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1. Huygens’ Principle

Wave front at time t +∆t = envelope of wavelets of radius ∆t.
i.e. it is touched be each of the wavelets.



2. Primitive notions

Ambient space: M with

• a reflexive symmetric relation ∼ (”neighbour relation”)
• a (pre-) metric dist on M

They define, respectively, the notions of

touching (and hence envelope)
sphere /circle



∼

for x and y in M:

x ∼ x

x ∼ y ⇒ y ∼ x .

The “first neighbourhood of the diagonal” M(1) ⊆ M ×M.

∼ is not transitive, - unlike in NSA.



2.1 Touching

• Monad around b ∈ M
M(b) := {b′ ∈ M | b′ ∼ b}

Let b ∈ S1 ∩ S2.

• S1 and S2 touch at b: M(b) ∩ S1 = M(b) ∩ S2
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Equivalently, b ∈ S1 ∩ S2, and

∀b′ ∼ b : b′ ∈ S1 ⇔ b′ ∈ S2.



Touching set of S1 and S2 = set of points where S1 and S2 touch.

In general a proper subset of S1 ∩ S2.



3. Neighbours and touching in SDG

(for motivation only):
R: basic number line; a commutative ring. R2: the coordinate
plane, etc.
In R, we have neighbour relation x ∼ y ⇔ (y − x)2 = 0.

For any space M, we may define ∼ on M by
x ∼ y : for all ϕ : M → R, ϕ(x) ∼ ϕ(y).

Then any map M → N preserves ∼ (“automatic continuity”).

∼ is reflexive and symmetric, but not transitive.



Protagoras’ Picture

a
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The point (d , 0) on the x-axis X has distance a to (0, a) iff
d2 = 0, (by Pythagoras’ Theorem)
i.e. iff d ∼ 0.
Sa ∩ X is the little “line element”, containing e.g. (d , 0).
But (0, 0) is the only touching point of Sa and X .



4. Pre-metric dist

For x and y in M:
dist(x , y) ∈ R>0

only defined for x distinct from y
(if x ∼ y , x and y are not distinct !)

Symmetric: dist(x , y) = dist(y , x).

Assumptions for R>0:
An (additively written) cancellative semigroup
Define r < t to mean:
∃s : r + s = t (equivalently ∃!s : r + s = t)
This unique s is the difference t − r .

Require dichotomy for the natural strict order > on R>0:
if r and s are distinct, then
either r < s or s < r .



No triangle inequality is assumed.
But we may for some triples a, b, c in M have triangle equality:

dist(a, b) + dist(b, c) = dist(a, c)

(a weak collinearity condition for a, b, c).

Busemann 1943: On Spaces in which Two Points determine a
Geodesic.
Busemann 1969: Synthetische Differentialgeometrie.



“Plucked string”-picture
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Spheres

Let M be a space equipped with a (pre-) metric.
Let a ∈ M and r ∈ R>0. Define

S(a, r) := {b ∈ M | dist(a, b) = r},

the sphere with center a and radius r .

Nonconcentric spheres: their centers are distinct.
.



5. The Axioms

• Axiom 1: If two spheres touch, there is a unique touching point.



• Axiom 2:
Two spheres touch iff either
the distance between their centers equals the difference between
their radii (“concave touching”)

a b

or the distance between their centers equals the sum of their radii
(“convex touching”)

a c



• Axiom 3 (”Dimension Axiom”)

Given two spheres S1 and S2, and b ∈ S1 ∩ S2. Then

M(b) ∩ S1⊆M(b) ∩ S2 implies M(b) ∩ S1=M(b) ∩ S2.



Difference of radii:

a cb

Denote the touching point c ; then :

dist(a, b) = dist(a, c)− dist(b, c).



Sum of radii:

a cb

Denote the touching point b; then :

dist(a, c) = dist(a, b) + dist(b, c).

So

dist(a, b) = dist(a, c)− dist(b, c)

dist(a, c) = dist(a, b) + dist(b, c)

are thus necessary conditions for c and b being the respective
touching points. These two “arithmetical” necessary conditions are
trivially equivalent.



6. Reciprocity Lemma

Let a, b, c satisfy the triangle equality

dist(a, c) = dist(a, b) + dist(b, c).

Then b is the touching point of B and S2 iff c is the touching
point of C and S1

B C

a
S1 S2b c



We say that a, b, c are strongly collinear it they are weakly collinear
(triangle equality holds): dist(a, b) + dist(b, c) = dist(a, c)
(write r := dist(a, b), s := dist(b, c))

and

b is the touching point of S(a, r) and S(c , s) (convex)

equivalently, by Reciprocity Lemma,

c is the touching point of S(a, r + s) and S(b, s) (concave)

spelled out in 1st order terms:

∀b′ ∼ b : dist(a, b′) = r ⇔ dist(b′, c) = s

respectively

∀c ′ ∼ c : dist(a, c ′) = r + s ⇔ dist(b, c ′) = s
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For ϵ2 = 0, a, b′, c are weakly collinear,

so S(a, r) and S(c , s) do touch,
but not in b′; they touch in b.
So a, b, c are strongly collinear



Recall
∀b′ ∼ b : dist(a, b′) = r ⇔ dist(b′, c) = s

as condition for S(a, r) touching S(c , s) in b.

By Dimension Axiom 3, ⇔ may be replaced by ⇒, or by ⇐. Then
we get some equivalent formulations. E.g.

∀b′ ∼ b : dist(a, b′) = r ⇒ dist(b′, c) = s.

or in terms used in calculus:

• b is a critical point of the function dist(x , c) under the constraint
dist(a, x) = r ; with critical value s

By a critical point of a function ϕ : M → R>0, we mean a point
x ∈ M so that ϕ is constant on M(x).
If B ⊆ M, a critical point of ϕ under the constraint x ∈ B, is a
point x ∈ B so that ϕ is constant on M(x) ∩ B.
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If ϵ2 = 0, dist(a, b′) = r and dist(b′, c) = s, so both “paths” from
a to c have length r + s.
“Shortest path” is not enough to characterize (strong) collinearity!

• b is the critical point of the function dist(x , c) under the
constraint dist(a, x) = r ; with critical value s



7. Contact elements

A contact element P at b ∈ P is a subset which may be written

M(b) ∩ S

for some sphere S containing b.

The sphere S is said to represent the contact element.

If two spheres S1 and S2 touch each other at b

M(b) ∩ S1 = M(b) ∩ S2.

So if S1 represents (P, b), then so does S2.

Let P = (P, b) be a contact element. Let S be a sphere. If P ⊆ S ,
then S represents P.
For, let S1 be a sphere representing P. Then
M(b) ∩ S1 ⊆ M(b) ∩ S . By Axiom 3, have equality.



In the applications, when M is 2-dimensional, the contact elements
may be called: line elements, and if M is 3-dimensional, they may
be called plane elements.

A contact element in an n-dimensional M is of dimension n − 1.
The set of contact elements in M make up “the projectivized
cotangent bundle of M”.



M(b) ∩ S

Sophus Lie: “It is often practically convenient to think of a line
element as an infinitely small piece of a curve.”

Zur Theorie partieller Differentialgleichungen, 1872
Berührungstransformationen, 1896

Berührung = touching = contact



Perpendicularity, and the normal

Given P = (P, b).
Let x ∈ M be distinct from b
(equivalently, distinct from all points of P). We define

x ⊥ P :⇔ [dist(x , b′) = dist(x , b) for all b′ ∈ P].

The set of points x with x ⊥ P make up the normal P⊥ to P.



P = (P, b). Recall

x ⊥ P :⇔ [dist(x , b′) = dist(x , b) for all b′ ∈ P].

Expressed in terms of spheres: P ⊆ S(x , s), where s = dist(x , b).
Equivalently: S(x , s) represents P.

If x1 and x2 are ⊥ P, then they are strongly collinear with b.
For P ⊆ S(x1, s2) and P ⊆ S(x2, s2). So both these spheres
represent P.
If two spheres S1 and S2 represent (P, b), then they touch each
other at b. Assume e.g. convex touching. Then a, b, c are strongly
collinear, where a is the center of S1 and c is the center of S2.

(Contrast with the discrete case where all points (distinct from b)
are ⊥ {b}.)



x
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For x and y on the normal, we say that they are on the opposite
side of P if

dist(x , y) > dist(x , b) and dist(x , y) > dist(y , b),

otherwise we say that that they are on the same side.
The normal P⊥ falls in two subsets; selecting one of these as the
“positive normal” provides P with a (transversal) orientation
A sphere representing a transversally oriented P represents it from
the inside if its center belongs to the negative normal.



Crucial construction: P ⊢ s

“The” point obtained by going s units out along the positive
normal of P = (P, b).
Two constructions:



P = (P, b)

a P c1

Pick S = S(a, r) representing P from the inside. (Only
M(b) ∩ S = P is visible!)
Let c1 be the touching point of S(a, r + s) and S(b, s).
By Reciprocity, b is the touching point of S(a, r) and S(c1, s),
so P = M(b) ∩ S(a, r) ⊆ S(c1, s)
so c1 ⊥ P, and dist(b, c1) = s.
So there exist points on the positive normal of P with prescribed
distance s.



Independent of choice of a sphere S(a, r) representing P?

Assume c2 has dist(b, c2) = s and c2 ⊥ P. (This condition is
independent of a and r !)

So dist(b′, c2) = s for all b′ ∈ P. Equivalently, P ⊆ S(c2, s).

Pick a sphere S(a, r) so that P = M(b) ∩ S(a, r), i.e.
M(b) ∩ S(a, r) = P ⊆ S(c2, s)

so M(b) ∩ S(a, r) ⊆ S(c2, s), and by Dimension Axiom 3,
M(b) ∩ S(a, r) = M(b) ∩ S(c2, s)
b is the touching point of S(a, r) and S(c2, s).

Hence by Reciprocity Lemma, c2 is the touching point of
S(a, r + s) and S(b, s).
So c1 = c2.



c2 ∈
∩
b′∈P

S(b′, s)

Discriminant-type construction of the characteristic point of the
family of spheres {S(b′, s) | b′ ∈ P}.



8. Hypersurfaces

A hypersurface B: a subset B ⊆ M such that
for each b ∈ B, M(b) ∩ B is a contact element:

B(b) := M(b) ∩ B.

B is oriented if each B(b) is oriented.

B ⊢ s := {B(b) ⊢ s | b ∈ B}.

Have map B → B ⊢ s: b 7→ B(b) ⊢ s(= C ).
For small enough s, this map is a bijection.
The inverse is the foot map. Require that it extends to a
neigbourhood of C .



Then can prove

M(c) ∩ S(b, s) = M(c) ∩ C .

This proves that C is a hypersurface: witnessed by the wavelets
S(b, s).
It also proves: C is en envelope of the wavelets.



Let c ∈ C have foot b on B
To prove M(c) ∩ S(b, s) ⊆ C :

Let x ∈ M(c) ∩ S(b, s).
Let b′ be the foot of x on B.
Since x ∼ c , we have b′ ∼ b.
Since b′ is foot of x and b′ ∼ b, we have
s = dist(x , b) = dist(x , b′).
So x = B(b′) ⊢ s, hence b′ witnesses that x ∈ C .



Needs attention:

Coexistence with Riemannian metric?

Synthetically, a Riemannian metric on M is a function
g : M(2) → R, vanishing in M(1) = the set of pairs of neighbour
points, where M(2) is the set of points which are second-order
neighbours, e.g. on R: pairs (x , y) with (y − x)3 = 0.
Interpret g(x , y) as “square-of-distance”.

Purely combinatorial models ? e.g. with R>0 := positive integers ?


