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1. Huygens' Principle

wave front at time t+At

wave front at time t

Wave front at time t + At = envelope of wavelets of radius At.
i.e. it is touched be each of the wavelets.



2. Primitive notions

Ambient space: M with

e a reflexive symmetric relation ~ (" neighbour relation™)
e a (pre-) metric dist on M

They define, respectively, the notions of

touching (and hence envelope)
sphere /circle



for x and y in M:

X ~ X
X~y =y~X.
The “first neighbourhood of the diagonal” M;) € M x M.

~ is not transitive, - unlike in NSA.



2.1 Touching

e Monad around be M
M(b) :={b e M| b ~ b}

Let be 51N S,.
e 51 and S touch at b: M(b) N S1 = M(b) N Sy

51



M(b) S,

Equivalently, b € 51N S;, and

VbleZb/€51<:>b,€52.



Touching set of S; and S, = set of points where S; and S5 touch.

In general a proper subset of 51 N S,.



3. Neighbours and touching in SDG

(for motivation only):

R: basic number line; a commutative ring. R?2: the coordinate
plane, etc.

In R, we have neighbour relation x ~ y < (y — x)?> = 0.

For any space M, we may define ~ on M by
x~y:forall¢: M—= R, ¢(x)~ o(y).

Then any map M — N preserves ~ (“automatic continuity”).

~ is reflexive and symmetric, but not transitive.



Protagoras’ Picture

The point (d,0) on the x-axis X has distance a to (0, a) iff
d? = 0, (by Pythagoras’ Theorem)

i.e. iff d ~ 0.

S, N X is the little “line element”, containing e.g. (d, 0).
But (0, 0) is the only touching point of S, and X.



4. Pre-metric dist

For x and y in M:
dist(x,y) € R>o

only defined for x distinct from y
(if x ~ y, x and y are not distinct !)

Symmetric: dist(x, y) = dist(y, x).

Assumptions for Rsg:

An (additively written) cancellative semigroup
Define r < t to mean:

Jds:r+s=t (equivalently Jls : r +s = t)
This unique s is the difference t — r.

Require dichotomy for the natural strict order > on Ryq:
if r and s are distinct, then
either r <sors<r.



No triangle inequality is assumed.
But we may for some triples a, b, c in M have triangle equality:

dist(a, b) + dist(b, ¢) = dist(a, ¢)

(a weak collinearity condition for a, b, c).

Busemann 1943: On Spaces in which Two Points determine a
Geodesic.
Busemann 1969: Synthetische Differentialgeometrie.



“Plucked string” -picture




Spheres

Let M be a space equipped with a (pre-) metric.
Let a€ M and r € Ryg. Define

S(a,r) :={be M|dist(a, b) = r},
the sphere with center a and radius r.

Nonconcentric spheres: their centers are distinct.



5. The Axioms

e Axiom 1: If two spheres touch, there is a unique touching point.



e Axiom 2:

Two spheres touch iff either

the distance between their centers equals the difference between
their radii (“concave touching”)

or the distance between their centers equals the sum of their radii
(“convex touching”)



e Axiom 3 (" Dimension Axiom™)

Given two spheres S; and Sy, and b€ 5; N S,. Then

M(b)NSICTM(b) NS, implies  M(b) N S1=M(b) N S,.



Difference of radii:

(b e

Denote the touching point c; then :

dist(a, b) = dist(a, ¢) — dist(b, c).



Sum of radii:

Denote the touching point b; then :

dist(a, ¢) = dist(a, b) + dist(b, c).
So

dist(a, b) = dist(a, c) — dist(b, ¢)

dist(a, c) = dist(a, b) + dist(b, c)

are thus necessary conditions for ¢ and b being the respective
touching points. These two “arithmetical” necessary conditions are
trivially equivalent.



6. Reciprocity Lemma

Let a, b, c satisfy the triangle equality
dist(a, c) = dist(a, b) + dist(b, c).

Then b is the touching point of B and Sy iff ¢ is the touching
point of C and $;

(o
C



We say that a, b, ¢ are strongly collinear it they are weakly collinear
(triangle equality holds): dist(a, b) + dist(b, ¢) = dist(a, ¢)
(write r := dist(a, b), s := dist(b, ¢))

and

b is the touching point of S(a, r) and S(c,s) (convex)
equivalently, by Reciprocity Lemma,

¢ is the touching point of S(a,r + s) and S(b, s) (concave)

spelled out in 1st order terms:

Vb ~ b:dist(a,b') = r < dist(b,c) = s

respectively

Ve ~ c:dist(a, ') =r+s e dist(b, ) =s



a b
For €2 =0, a, b/, ¢ are weakly collinear,

so S(a, r) and S(c,s) do touch,
but not in b’; they touch in b.
So a, b, ¢ are strongly collinear



Recall
Vb ~ b:dist(a, b') = r < dist(b',c) = s

as condition for S(a, r) touching S(c,s) in b.
By Dimension Axiom 3, < may be replaced by =, or by <=. Then
we get some equivalent formulations. E.g.
Vb ~ b:dist(a,b') = r = dist(b',c) = s.
or in terms used in calculus:

e b is a critical point of the function dist(x, ¢) under the constraint
dist(a, x) = r; with critical value s

By a critical point of a function ¢ : M — R~(, we mean a point
x € M so that ¢ is constant on 21(x).

If B C M, a critical point of ¢ under the constraint x € B, is a
point x € B so that ¢ is constant on 9t(x) N B.



‘
a r b ¢ ¢
If €2 =0, dist(a, b') = r and dist(b’,c) = s, so both “paths” from
a to ¢ have length r +s.
“Shortest path” is not enough to characterize (strong) collinearity!

e b is the critical point of the function dist(x, ¢) under the
constraint dist(a, x) = r; with critical value s



7. Contact elements

A contact element P at b € P is a subset which may be written
M(b) NS

for some sphere S containing b.
The sphere S is said to represent the contact element.

If two spheres S; and S, touch each other at b
m(b) NS = m(b) nSs.

So if S represents (P, b), then so does S,.

Let P = (P, b) be a contact element. Let S be a sphere. If P C S,
then S represents P.

For, let S; be a sphere representing P. Then

M(b) N S1 CM(b)N'S. By Axiom 3, have equality.



In the applications, when M is 2-dimensional, the contact elements
may be called: line elements, and if M is 3-dimensional, they may
be called plane elements.

A contact element in an n-dimensional M is of dimension n — 1.
The set of contact elements in M make up “the projectivized
cotangent bundle of M".



M(b)N S

Sophus Lie: “It is often practically convenient to think of a line
element as an infinitely small piece of a curve.”

Zur Theorie partieller Differentialgleichungen, 1872
Beriihrungstransformationen, 1896

Bertihrung = touching = contact



Perpendicularity, and the normal

Given P = (P, b).
Let x € M be distinct from b
(equivalently, distinct from all points of P). We define

x L P& [dist(x, b') = dist(x, b) for all b’ € P].

The set of points x with x L P make up the normal P+ to P.



P = (P,b). Recall

x L P& [dist(x, b') = dist(x, b) for all b’ € P].

Expressed in terms of spheres: P C S(x,s), where s = dist(x, b).
Equivalently: S(x,s) represents P.

If x; and x2 are L P, then they are strongly collinear with b.

For P C S5(x1,s2) and P C S(x2,s2). So both these spheres
represent P.

If two spheres S; and S, represent (P, b), then they touch each
other at b. Assume e.g. convex touching. Then a, b, ¢ are strongly
collinear, where a is the center of S; and c is the center of S,.

(Contrast with the discrete case where all points (distinct from b)
are 1 {b}.)



For x and y on the normal, we say that they are on the opposite
side of P if

dist(x, y) > dist(x, b) and dist(x, y) > dist(y, b),

otherwise we say that that they are on the same side.

The normal P~ falls in two subsets; selecting one of these as the
“positive normal” provides P with a (transversal) orientation

A sphere representing a transversally oriented P represents it from
the inside if its center belongs to the negative normal.



Crucial construction: P+ s

“The" point obtained by going s units out along the positive
normal of P = (P, b).
Two constructions:



Pt)a

Pick S = S(a, r) representing P from the inside. (Only

M(b) NS = P is visible!)

Let c; be the touching point of S(a,r + s) and S(b,s).

By Reciprocity, b is the touching point of S(a, r) and S(ci,s),
so P=(b) N S(a,r) C S(c,s)

so ¢1 L P, and dist(b, c1) = s.

So there exist points on the positive normal of P with prescribed
distance s.



Independent of choice of a sphere S(a, r) representing P?

Assume ¢ has dist(b, c2) = s and ¢ L P. (This condition is
independent of a and r!)

So dist(b, ;) = s for all b’ € P. Equivalently, P C S(cp, s).
Pick a sphere S(a, r) so that P = M(b) N S(a,r), i.e.

M(b) N S(a,r) =P C S(co, )

so M(b) N S(a,r) C S(c2,s), and by Dimension Axiom 3,
M(b) N S(a, r) =M(b) N S(c2,s)

b is the touching point of S(a, r) and S(c,s).

Hence by Reciprocity Lemma, ¢ is the touching point of
S(a,r+s) and S(b,s).

So 1 = o.



Discriminant-type construction of the characteristic point of the
family of spheres {S(b,s) | b’ € P}.



8. Hypersurfaces

A hypersurface B: a subset B C M such that
for each b € B, M(b) N B is a contact element:
B(b) := M(b) N B.

B is oriented if each B(b) is oriented.

Bts:={B(b)\s|be B}.

Have map B — B+ s: b+ B(b) - s(= C).

For small enough s, this map is a bijection.

The inverse is the foot map. Require that it extends to a
neigbourhood of C.



Then can prove

M(c) N S(b,s) =M(c)n C.

This proves that C is a hypersurface: witnessed by the wavelets
S(b,s).
It also proves: C is en envelope of the wavelets.




Let ¢ € C have foot bon B
To prove M(c) N S(b,s) C C:

Let x € M(c) N S(b, s).

Let b’ be the foot of x on B.

Since x ~ ¢, we have b’ ~ b.

Since b’ is foot of x and b’ ~ b, we have

s = dist(x, b) = dist(x, b).

So x = B(b') - s, hence b’ witnesses that x € C.



Needs attention:

Coexistence with Riemannian metric?

Synthetically, a Riemannian metric on M is a function

g : M2y = R, vanishing in M) = the set of pairs of neighbour
points, where M(3) is the set of points which are second-order
neighbours, e.g. on R: pairs (x,y) with (y — x)3 = 0.

Interpret g(x,y) as “square-of-distance”.

Purely combinatorial models 7 e.g. with R~ := positive integers ?



