mathcal{E}}:$ Poly $_{\mathcal{E}} \rightarrow \mathbf{C A T}$.

However the examples of polynomials we are interested in are in CAT. Also of interest are polynomials in Top - Bisson and Joyal, The Dyer-Lashof Algebra in Bordism, 1995.

Outline

```
2-bicategories
of polynomials
Mark Weber
Introduction
1 Basic generalisation
```

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Outline

2-bicategories
of polynomials
Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

1 Basic generalisation

2 Enrichment over CAT $_{\mathrm{pb}}$ and iterability

Outline

2-bicategories
of polynomials
Mark Weber

Introduction

Basic

generalisation
Iterability
2-bicategories
Examples
More examples

1 Basic generalisation

2 Enrichment over CAT $_{\mathrm{pb}}$ and iterability

3 The 2-bicategory of polynomials in a 2-category

Outline

2-bicategories
of polynomials
Mark Weber

Introduction

Basic

generalisation
Iterability
2-bicategories
Examples
More
examples

1 Basic generalisation

2 Enrichment over CAT $_{\mathrm{pb}}$ and iterability

3 The 2-bicategory of polynomials in a 2-category

4 Examples from 2-category theory

Outline

2-bicategories
of polynomials

Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
3 The 2-bicategory of polynomials in a 2-category
More
examples
1 Basic generalisation

2 Enrichment over CAT $_{\mathrm{pb}}$ and iterability

4 Examples from 2-category theory

5 Examples from higher category theory

Generalisation to all categories with pullbacks

2-bicategories
of polynomials

Mark Weber
generalisation
Iterability
2-bicategories
Examples
More
examples

Theorem
Let \mathcal{E} be a category with pullbacks.
1 Objects of \mathcal{E}, polynomials over \mathcal{E} and morphisms of polynomials form a bicategory Poly $_{\mathcal{E}}$.
2 The construction of polynomial functors from polynomials gives a homomorphism $\mathbf{P}_{\mathcal{E}}:$ Poly $_{\mathcal{E}} \rightarrow \mathbf{C A T}$.

Composition of polynomials

2-bicategories

 of polynomialsMark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples

More
examples

Composition of polynomials

2-bicategories

 of polynomialsMark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Composition of polynomials

2-bicategories of polynomials

Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More

examples

At this point one can consider the category of triples of morphisms (α, β, γ) as shown

making the square with boundary $\left(f \alpha, q_{2}, \gamma, \beta\right)$ a pullback.

Composition of polynomials

2-bicategories of polynomials

Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More

examples

The terminal such is the distributivity pullback of f along q_{2}.

Composition of polynomials

2-bicategories of polynomials

Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More

examples

Composition of polynomials

2-bicategories of polynomials

Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

2-bicategories of polynomials

Mark Weber

Lemma

(Composition/cancellation) Given

in any category with pullbacks, then the right-most pullback is a distributivity pullback around (g, h_{4}) iff the composite diagram is a distributivity pullback around $(g f, h)$.

2-bicategories of polynomials

Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Lemma
(The cube lemma). Given

where (3) is a pullback. Then (1) and (2) are pullbacks iff (3) is a distributivity pullback.

Unbiased composition of polynomials

2-bicategories

 of polynomialsMark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Enrichment over CAT ${ }_{\text {pb }}$

2-bicategories of polynomials

Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More examples

The category CAT $_{\mathrm{pb}}$ of categories with pullbacks and pullback preserving functors is cartesian closed. The internal hom $[X, Y]$ is the category of pullback preserving functors $X \rightarrow Y$ and cartesian transformations between them.

Enrichment over CAT ${ }_{\text {pb }}$

2-bicategories of polynomials

Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples

The category CAT $_{\mathrm{pb}}$ of categories with pullbacks and pullback preserving functors is cartesian closed. The internal hom $[X, Y]$ is the category of pullback preserving functors $X \rightarrow Y$ and cartesian transformations between them.

A CAT ${ }_{\mathrm{pb}}$-bicategory is a bicategory \mathcal{B} whose homs have pullbacks and whose compositions

$$
\operatorname{comp}_{X, Y, Z}: \mathcal{B}(Y, Z) \times \mathcal{B}(X, Y) \rightarrow \mathcal{B}(X, Z)
$$

preserve them. Categories enriched in $\mathbf{C A T}_{\mathrm{pb}}$ are exactly those CAT $_{\mathrm{pb}}$-bicategories whose underlying bicategory is a 2-category.

Enrichment over CAT ${ }_{\text {pb }}$

2-bicategories of polynomials

Mark Weber

The category CAT $_{\mathrm{pb}}$ of categories with pullbacks and pullback preserving functors is cartesian closed. The internal hom $[X, Y]$ is the category of pullback preserving functors $X \rightarrow Y$ and cartesian transformations between them.

A CAT ${ }_{\mathrm{pb}}$-bicategory is a bicategory \mathcal{B} whose homs have pullbacks and whose compositions

$$
\operatorname{comp}_{X, Y, Z}: \mathcal{B}(Y, Z) \times \mathcal{B}(X, Y) \rightarrow \mathcal{B}(X, Z)
$$

preserve them. Categories enriched in $\mathbf{C A T}_{\mathrm{pb}}$ are exactly those CAT $_{\mathrm{pb}}$-bicategories whose underlying bicategory is a 2-category.

A homomorphism $F: \mathcal{B} \rightarrow \mathcal{C}$ of $\mathbf{C A T}_{\mathrm{pb}}$-bicategories is a homomorphism of their underlying bicategories whose hom functors preserve pullbacks.

Iterability of the theory

2-bicategories of polynomials

Mark Weber

Theorem

Let \mathcal{E} be a category with pullbacks. Then $\mathrm{Poly}_{\mathcal{E}}$ is a CAT ${ }_{\mathrm{pb}}$-bicategory and

$$
\mathbf{P}_{\mathcal{E}}: \text { Poly }_{\mathcal{E}} \rightarrow \text { CAT }_{\mathrm{pb}}
$$

is a homomorphism of $\mathbf{C A T}_{\mathrm{pb}}$-bicategories.

Iterability of the theory

2-bicategories
of polynomials
Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Theorem

Let \mathcal{E} be a category with pullbacks. Then Poly $_{\mathcal{E}}$ is a CAT ${ }_{\mathrm{pb}}$-bicategory and

$$
\mathbf{P}_{\mathcal{E}}: \text { Poly }_{\mathcal{E}} \rightarrow \text { CAT }_{\mathrm{pb}}
$$

is a homomorphism of $\mathbf{C A T} \mathbf{T b}_{\mathrm{pb}}$-bicategories.

Since the homs of Poly $\mathcal{E}_{\mathcal{E}}$ also have pullbacks we can apply the theorem to any of those homs in place of \mathcal{E}.

2-bicategories
of polynomials Mark Weber
Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More

A 2-bicategory is a bicategory \mathcal{B}

2-bicategories
of polynomials
Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More examples

A 2-bicategory is a bicategory \mathcal{B} whose hom categories are endowed with 2-cells making them 2-categories

2-bicategories
of polynomials
Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More examples

A 2-bicategory is a bicategory \mathcal{B} whose hom categories are endowed with 2-cells making them 2-categories and the composition functors

$$
\operatorname{comp}_{X, Y, Z}: \mathcal{B}(Y, Z) \times \mathcal{B}(X, Y) \rightarrow \mathcal{B}(X, Z)
$$

are endowed with 2 -cell maps making them into 2 -functors.

A 2-bicategory is a bicategory \mathcal{B} whose hom categories are endowed with 2-cells making them 2-categories and the composition functors

$$
\operatorname{comp}_{X, Y, Z}: \mathcal{B}(Y, Z) \times \mathcal{B}(X, Y) \rightarrow \mathcal{B}(X, Z)
$$

are endowed with 2 -cell maps making them into 2 -functors. The coherence isomorphisms of \mathcal{B} must be natural with respect to the 3-cells.

A 2-bicategory is a bicategory \mathcal{B} whose hom categories are endowed with 2-cells making them 2-categories and the composition functors

$$
\operatorname{comp}_{X, Y, Z}: \mathcal{B}(Y, Z) \times \mathcal{B}(X, Y) \rightarrow \mathcal{B}(X, Z)
$$

are endowed with 2 -cell maps making them into 2 -functors. The coherence isomorphisms of \mathcal{B} must be natural with respect to the 3-cells.

$$
\text { 3-categories } \subset \text { 2-bicategories } \subset \text { Tricategories }
$$

2-bicategories of polynomials

Mark Weber

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Theorem

Let \mathcal{K} be a 2-category with pullbacks. Then Poly $_{\mathcal{K}}$ is a 2-bicategory and

$$
\mathbf{P}_{\mathcal{K}}: \text { Poly }_{\mathcal{K}} \rightarrow \text { 2-CAT }
$$

is a homomorphism of 2-bicategories.

2-bicategories of polynomials

Mark Weber

2-bicategories
Examples
More
examples

Theorem

Let \mathcal{K} be a 2-category with pullbacks. Then Poly $_{\mathcal{K}}$ is a 2-bicategory and

$$
\mathbf{P}_{\mathcal{K}}: \text { Poly }_{\mathcal{K}} \rightarrow \text { 2-CAT }
$$

is a homomorphism of 2-bicategories.

A pseudo-monad on an object X of a 2-bicategory \mathcal{B}, is a pseudo-monoid in the monoidal 2-category $\mathcal{B}(X, X)$.

2-topos examples

2-bicategories of polynomials

Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition.

2-topos examples

2-bicategories of polynomials

Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory \mathcal{S} of Poly ${ }_{\text {Cat }}$ consisting of those polynomials whose middle map is such.

2-topos examples

2-bicategories of polynomials

Mark Weber

2-bicategories
Examples

Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory \mathcal{S} of Poly ${ }_{\text {Cat }}$ consisting of those polynomials whose middle map is such.

Every discrete opfibration with small fibres arises as a pullback of U : Set. \rightarrow Set.

2-topos examples

2-bicategories
of polynomials
Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples

Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory \mathcal{S} of Polycat consisting of those polynomials whose middle map is such.

Every discrete opfibration with small fibres arises as a pullback of U : Set. \rightarrow Set. The 2-dimensional aspect of U 's universal property implies that

is a biterminal object of $\mathcal{S}(1,1)$.

2-topos examples

2-bicategories
of polynomials
Mark Weber

Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory \mathcal{S} of Poly ${ }_{\text {CAT }}$ consisting of those polynomials whose middle map is such.

Every discrete opfibration with small fibres arises as a pullback of U : Set. \rightarrow Set. The 2-dimensional aspect of U 's universal property implies that

is a biterminal object of $\mathcal{S}(1,1)$. Thus it carries a canonical polynomial pseudo-monad structure.

2-topos examples

2-bicategories of polynomials

Mark Weber

Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory \mathcal{S} of Poly ${ }_{\text {CAT }}$ consisting of those polynomials whose middle map is such.

Every discrete opfibration with small fibres arises as a pullback of U : Set. \rightarrow Set. The 2-dimensional aspect of U 's universal property implies that

is a biterminal object of $\mathcal{S}(1,1)$. Thus it carries a canonical polynomial pseudo-monad structure. The corresponding pseudo-monad on CAT is the Fam-construction.

2-topos examples

2-bicategories of polynomials

Mark Weber

Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory \mathcal{S} of Poly ${ }_{\text {CAT }}$ consisting of those polynomials whose middle map is such.

Every discrete opfibration with small fibres arises as a pullback of U : Set. \rightarrow Set. The 2-dimensional aspect of U 's universal property implies that

is a biterminal object of $\mathcal{S}(1,1)$. Thus it carries a canonical polynomial pseudo-monad structure. The corresponding pseudo-monad on CAT is the Fam-construction.

More generally, replace CAT by a finitely complete \mathcal{K} whose discrete opfibrations are exponentiable and U by a classifying discrete opfibration in \mathcal{K}.

Street's internal fibrations

2-bicategories
of polynomials

Mark Weber

Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Recall that the inclusion $\Delta \hookrightarrow$ CAT is a cocategory object, and its canonical generators enjoy some lovely adjointnesses

Street's internal fibrations

2-bicategories of polynomials

Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples

More

examples

Reinterpretting a little ...

is a lax idempotent pseudo monad (on [1]) in the 2-bicategory Cospan $_{\text {CAT }}$.

Street's internal fibrations

```
2-bicategories
of polynomials
Mark Weber
Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples
```

Let X be an object of a finitely complete 2-category \mathcal{K}.

Street's internal fibrations

2-bicategories
of polynomials
Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Let X be an object of a finitely complete 2-category \mathcal{K}.
Cotensoring the previous slide with X gives a lax idempotent pseudo monad (on X) in the 2-bicategory $\operatorname{Span}_{\mathcal{K}}$, which sits inside Poly $_{\mathcal{K}}$.

Street's internal fibrations

2-bicategories
of polynomials
Mark Weber

Let X be an object of a finitely complete 2-category \mathcal{K}.
Cotensoring the previous slide with X gives a lax idempotent pseudo monad (on X) in the 2-bicategory $\operatorname{Span}_{\mathcal{K}}$, which sits inside Poly $_{\mathcal{K}}$.

The associated pseudo monad on \mathcal{K} / X is the monad for fibrations.

Local right adjoints vs polynomial functors

2-bicategories
of polynomials

Mark Weber

A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is a local right adjoint when for all $X \in \mathcal{A}$ the induced functor

$$
F_{X}: \mathcal{A} / X \rightarrow \mathcal{B} / F X
$$

is a right adjoint. When \mathcal{A} has 1 , it suffices to check this for $X=1$.

Local right adjoints vs polynomial functors

2-bicategories
of polynomials
Mark Weber

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is a local right adjoint when for all $X \in \mathcal{A}$ the induced functor

$$
F_{X}: \mathcal{A} / X \rightarrow \mathcal{B} / F X
$$

is a right adjoint. When \mathcal{A} has 1 , it suffices to check this for $X=1$.

Polynomial functors are I.r.a because for a polynomial p, the composite $\Pi_{p_{2}} \Delta_{p_{1}}$ may be identified with $\mathbf{P}_{\mathcal{E}}(p)_{1}$.

Local right adjoints vs polynomial functors

2-bicategories
of polynomials
Mark Weber

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is a local right adjoint when for all $X \in \mathcal{A}$ the induced functor

$$
F_{X}: \mathcal{A} / X \rightarrow \mathcal{B} / F X
$$

is a right adjoint. When \mathcal{A} has 1 , it suffices to check this for $X=1$.

Polynomial functors are I.r.a because for a polynomial p, the composite $\Pi_{p_{2}} \Delta_{p_{1}}$ may be identified with $\mathbf{P}_{\mathcal{E}}(p)_{1}$. Notice that the left adjoint to $\mathbf{P}_{\mathcal{E}}(p)_{1}$ is $\Sigma_{p_{1}} \Delta_{p_{2}}$ which itself preserves connected limits and thus in particular monos.

Local right adjoints vs polynomial functors

```
2-bicategories
of polynomials
Mark Weber
Introduction
Basic
generalisation
Iterability
2-bicategories
Examples
More
examples
```


Example

The category monad T on $\mathbf{G p h}$ is I.r.a. but not polynomial over Gph.

Local right adjoints vs polynomial functors

2-bicategories
of polynomials
Mark Weber

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Example

The category monad T on $\mathbf{G p h}$ is I.r.a. but not polynomial over Gph. The left adjoint $L_{T}: \mathbf{G p h} / T 1 \rightarrow \mathbf{G p h}$ to T_{1}, applied to a labelled graph, replaces each edge labelled by n by a path of length n. In particular, the source and target of an edge labelled by 0 are identified, and so L_{T} does not preserve monos.

Local right adjoints vs polynomial functors

2-bicategories
of polynomials
Mark Weber

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Example

The category monad T on $\mathbf{G p h}$ is I.r.a. but not polynomial over Gph. The left adjoint $L_{T}: \mathbf{G p h} / T 1 \rightarrow \mathbf{G p h}$ to T_{1}, applied to a labelled graph, replaces each edge labelled by n by a path of length n. In particular, the source and target of an edge labelled by 0 are identified, and so L_{T} does not preserve monos.

Given Polynomial functors and opetopes - BJKM 2007, this is a little sad.

Polynomial from a I.r.a between presheaf categories

2-bicategories of polynomials

Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Given $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{D}}$ I.r.a one has

Polynomial from a I.r.a between presheaf categories

2-bicategories of polynomials

Mark Weber

Introduction

Basic
generalisation
Iterability
2-bicategories
Examples
More
examples

Given $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{D}}$ I.r.a one has

From which one produces the polynomial $p_{T}: \mathbb{C} \rightarrow \mathbb{D}$

$$
\mathbb{C} \stackrel{p_{T, 1}}{\longleftrightarrow} y_{\mathbb{C}} / E_{T} \xrightarrow{p_{T, 2}} y_{\mathbb{D}} / T 1 \xrightarrow{p_{T, 3}} \mathbb{D}
$$

Proposition

Iterability
2-bicategories
Let $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{D}}$ be I.r.a. Then T can be recovered from its associated polynomial in the following ways:

2-bicategories of polynomials

Mark Weber

Proposition

Let $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{D}}$ be I.r.a. Then T can be recovered from its associated polynomial in the following ways:

1 Directly as $T \cong \operatorname{lan}_{p_{3}}$ ran $_{p_{2}}$ res $_{p_{1}}$.

2-bicategories of polynomials

Mark Weber

Proposition

Let $T: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{D}}$ be I.r.a. Then T can be recovered from its associated polynomial in the following ways:

1 Directly as $T \cong \operatorname{lan}_{p_{3}}$ ran $_{p_{2}}$ res $_{p_{1}}$.
2 By applying $\mathbf{P}\left(p_{T}\right)$ to discrete fibrations.

