2-	bic	ate	gori	es
of	ро	lync	omi	als

Mark Weber

Introduction

Basic generalisatic

Iterability

2-bicategories

Examples

More examples

2-bicategories of polynomials

Mark Weber

CT2011 Vancouver July 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Background on Iccc's

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisation Iterability 2-bicategories Examples More

examples

Recall given $f: X \to Y$ in \mathcal{E} a category with pullbacks

When Δ_f has a further right adjoint, denoted Π_f , f is said to be **exponentiable**.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Background on Iccc's

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisation Iterability 2-bicategories Examples More examples

Recall given $f: X \to Y$ in \mathcal{E} a category with pullbacks

When Δ_f has a further right adjoint, denoted Π_f , f is said to be **exponentiable**. When \mathcal{E} has finite limits and all its morphisms are exponentiable, \mathcal{E} is said to be **locally cartesian closed**.

Background on Iccc's

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisation Iterability 2-bicategories Examples More examples

Recall given $f: X \to Y$ in \mathcal{E} a category with pullbacks

When Δ_f has a further right adjoint, denoted Π_f , f is said to be **exponentiable**. When \mathcal{E} has finite limits and all its morphisms are exponentiable, \mathcal{E} is said to be **locally cartesian closed**. Toposes are l.c.c but **CAT** is not.

Key notions

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisation Iterability 2-bicategories Examples

More examples The polynomial functor $\mathcal{E}/X \to \mathcal{E}/Y$ associated to a polynomial

$$p : X \stackrel{p_1}{\longleftrightarrow} A \stackrel{p_2}{\longrightarrow} B \stackrel{p_3}{\longrightarrow} Y$$

is the composite $\mathbf{P}(p) := \sum_{p_3} \prod_{p_2} \Delta_{p_1}$.

Key notions

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisation Iterability 2-bicategories Examples

More examples The polynomial functor $\mathcal{E}/X \to \mathcal{E}/Y$ associated to a polynomial

$$p : X \stackrel{p_1}{\longleftrightarrow} A \stackrel{p_2}{\longrightarrow} B \stackrel{p_3}{\longrightarrow} Y$$

is the composite $\mathbf{P}(p) := \sum_{p_3} \prod_{p_2} \Delta_{p_1}$. A morphism of polynomials is a diagram of the form

ъ

and induces a cartesian transformation $\mathbf{P}(p) \rightarrow \mathbf{P}(q)$.

Monoid monad on Set

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisation Iterability 2-bicategories

Examples

More example:

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Monoid monad on Set

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisation Iterability 2-bicategories Examples

More examples

Example

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

gives rise to the multiplication for the monoid monad.

Mark Weber

Theorem

Introduction

Basic generalisatior Iterability 2-bicategories

Examples

More examples (Gambino and Kock 2009) Let E be locally cartesian closed.
Objects of E, polynomials over E and morphisms of polynomials form a bicategory Poly_E.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Mark Weber

Theorem

Introduction

Basic generalisation Iterability

2-bicategories

Examples

More examples (Gambino and Kock 2009) Let E be locally cartesian closed.
Objects of E, polynomials over E and morphisms of polynomials form a bicategory Poly_E.

2 The construction of polynomial functors from polynomials gives a homomorphism $P_{\mathcal{E}}$: $Poly_{\mathcal{E}} \rightarrow CAT$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Mark Webe

Theorem

Introduction

Basic generalisation Iterability 2-bicategorie:

Examples

More examples (Gambino and Kock 2009) Let E be locally cartesian closed.
Objects of E, polynomials over E and morphisms of polynomials form a bicategory Poly_E.

2 The construction of polynomial functors from polynomials gives a homomorphism $P_{\mathcal{E}} : Poly_{\mathcal{E}} \to CAT$.

However the examples of polynomials we are interested in are in **CAT**. Also of interest are polynomials in **Top** – Bisson and Joyal, *The Dyer-Lashof Algebra in Bordism*, 1995.

2-bicategories of polynomials

Introduction

1 Basic generalisation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisation Iterability 2-bicategories Examples More

1 Basic generalisation

2 Enrichment over **CAT**_{pb} and iterability

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

2-bicategories of polynomials

Introduction

1 Basic generalisation

- 2 Enrichment over **CAT**_{pb} and iterability
- **3** The 2-bicategory of polynomials in a 2-category

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2-bicategories of polynomials

Mark Weber

Introduction

- Basic generalisation Iterability 2-bicategories Examples
- More examples

1 Basic generalisation

- 2 Enrichment over **CAT**_{pb} and iterability
- **3** The 2-bicategory of polynomials in a 2-category

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4 Examples from 2-category theory

2-bicategories of polynomials

Introduction

- 1 Basic generalisation
- 2 Enrichment over **CAT**_{pb} and iterability
- 3 The 2-bicategory of polynomials in a 2-category

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Examples from 2-category theory 4

5 Examples from higher category theory

Generalisation to all categories with pullbacks

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisation

Iterability

2-bicategories

Examples

More examples

Theorem

Let \mathcal{E} be a category with pullbacks.

 Objects of *E*, polynomials over *E* and morphisms of polynomials form a bicategory Poly_E.

2 The construction of polynomial functors from polynomials gives a homomorphism $P_{\mathcal{E}}$: $Poly_{\mathcal{E}} \rightarrow CAT$.

・ロト ・ 一 ト ・ モト ・ モト

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

making the square with boundary $(f\alpha, q_2, \gamma, \beta)$ a pullback.

◆□> ◆□> ◆三> ◆三> 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Mark Weber

Introduction

Basic generalisation Iterability

2-bicategories

Examples

More examples

emma

(Composition/cancellation) Given

in any category with pullbacks, then the right-most pullback is a distributivity pullback around (g, h_4) iff the composite diagram is a distributivity pullback around (gf, h).

Lemma

(The cube lemma). Given

Introduction

Basic generalisation Iterability 2-bicategories Examples

More examples

where (3) is a pullback. Then (1) and (2) are pullbacks iff (3) is a distributivity pullback.

イロト イポト イヨト イヨト

Unbiased composition of polynomials

Enrichment over **CAT**_{pb}

2-bicategories of polynomials

Mark Webe

Introduction

Basic generalisation

Iterability

2-bicategories

Examples

More examples The category CAT_{pb} of categories with pullbacks and pullback preserving functors is cartesian closed. The internal hom [X, Y]is the category of pullback preserving functors $X \to Y$ and cartesian transformations between them.

Enrichment over **CAT**_{pb}

2-bicategories of polynomials

Introduction

Basic generalisatio

Iterability

2-bicategories Examples More A $\textbf{CAT}_{pb}\mbox{-}bicategory$ is a bicategory $\mathcal B$ whose homs have

pullbacks and whose compositions

cartesian transformations between them.

$$\operatorname{comp}_{X,Y,Z} : \mathcal{B}(Y,Z) \times \mathcal{B}(X,Y) \to \mathcal{B}(X,Z)$$

The category **CAT**_{pb} of categories with pullbacks and pullback

preserving functors is cartesian closed. The internal hom [X, Y] is the category of pullback preserving functors $X \rightarrow Y$ and

preserve them. Categories enriched in \textbf{CAT}_{pb} are exactly those $\textbf{CAT}_{pb}\text{-bicategories}$ whose underlying bicategory is a 2-category.

Enrichment over **CAT**_{pb}

2-bicategories of polynomials

Introduction

Basic generalisatio

Iterability

2-bicategories Examples More The category CAT_{pb} of categories with pullbacks and pullback preserving functors is cartesian closed. The internal hom [X, Y] is the category of pullback preserving functors $X \rightarrow Y$ and cartesian transformations between them.

A $\textbf{CAT}_{pb}\mbox{-}bicategory$ is a bicategory $\mathcal B$ whose homs have pullbacks and whose compositions

 $\operatorname{comp}_{X,Y,Z} : \mathcal{B}(Y,Z) \times \mathcal{B}(X,Y) \to \mathcal{B}(X,Z)$

preserve them. Categories enriched in \textbf{CAT}_{pb} are exactly those $\textbf{CAT}_{pb}\text{-bicategories}$ whose underlying bicategory is a 2-category.

A homomorphism $F : \mathcal{B} \to \mathcal{C}$ of CAT_{pb} -bicategories is a homomorphism of their underlying bicategories whose hom functors preserve pullbacks.

Iterability of the theory

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatior

Iterability

2-bicategories

Examples

More examples

Theorem

Let ${\cal E}$ be a category with pullbacks. Then ${\bf Poly}_{{\cal E}}$ is a ${\bf CAT}_{pb}\mbox{-}bicategory$ and

 $\textbf{P}_{\mathcal{E}}:\textbf{Poly}_{\mathcal{E}} \rightarrow \textbf{CAT}_{pb}$

is a homomorphism of CAT_{pb}-bicategories.

Iterability of the theory

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatior

Iterability

2-bicategories

Examples

More examples

Theorem

Let ${\cal E}$ be a category with pullbacks. Then ${\rm Poly}_{{\cal E}}$ is a ${\rm CAT}_{\rm pb}\mbox{-}bicategory$ and

 $\textbf{P}_{\mathcal{E}}:\textbf{Poly}_{\mathcal{E}}\rightarrow\textbf{CAT}_{pb}$

is a homomorphism of **CAT**_{pb}-bicategories.

Since the homs of $Poly_{\mathcal{E}}$ also have pullbacks we can apply the theorem to any of those homs in place of \mathcal{E} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples

A 2-bicategory is a bicategory ${\mathcal B}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples A **2-bicategory** is a bicategory ${\cal B}$ whose hom categories are endowed with 2-cells making them 2-categories

2-bicategories of polynomials Mark Weber

Introduction

Basic generalisatior

2-bicategories

Examples

More examples A **2-bicategory** is a bicategory \mathcal{B} whose hom categories are endowed with 2-cells making them 2-categories and the composition functors

$$\operatorname{comp}_{X,Y,Z} : \mathcal{B}(Y,Z) \times \mathcal{B}(X,Y) \to \mathcal{B}(X,Z)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

are endowed with 2-cell maps making them into 2-functors.

2-bicategories of polynomials Mark Weber

Introduction

Basic generalisatior

2-bicategories

Examples

More examples A **2-bicategory** is a bicategory \mathcal{B} whose hom categories are endowed with 2-cells making them 2-categories and the composition functors

$$\operatorname{comp}_{X,Y,Z} : \mathcal{B}(Y,Z) \times \mathcal{B}(X,Y) \to \mathcal{B}(X,Z)$$

are endowed with 2-cell maps making them into 2-functors. The coherence isomorphisms of $\mathcal B$ must be natural with respect to the 3-cells.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2-bicategories of polynomials Mark Weber

Introduction

Basic generalisatior

2-bicategories

Examples

More examples A **2-bicategory** is a bicategory \mathcal{B} whose hom categories are endowed with 2-cells making them 2-categories and the composition functors

$$\operatorname{comp}_{X,Y,Z} : \mathcal{B}(Y,Z) \times \mathcal{B}(X,Y) \to \mathcal{B}(X,Z)$$

are endowed with 2-cell maps making them into 2-functors. The coherence isomorphisms of $\mathcal B$ must be natural with respect to the 3-cells.

3-categories \subset 2-bicategories \subset Tricategories

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples

Theorem

Let ${\cal K}$ be a 2-category with pullbacks. Then ${\rm Poly}_{{\cal K}}$ is a 2-bicategory and

$\textbf{P}_{\mathcal{K}}:\textbf{Poly}_{\mathcal{K}}\rightarrow\textbf{2-CAT}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is a homomorphism of 2-bicategories.

Mark Weber

Introduction

Basic generalisatior

2-bicategories

Examples

More examples

Theorem

Let ${\cal K}$ be a 2-category with pullbacks. Then ${\rm Poly}_{{\cal K}}$ is a 2-bicategory and

$\textbf{P}_{\mathcal{K}}:\textbf{Poly}_{\mathcal{K}}\rightarrow\textbf{2-CAT}$

is a homomorphism of 2-bicategories.

A **pseudo-monad** on an object X of a 2-bicategory \mathcal{B} , is a pseudo-monoid in the monoidal 2-category $\mathcal{B}(X, X)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2-bicategories of polynomials Mark Weber

Examples

Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition.

2-bicategories of polynomials

Mark Weber

Introduction

Basic concrelicatio

Iterability

2-bicategories

Examples

More examples Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory \mathcal{S} of **Poly**_{CAT} consisting of those polynomials whose middle map is such.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory \mathcal{S} of **Poly**_{CAT} consisting of those polynomials whose middle map is such.

Every discrete opfibration with small fibres arises as a pullback of $U : \mathbf{Set}_{\bullet} \to \mathbf{Set}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory S of **Poly_{CAT}** consisting of those polynomials whose middle map is such.

Every discrete opfibration with small fibres arises as a pullback of U: **Set** \rightarrow **Set**. The 2-dimensional aspect of U's universal property implies that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is a biterminal object of $\mathcal{S}(1,1)$.

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory S of **Poly_{CAT}** consisting of those polynomials whose middle map is such.

Every discrete opfibration with small fibres arises as a pullback of U: **Set**. The 2-dimensional aspect of U's universal property implies that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is a biterminal object of S(1,1). Thus it carries a canonical polynomial pseudo-monad structure.

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatic

Iterability

2-bicategories

Examples

More examples Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory S of **Poly_{CAT}** consisting of those polynomials whose middle map is such.

Every discrete opfibration with small fibres arises as a pullback of U: **Set** \rightarrow **Set**. The 2-dimensional aspect of U's universal property implies that

is a biterminal object of S(1,1). Thus it carries a canonical polynomial pseudo-monad structure. The corresponding pseudo-monad on **CAT** is the Fam-construction.

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatic

Iterability

2-bicategories

Examples

More examples Discrete opfibrations with small fibres are exponentiable, pullback stable and closed under composition. Thus one can consider the sub-2-bicategory \mathcal{S} of **Poly**_{CAT} consisting of those polynomials whose middle map is such.

Every discrete opfibration with small fibres arises as a pullback of U: **Set**. The 2-dimensional aspect of U's universal property implies that

is a biterminal object of S(1,1). Thus it carries a canonical polynomial pseudo-monad structure. The corresponding pseudo-monad on **CAT** is the Fam-construction.

More generally, replace **CAT** by a finitely complete \mathcal{K} whose discrete opfibrations are exponentiable and U by a classifying discrete opfibration in \mathcal{K} .

2-bicategories of polynomials

Mark Weber

Introduction

Basic

Iterability

2-bicategories

Examples

More examples Recall that the inclusion $\Delta \hookrightarrow CAT$ is a cocategory object, and its canonical generators enjoy some lovely adjointnesses

イロト 不得 トイヨト イヨト

Reinterpretting a little ...

is a lax idempotent pseudo monad (on [1]) in the 2-bicategory $Cospan_{CAT}$.

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples Let X be an object of a finitely complete 2-category \mathcal{K} .

Cotensoring the previous slide with X gives a lax idempotent pseudo monad (on X) in the 2-bicategory $\mathbf{Span}_{\mathcal{K}}$, which sits inside $\mathbf{Poly}_{\mathcal{K}}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples Let X be an object of a finitely complete 2-category \mathcal{K} .

Cotensoring the previous slide with X gives a lax idempotent pseudo monad (on X) in the 2-bicategory $\mathbf{Span}_{\mathcal{K}}$, which sits inside $\mathbf{Poly}_{\mathcal{K}}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The associated pseudo monad on \mathcal{K}/X is the monad for fibrations.

2-bicategories of polynomials

Mark Weber

Introduction

Basic

Iterability

2-bicategories

Examples

More examples A functor $F : A \to B$ is a **local right adjoint** when for all $X \in A$ the induced functor

 $F_X : \mathcal{A}/X \to \mathcal{B}/FX$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

is a right adjoint. When $\mathcal A$ has 1, it suffices to check this for X=1.

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples A functor $F : A \to B$ is a **local right adjoint** when for all $X \in A$ the induced functor

 $F_X : \mathcal{A}/X \to \mathcal{B}/FX$

is a right adjoint. When $\mathcal A$ has 1, it suffices to check this for X=1.

Polynomial functors are l.r.a because for a polynomial p, the composite $\prod_{p_2} \Delta_{p_1}$ may be identified with $\mathbf{P}_{\mathcal{E}}(p)_1$.

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples A functor $F : A \to B$ is a **local right adjoint** when for all $X \in A$ the induced functor

 $F_X : \mathcal{A}/X \to \mathcal{B}/FX$

is a right adjoint. When $\mathcal A$ has 1, it suffices to check this for X=1.

Polynomial functors are l.r.a because for a polynomial p, the composite $\prod_{p_2} \Delta_{p_1}$ may be identified with $\mathbf{P}_{\mathcal{E}}(p)_1$. Notice that the left adjoint to $\mathbf{P}_{\mathcal{E}}(p)_1$ is $\sum_{p_1} \Delta_{p_2}$ which itself preserves connected limits and thus in particular monos.

2-bicategories of polynomials Example The category monad T on **Gph** is l.r.a. but not polynomial over **Gph**. More examples

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples

Example

The category monad T on **Gph** is l.r.a. but not polynomial over **Gph**. The left adjoint $L_T : \mathbf{Gph}/T1 \rightarrow \mathbf{Gph}$ to T_1 , applied to a labelled graph, replaces each edge labelled by n by a path of length n. In particular, the source and target of an edge labelled by 0 are identified, and so L_T does not preserve monos.

2-bicategories of polynomials

Mark Weber

Introduction

Basic generalisatio

Iterability

2-bicategories

Examples

More examples

Example

The category monad T on **Gph** is l.r.a. but not polynomial over **Gph**. The left adjoint $L_T : \mathbf{Gph}/T1 \rightarrow \mathbf{Gph}$ to T_1 , applied to a labelled graph, replaces each edge labelled by n by a path of length n. In particular, the source and target of an edge labelled by 0 are identified, and so L_T does not preserve monos.

Given *Polynomial functors and opetopes* – BJKM 2007, this is a little sad.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Polynomial from a l.r.a between presheaf categories

More examples Given $\mathcal{T}:\widehat{\mathbb{C}}
ightarrow\widehat{\mathbb{D}}$ l.r.a one has

(日)、

э

Polynomial from a l.r.a between presheaf categories

More examples Given $T:\widehat{\mathbb{C}}\to\widehat{\mathbb{D}}$ l.r.a one has

From which one produces the polynomial $p_T : \mathbb{C} \to \mathbb{D}$

$$\mathbb{C} \stackrel{\rho_{T,1}}{\longleftarrow} y_{\mathbb{C}}/E_T \stackrel{\rho_{T,2}}{\longrightarrow} y_{\mathbb{D}}/T1 \stackrel{\rho_{T,3}}{\longrightarrow} \mathbb{D}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Mark Weber

Introduction

Basic generalisatio Proposition

Iterability

2-bicategories

Examples

More examples Let $T: \widehat{\mathbb{C}} \to \widehat{\mathbb{D}}$ be l.r.a. Then T can be recovered from its associated polynomial in the following ways:

Mark Weber

Introduction

Basic generalisatio

Proposition

Iterability

2-bicategories

Examples

More examples Let $T: \widehat{\mathbb{C}} \to \widehat{\mathbb{D}}$ be l.r.a. Then T can be recovered from its associated polynomial in the following ways:

1 Directly as $T \cong \operatorname{lan}_{p_3}\operatorname{ran}_{p_2}\operatorname{res}_{p_1}$.

Mark Weber

Introduction

Basic generalisatio

Proposition

2-bicategorie

Examples

More examples Let $T: \widehat{\mathbb{C}} \to \widehat{\mathbb{D}}$ be l.r.a. Then T can be recovered from its associated polynomial in the following ways:

1 Directly as $T \cong \operatorname{lan}_{p_3}\operatorname{ran}_{p_2}\operatorname{res}_{p_1}$.

2 By applying $\mathbf{P}(p_T)$ to discrete fibrations.