A synthetic account of Huygens' Principle

Anders Kock
University of Aarhus, Denmark

1. Huygens' Principle

Wave front at time $t+\Delta t=$ envelope of wavelets of radius Δt. i.e. it is touched be each of the wavelets.

2. Primitive notions

Ambient space: M with

- a reflexive symmetric relation \sim ("neighbour relation")
- a (pre-) metric dist on M

They define, respectively, the notions of touching (and hence envelope) sphere /circle
for x and y in M :

$$
\begin{gathered}
x \sim x \\
x \sim y \Rightarrow y \sim x
\end{gathered}
$$

The "first neighbourhood of the diagonal" $M_{(1)} \subseteq M \times M$. \sim is not transitive, - unlike in NSA.

2.1 Touching

- Monad around $b \in M$
$\mathfrak{M}(b):=\left\{b^{\prime} \in M \mid b^{\prime} \sim b\right\}$
Let $b \in S_{1} \cap S_{2}$.
- S_{1} and S_{2} touch at $b: \mathfrak{M}(b) \cap S_{1}=\mathfrak{M}(b) \cap S_{2}$

Equivalently, $b \in S_{1} \cap S_{2}$, and

$$
\forall b^{\prime} \sim b: b^{\prime} \in S_{1} \Leftrightarrow b^{\prime} \in S_{2} .
$$

Touching set of S_{1} and $S_{2}=$ set of points where S_{1} and S_{2} touch. In general a proper subset of $S_{1} \cap S_{2}$.

3. Neighbours and touching in SDG

(for motivation only):
R : basic number line; a commutative ring. R^{2} : the coordinate plane, etc.
In R, we have neighbour relation $x \sim y \Leftrightarrow(y-x)^{2}=0$.
For any space M, we may define \sim on M by
$\underline{x} \sim \underline{y}:$ for all $\phi: M \rightarrow R, \phi(\underline{x}) \sim \phi(\underline{y})$.
Then any map $M \rightarrow N$ preserves \sim ("automatic continuity").
\sim is reflexive and symmetric, but not transitive.

Protagoras' Picture

The point $(d, 0)$ on the x-axis X has distance a to $(0, a)$ iff $d^{2}=0$, (by Pythagoras' Theorem)
i.e. iff $d \sim 0$.
$S_{a} \cap X$ is the little "line element", containing e.g. $(d, 0)$.
But $(0,0)$ is the only touching point of S_{a} and X.

4. Pre-metric dist

For x and y in M :
$\operatorname{dist}(x, y) \in R_{>0}$
only defined for x distinct from y
(if $x \sim y, x$ and y are not distinct !)
Symmetric: $\operatorname{dist}(x, y)=\operatorname{dist}(y, x)$.
Assumptions for $R_{>0}$:
An (additively written) cancellative semigroup
Define $r<t$ to mean:
$\exists s: r+s=t$ (equivalently $\exists!s: r+s=t$)
This unique s is the difference $t-r$.
Require dichotomy for the natural strict order $>$ on $R_{>0}$:
if r and s are distinct, then
either $r<s$ or $s<r$.

No triangle inequality is assumed.
But we may for some triples a, b, c in M have triangle equality:

$$
\operatorname{dist}(a, b)+\operatorname{dist}(b, c)=\operatorname{dist}(a, c)
$$

(a weak collinearity condition for a, b, c).
Busemann 1943: On Spaces in which Two Points determine a Geodesic.
Busemann 1969: Synthetische Differentialgeometrie.

"Plucked string"-picture

Spheres

Let M be a space equipped with a (pre-) metric.
Let $a \in M$ and $r \in R_{>0}$. Define

$$
S(a, r):=\{b \in M \mid \operatorname{dist}(a, b)=r\},
$$

the sphere with center a and radius r.
Nonconcentric spheres: their centers are distinct.

5. The Axioms

- Axiom 1: If two spheres touch, there is a unique touching point.
- Axiom 2:

Two spheres touch iff either the distance between their centers equals the difference between their radii ("concave touching")

or the distance between their centers equals the sum of their radii ("convex touching")

- Axiom 3 ("Dimension Axiom")

Given two spheres S_{1} and S_{2}, and $b \in S_{1} \cap S_{2}$. Then

$$
\mathfrak{M}(b) \cap S_{1} \subseteq \mathfrak{M}(b) \cap S_{2} \quad \text { implies } \quad \mathfrak{M}(b) \cap S_{1}=\mathfrak{M}(b) \cap S_{2}
$$

Difference of radii:

Denote the touching point c; then :

$$
\operatorname{dist}(a, b)=\operatorname{dist}(a, c)-\operatorname{dist}(b, c)
$$

Sum of radii:

Denote the touching point b; then :

$$
\operatorname{dist}(a, c)=\operatorname{dist}(a, b)+\operatorname{dist}(b, c)
$$

So

$$
\begin{aligned}
\operatorname{dist}(a, b) & =\operatorname{dist}(a, c)-\operatorname{dist}(b, c) \\
\operatorname{dist}(a, c) & =\operatorname{dist}(a, b)+\operatorname{dist}(b, c)
\end{aligned}
$$

are thus necessary conditions for c and b being the respective touching points. These two "arithmetical" necessary conditions are trivially equivalent.

6. Reciprocity Lemma

Let a, b, c satisfy the triangle equality

$$
\operatorname{dist}(a, c)=\operatorname{dist}(a, b)+\operatorname{dist}(b, c)
$$

Then b is the touching point of B and S_{2} iff c is the touching point of C and S_{1}

We say that a, b, c are strongly collinear it they are weakly collinear (triangle equality holds): $\operatorname{dist}(a, b)+\operatorname{dist}(b, c)=\operatorname{dist}(a, c)$ (write $r:=\operatorname{dist}(a, b), s:=\operatorname{dist}(b, c)$)
and
b is the touching point of $S(a, r)$ and $S(c, s)$ (convex) equivalently, by Reciprocity Lemma,
c is the touching point of $S(a, r+s)$ and $S(b, s)$ (concave) spelled out in 1st order terms:

$$
\forall b^{\prime} \sim b: \operatorname{dist}\left(a, b^{\prime}\right)=r \Leftrightarrow \operatorname{dist}\left(b^{\prime}, c\right)=s
$$

respectively

$$
\forall c^{\prime} \sim c: \operatorname{dist}\left(a, c^{\prime}\right)=r+s \Leftrightarrow \operatorname{dist}\left(b, c^{\prime}\right)=s
$$

For $\epsilon^{2}=0, a, b^{\prime}, c$ are weakly collinear,
so $S(a, r)$ and $S(c, s)$ do touch, but not in b^{\prime}; they touch in b.
So a, b, c are strongly collinear

Recall

$$
\forall b^{\prime} \sim b: \operatorname{dist}\left(a, b^{\prime}\right)=r \Leftrightarrow \operatorname{dist}\left(b^{\prime}, c\right)=s
$$

as condition for $S(a, r)$ touching $S(c, s)$ in b.
By Dimension Axiom 3, \Leftrightarrow may be replaced by \Rightarrow, or by \Leftarrow. Then we get some equivalent formulations. E.g.

$$
\forall b^{\prime} \sim b: \operatorname{dist}\left(a, b^{\prime}\right)=r \Rightarrow \operatorname{dist}\left(b^{\prime}, c\right)=s
$$

or in terms used in calculus:

- b is a critical point of the function $\operatorname{dist}(x, c)$ under the constraint $\operatorname{dist}(a, x)=r$; with critical value s

By a critical point of a function $\phi: M \rightarrow R_{>0}$, we mean a point $x \in M$ so that ϕ is constant on $\mathfrak{M}(x)$. If $B \subseteq M$, a critical point of ϕ under the constraint $x \in B$, is a point $x \in B$ so that ϕ is constant on $\mathfrak{M}(x) \cap B$.

If $\epsilon^{2}=0, \operatorname{dist}\left(a, b^{\prime}\right)=r$ and $\operatorname{dist}\left(b^{\prime}, c\right)=s$, so both "paths" from a to c have length $r+s$.
"Shortest path" is not enough to characterize (strong) collinearity!

- b is the critical point of the function $\operatorname{dist}(x, c)$ under the constraint $\operatorname{dist}(a, x)=r$; with critical value s

7. Contact elements

A contact element P at $b \in P$ is a subset which may be written

$$
\mathfrak{M}(b) \cap S
$$

for some sphere S containing b.
The sphere S is said to represent the contact element.
If two spheres S_{1} and S_{2} touch each other at b

$$
\mathfrak{M}(b) \cap S_{1}=\mathfrak{M}(b) \cap S_{2}
$$

So if S_{1} represents (P, b), then so does S_{2}.
Let $P=(P, b)$ be a contact element. Let S be a sphere. If $P \subseteq S$, then S represents P.
For, let S_{1} be a sphere representing P. Then
$\mathfrak{M}(b) \cap S_{1} \subseteq \mathfrak{M}(b) \cap S$. By Axiom 3, have equality.

In the applications, when M is 2-dimensional, the contact elements may be called: line elements, and if M is 3-dimensional, they may be called plane elements.

A contact element in an n-dimensional M is of dimension $n-1$. The set of contact elements in M make up "the projectivized cotangent bundle of $M^{\prime \prime}$.

$$
\mathfrak{M}(b) \cap S
$$

Sophus Lie: "It is often practically convenient to think of a line element as an infinitely small piece of a curve."

Zur Theorie partieller Differentialgleichungen, 1872
Berührungstransformationen, 1896
Berührung $=$ touching $=$ contact

Perpendicularity, and the normal

Given $P=(P, b)$.
Let $x \in M$ be distinct from b (equivalently, distinct from all points of P). We define

$$
x \perp P: \Leftrightarrow\left[\operatorname{dist}\left(x, b^{\prime}\right)=\operatorname{dist}(x, b) \text { for all } b^{\prime} \in P\right] .
$$

The set of points x with $x \perp P$ make up the normal P^{\perp} to P.
$P=(P, b)$. Recall

$$
x \perp P: \Leftrightarrow\left[\operatorname{dist}\left(x, b^{\prime}\right)=\operatorname{dist}(x, b) \text { for all } b^{\prime} \in P\right] .
$$

Expressed in terms of spheres: $P \subseteq S(x, s)$, where $s=\operatorname{dist}(x, b)$. Equivalently: $S(x, s)$ represents P.

If x_{1} and x_{2} are $\perp P$, then they are strongly collinear with b. For $P \subseteq S\left(x_{1}, s_{2}\right)$ and $P \subseteq S\left(x_{2}, s_{2}\right)$. So both these spheres represent P.
If two spheres S_{1} and S_{2} represent (P, b), then they touch each other at b. Assume e.g. convex touching. Then a, b, c are strongly collinear, where a is the center of S_{1} and c is the center of S_{2}.
(Contrast with the discrete case where all points (distinct from b) are $\perp\{b\}$.)

For x and y on the normal, we say that they are on the opposite side of P if

$$
\operatorname{dist}(x, y)>\operatorname{dist}(x, b) \text { and } \operatorname{dist}(x, y)>\operatorname{dist}(y, b)
$$

otherwise we say that that they are on the same side.
The normal P^{\perp} falls in two subsets; selecting one of these as the "positive normal" provides P with a (transversal) orientation A sphere representing a transversally oriented P represents it from the inside if its center belongs to the negative normal.

Crucial construction: $P \vdash s$
"The" point obtained by going s units out along the positive normal of $P=(P, b)$.
Two constructions:
$P=(P, b)$

Pick $S=S(a, r)$ representing P from the inside. (Only $\mathfrak{M}(b) \cap S=P$ is visible!)
Let c_{1} be the touching point of $S(a, r+s)$ and $S(b, s)$.
By Reciprocity, b is the touching point of $S(a, r)$ and $S\left(c_{1}, s\right)$,
so $P=\mathfrak{M}(b) \cap S(a, r) \subseteq S\left(c_{1}, s\right)$
so $c_{1} \perp P$, and $\operatorname{dist}\left(b, c_{1}\right)=s$.
So there exist points on the positive normal of P with prescribed distance s.

Independent of choice of a sphere $S(a, r)$ representing P ?
Assume c_{2} has $\operatorname{dist}\left(b, c_{2}\right)=s$ and $c_{2} \perp P$. (This condition is independent of a and r !)

So $\operatorname{dist}\left(b^{\prime}, c_{2}\right)=s$ for all $b^{\prime} \in P$. Equivalently, $P \subseteq S\left(c_{2}, s\right)$.
Pick a sphere $S(a, r)$ so that $P=\mathfrak{M}(b) \cap S(a, r)$, i.e.
$\mathfrak{M}(b) \cap S(a, r)=P \subseteq S\left(c_{2}, s\right)$
so $\mathfrak{M}(b) \cap S(a, r) \subseteq S\left(c_{2}, s\right)$, and by Dimension Axiom 3, $\mathfrak{M}(b) \cap S(a, r)=\mathfrak{M}(b) \cap S\left(c_{2}, s\right)$
b is the touching point of $S(a, r)$ and $S\left(c_{2}, s\right)$.
Hence by Reciprocity Lemma, c_{2} is the touching point of $S(a, r+s)$ and $S(b, s)$.
So $c_{1}=c_{2}$.

$$
c_{2} \in \bigcap_{b^{\prime} \in P} S\left(b^{\prime}, s\right)
$$

Discriminant-type construction of the characteristic point of the family of spheres $\left\{S\left(b^{\prime}, s\right) \mid b^{\prime} \in P\right\}$.

8. Hypersurfaces

A hypersurface B : a subset $B \subseteq M$ such that for each $b \in B, \mathfrak{M}(b) \cap B$ is a contact element:

$$
B(b):=\mathfrak{M}(b) \cap B
$$

B is oriented if each $B(b)$ is oriented.

$$
B \vdash s:=\{B(b) \vdash s \mid b \in B\} .
$$

Have map $B \rightarrow B \vdash s: b \mapsto B(b) \vdash s(=C)$.
For small enough s, this map is a bijection.
The inverse is the foot map. Require that it extends to a neigbourhood of C.

Then can prove

$$
\mathfrak{M}(c) \cap S(b, s)=\mathfrak{M}(c) \cap C
$$

This proves that C is a hypersurface: witnessed by the wavelets $S(b, s)$.
It also proves: C is en envelope of the wavelets.

Let $c \in C$ have foot b on B
To prove $\mathfrak{M}(c) \cap S(b, s) \subseteq C$:
Let $x \in \mathfrak{M}(c) \cap S(b, s)$.
Let b^{\prime} be the foot of x on B.
Since $x \sim c$, we have $b^{\prime} \sim b$.
Since b^{\prime} is foot of x and $b^{\prime} \sim b$, we have $s=\operatorname{dist}(x, b)=\operatorname{dist}\left(x, b^{\prime}\right)$.
So $x=B\left(b^{\prime}\right) \vdash s$, hence b^{\prime} witnesses that $x \in C$.

Needs attention:

Coexistence with Riemannian metric?
Synthetically, a Riemannian metric on M is a function $g: M_{(2)} \rightarrow R$, vanishing in $M_{(1)}=$ the set of pairs of neighbour points, where $M_{(2)}$ is the set of points which are second-order neighbours, e.g. on R : pairs (x, y) with $(y-x)^{3}=0$. Interpret $g(x, y)$ as "square-of-distance".

Purely combinatorial models ? e.g. with $R_{>0}:=$ positive integers ?

