Jean-Simon Lemay * University of Calgary

Integration in tangent categories

Since the turn of the 21st century, the theory of differential categories has lead to significant progress in the abstract understanding of differentiation in a variety of settings. In particular, tangent categories [3, 1], which come equipped with a tangent functor, provide an axiomatic setting for differential geometry, while cartesian differential categories [4], which come equipped with a differential combinator, axiomatizes the directional derivative. Recently there has been effort put into studying the axiomatization of integration and antiderivatives in the various differential category settings [5]. In this talk we will introduce the notion of integration in a tangent category, which involves integrating linear bundle morphisms between differential bundles [2]. We will also discuss integration for cartesian differential categories and show the relation with tangent category integration. With this, we will be able to formalize a number of properties of integration, such as Fubini's theorem, the Fundamental Theorems of Calculus, integration of forms, and Stoke's theorem for tangent categories.

References:

- [1] J. Rosický, Abstract tangent functors, Diagrammes 12 (1984) Exp. No. 3.
- [2] J.R.B. Cockett and G.S.H. Cruttwell, Differential structure, tangent structure, and SDG, Applied Categorical Structures 22 (2) (2014), 331–417.
- [3] R. Blute, R. Cockett and R. Seely, Cartesian Differential Categories, *Theory and Appli*cations of Categories 23 (2009), 622–672.
- [4] M. Bagnol, R. Blute, J.R.B. Cockett and J.-S. Lemay, The Shuffle Quasimonad and Modules with Differentiation and Integration, *Electronic Notes in Theoretical Computer Science* 325 (2016), 29–45.
- [5] J.R.B. Cockett and G.S.H. Cruttwell, Differential bundles and fibrations for tangent categories, *Cahiers de topologie et geometrie differentielle categoriques* (2017) To be published, https://arxiv.org/abs/1606.08379.

^{*}Joint work with Robin Cockett and Geoff Cruttwell.