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Introduction

Central extensions of groups

A group X is abelian iff
[X ,X ] = {1}.

A surjective epimorphism f : X → Y is a central extension iff

[Ker(f ),X ] = {1}.

Both of these concepts have been generalized to other situations:
Categorical Galois Theory : General notion of central extension
relatively to a reflective subcategory (Janelidze,Kelly, 1994[9])
Commutators : Commutator of equivalence relations for Mal’tsev
varieties (Smith, 1976) and exact Mal’tsev categories with
coequalizers (Pedicchio, 1995 [11])
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Introduction

If C is an exact Mal’tsev category with coequalizers, and Ab(C) is the
subcategory of objects such that [∇X ,∇X ] = ∆X , then :

Proposition (Janelidze, Kelly, 2000[10]; Gran, 2004 [6])
An extension f : X → Y is central with respect to Ab(C) if and only if

[Eq[f ],∇X ] = ∆X .
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Introduction

Proposition (Janelidze,1991 [8]; Gran, Rossi, 2004[7]; Everaert, Van
der Linden, 2010[5])
A double extension

X Z

Y W

g

f h

j

is central with respect to Ab(C) if only if

[Eq[f ] ∧ Eq[g ],∇X ] = ∆X = [Eq[f ],Eq[g ]].
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Introduction

Reflexive graphs and internal groupoids
Let B be a fixed object of C.
A reflexive graph X = (X ,B, c, d , e) in C is a diagram

X B
d

c
e

such that c ◦ e = 1B = d ◦ e.

An internal groupoid is a reflexive graph endowed with a multiplication
µ : X ×B X → X that is associative, unital, and has an inverse.

X ×B X X B
π1
µ

π2
σ

d

c
e

In a Mal’tsev category, a reflexive graph can have at most one structure of
internal groupoid.
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Introduction

A morphism of reflexive graph is an arrow

X Y

B
e

f
d

c
e′

d ′

c′

making the triangles commute.

In a Mal’tsev category, Grpd(C)/B can be seen as a full subcategory of
RG(C)/B.
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Introduction

When C is an exact Mal’tsev category with coequalizers, a reflexive graph
(X ,B, c, d , e) is an internal groupoid if and only if [Eq[c],Eq[d ]] = ∆X .

But can we also characterize the central extensions using a commutator
condition?
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Preliminaries Centralizing relations and Commutators

Mal’tsev categories

A category is a Mal’tsev category if every reflexive relation is an
equivalence relation.

Proposition (Carboni, Lambek, Pedicchio, 1991 [1])
If C is a regular category, the following are equivalent:

C is Mal’tsev.
R ◦ S = S ◦ R for any R,S ∈ EqX (C).

If C is a variety, then this is equivalent to the existence of a ternary
operation p satisfying p(x , y , y) = x and p(y , y , z) = z.

Examples : Grp (p(x , y , z) = xy−1z), Rng, Lie, any abelian category,
Grp(Top)
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Preliminaries Centralizing relations and Commutators

Centralizing relations

C regular Mal’tsev category, R,S equivalence relations on X .

A double equivalence relation is a diagram

C S

R X ,

q1

q2
p2p1 s2s1

r1

r2

where (C , p1, p2) is an equivalence relation on R, (C , q1, q2) is an
equivalence relation on S, and ripj = sjqi for all i , j ∈ {1, 2}.
A double equivalence relation is centralizing if any of these commutative
squares are pullbacks.
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Preliminaries Centralizing relations and Commutators

Centrality and commutators

When C is a regular Mal’tsev category, the following conditions are
equivalent (Carboni-Pedicchio-Pirovano, [2]); we say that R, S centralize
each other.

R and S have a (unique) centralizing relation;
there exists a (unique) connector p : R ×X S → X , satisfying

p(x , y , y) = x and p(y , y , z) = z .

When C is exact and has coequalizers, one can define a commutator of
equivalence relations (Pedicchio, 1995 [11]) such that R,S centralize each
other if and only if [R, S] = ∆X .
In fact [R, S] is the smallest equivalence relation whose coequalizer q is
such that q(R) and q(S) centralize each other.
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Preliminaries Centralizing relations and Commutators

An internal reflexive graph X = (X ,B, c, d , e) is an internal groupoid if
and only if [Eq[c],Eq[d ]] = ∆X .

Proposition (Pedicchio, 1995 [11])
The category Grpd(C)/B is reflective in RG(C)/B, with reflection given by

X X
[Eq[c],Eq[d]]

B

e

ηX

d

c e
d

c

It is also closed under subobjects and quotients, hence a Birkhoff
subcategory.
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Preliminaries Categorical Galois Theory

The Galois structure

Let us denote E the class of regular epimorphisms in RG(C)/B. Then,
since C is regular:

1 any isomorphism is in E ;
2 E is pullback-stable;
3 E is closed under composition.

Moreover, the reflector I preserves E .
Γ = (RG(C)/B,Grpd(C)/B, E , I) is a Galois structure.
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Preliminaries Categorical Galois Theory

In this context we have another adjunction for every reflexive graph X :

RG(C)/B ↓E X Grpd(C)/B ↓E I(X).
I

η∗X

⊥

The Galois structure is admissible when η∗X is fully faithful for all X.
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Preliminaries Categorical Galois Theory

An extension f : X→ Y is :
Γ-trivial if it is in the image of η∗Y, or, equivalently, if

X I(X)

Y I(Y)

f

ηX

I(f )

ηY

is a pullback.
Γ-central if it is split by an extension, i.e. there is a pullback

Z×Y X X

Z Y

f ′

g ′

f

g

with f ′ trivial.
Γ-normal if it splits itself, i.e. if the projections of its kernel pair are
trivial.
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Characterisation theorems Central extensions

Proposition (Everaert, Gran, 2006 [4])
Let V be a Mal’tsev variety. An extension in RG(V)/B

X Y

B
e

f
d

c
e′

d ′

c′

is central relatively to Grpd(V)/B if and only if

[Eq[f ],Eq[c] ∨ Eq[d ]] = ∆X .
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Characterisation theorems Central extensions

Theorem (Duvieusart, Gran, 2018 [3])
Let C be an exact Mal’tsev category with coequalizers. An extension in
RG(C)/B

X Y

B
e

f
d

c
e′

d ′

c′

is central relatively to Grpd(C)/B if and only if

[Eq[f ],Eq[c] ∨ Eq[d ]] = ∆X .
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Characterisation theorems Double central extensions

The class E of regular epimorphism can also be seen as a full subcategory
of Arr(RG(C)/B). The class of central extensions then forms a reflective
subcategory CExt(RG(C)/B) of Ext(RG(C)/B), with reflection given by

X X
[Eq[c]∨Eq[d],Eq[f ]]

Y .
f

q[Eq[c]∨Eq[d],Eq[f ]]

f
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Characterisation theorems Double central extensions

Definition
A double extension is a commutative square of regular epimorphisms

X Z

Y W

g

f h

j

such that the canonical arrow X→ Y×W Z is a regular epimorphism in
RG(C)/B. Double extensions form a class E1 of arrows in the category
Ext(RG(C)/B).

Γ1(Ext(RG(C)/B),CExt(RG(C)/B), I1, E1) is again an admissible Galois
structure. A double central extension is a double extension that is
Γ1-central.
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Characterisation theorems Double central extensions

Theorem (Duvieusart, Gran, 2018 [3])
A double extension

X Z

Y W

g

f h

j

is central in RG(C)/B if and only if

[Eq[f ],Eq[g ]] = ∆X = [Eq[f ] ∧ Eq[g ],Eq[c] ∨ Eq[d ]].
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Characterisation theorems Examples

Compact Hausdorff groups

C = Comp(Grp) is semi-abelian, and satisfies the "Smith is Huq"
condition.

Hence an extension
X Y

B
e

f
d

c
e′

d ′

c′

in RG(Comp(Grp))/B is central if and only

[Ker [f ],Ker [d ] · Ker [c]] = {1}.
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Characterisation theorems Examples

Similarly, a double extension

X Z

Y W

g

f h

j

is central if and only if

[Ker(f ) ∧ Ker(g),Ker(c) · Ker(d)] = {1} = [Ker(f ),Ker(g)].
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Characterisation theorems Examples

Precrossed Lie Algebras

We have an equivalence of categories

Grpd(Lie)/B RG(Lie)/B

XMod(Lie)/B PXMod(Lie)/B

∼=

⊥

∼=

⊥

This allows us to characterise central extensions in PXMod(Lie)/B with
respect to XMod(Lie)/B.
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Characterisation theorems Examples

L L′

B

f

∂ ∂′

We denote 〈Ker(f ), L〉 the ideal of L generated by terms of the form

[k, l ] or ∂(l)k, k ∈ Ker(f ), l ∈ L,

which we call the Peiffer commutator.
Then an extension is central if and only if

〈Ker(f ), L〉 = 0.
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Characterisation theorems Examples

Similarly, a double extension

L1 L2

L3 L4

B

g

∂1

f
∂2

h

j

∂3
∂4

is a double central extension if and only if

〈Ker(f ) ∧ Ker(g),X 〉 = 0 = [Ker(f ),Ker(g)].
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