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Aspects of descent via bilimits

There are two main constructions in classical descent theory: the category of algebras

and the descent category (see, for instance, [6, 2]). These constructions are known to

be examples of 2-limits (see, for instance, [8, 8, 1]). The aim of [6] was to investigate

whether pure formal methods and commuting properties of limits are useful in proving

classical and new theorems of descent theory in the classical context of [2, 3].

In Aveiro (CT2015), we showed how commuting properties of bilimits gives us a proof

of the celebrated Bénabou Roubaud Theorem. Now, the aim of this talk is to give an

idea of the new results on Descent Theory obtained from the perspective of [6].

In particular, if time allows, we shall talk about the relation between monadicity,

Beck-Chevalley and commutativity of bilimits, and give the definition of Unbiased De-

scent Data, proving that it is equivalent to the biased one, giving comments to three-

dimensional descent theory.
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