Dominique Bourn Université du Littoral, Calais, France

Extremal and regular epimorphisms in the category $Equ\mathbb{E}$ of equivalence relations in a finitely complete category \mathbb{E}

Given a morphism of equivalence relations in \mathbb{E} :

it is clear that if the morphism (f, \hat{f}) is an extremal (resp. regular) epimorphim in the category $Equ\mathbb{E}$ of equivalence relations in \mathbb{E} , so is the morphism f in \mathbb{E} ; but, in *Set*, there are extremal (resp. regular) epimorphims (f, \hat{f}) in Equ such that \hat{f} is not. Actually, in any finitely complete category \mathbb{E} , given any morphism of split epimorphisms:

the morphism $(x, R(x)) : R[f] \to R[f']$ between the induced kernel equivalence relations is extremal in $Equ\mathbb{E}$ as soon as so are the morphisms y and x in \mathbb{E} . In this talk:

- (1) we shall give a characterization of the extremal and regular epimorphisms in the category $Equ\mathbb{E}$ of equivalence relations in any finitely complete category \mathbb{E} ,
- (2) then we shall characterize the existence of the suprema of pairs of equivalence relations in term of the existence of some class Σ of extremal epimorphisms in $Equ\mathbb{E}$.

From that, it will appear that the context of the category $Equ\mathbb{E}$ of equivalence relations in \mathbb{E} is a context which allows to exemplify the extreme variety of possible behaviours of extremal epimorphisms. Indeed:

- (3) we shall characterize the congruence modular formula by the stability of the class Σ under pullback along a certain class of morphisms in $Equ\mathbb{E}$,
- (4) then we shall characterize the situation where any extremal epimorphim in $Equ\mathbb{E}$ is stable under pullback, namely where the category $Equ\mathbb{E}$ is a regular category.

We shall exemplify the different situations by examples chosen among the varieties of Universal Algebra. Many aspects of the talk appeared in [1].

References:

 D. Bourn, Suprema of equivalence relations and non-regular Goursat categories, Cahiers Top. Géom. Diff. Catég. 59 (2018) 142–193.