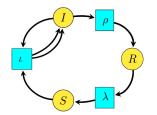
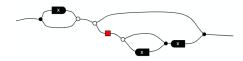
Hypergraph categories as cospan algebras Brendan Fong, with David Spivak

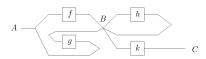
Category Theory 2018 University of Azores 10 July 2018



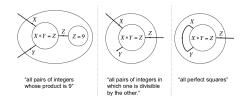


Bonchi, Sobocinski, Zanasi: A categorical semantics of signal flow graphs

Baez, Pollard: A compositional framework for reaction networks



Rosebrugh, Sabadini, Walters: Calculating colimits compositionally



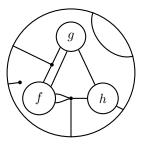
Spivak: The operad of wiring diagrams

Outline

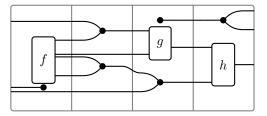
- I. Hypergraph categories
- II. Cospan algebras
- III. The equivalence

I. Hypergraph categories

Abstractly, how do we construct this?

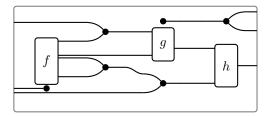


... as structured monoidal category

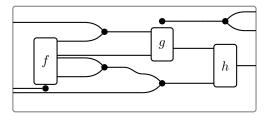


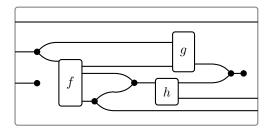
 $(1 \otimes f \otimes \neg \otimes 1); (\succ \otimes 1 \otimes \succ \otimes 1); (\leftarrow \otimes g \otimes \succ); (\neg \leqslant h).$

... as structured monoidal category



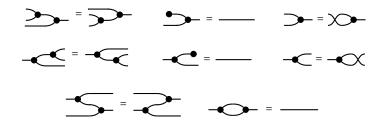
... as structured monoidal category





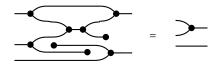
A special commutative Frobenius monoid on X is

obeying



A special commutative Frobenius monoid on X is

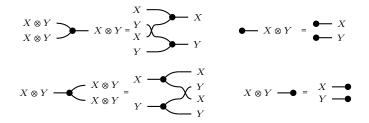
obeying the spider theorem



A hypergraph category is a symmetric monoidal category in which each object X is equipped with a Frobenius structure in a way compatible with the monoidal product.

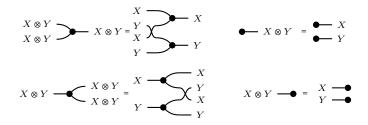
A hypergraph category is a symmetric monoidal category in which each object X is equipped with a Frobenius structure in a way compatible with the monoidal product.

This means that the Frobenius structure on I is $(\rho_I^{-1}, \operatorname{id}_I, \rho_I, \operatorname{id}_I)$ and for all X, Y, the Frobenius structure on $X \otimes Y$ is



A hypergraph category is a symmetric monoidal category in which each object X is equipped with a Frobenius structure in a way compatible with the monoidal product.

This means that the Frobenius structure on I is $(\rho_I^{-1}, \operatorname{id}_I, \rho_I, \operatorname{id}_I)$ and for all X, Y, the Frobenius structure on $X \otimes Y$ is



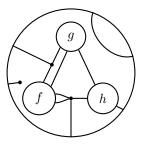
A hypergraph functor is a strong symmetric monoidal functor (F, φ) such that if $(\mu_X, \eta_X, \delta_X, \epsilon_X)$ is the Frobenius structure on X, then $(\varphi_{X,X}; F\mu_X, \varphi_I; F\eta_X, F\delta_X; \varphi_{X,X}^{-1}, F\epsilon_X; \varphi_I^{-1})$ is the Frobenius structure on FX.

Let Hyp be the 2-category with **objects:** hypergraph categories **morphisms:** hypergraph functors **2-morphisms:** monoidal natural transformations. Let Hyp_{OF} be the full sub-2-category of objectwise-free hypergraph categories.

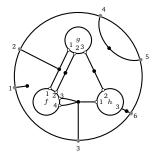
Theorem (Coherence for hypergraph categories) **Hyp**_{OF} *and* **Hyp** *are 2-equivalent*.

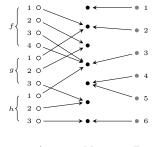
II. Cospan algebras

Abstractly, how do we construct this?



... as operad algebra

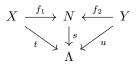




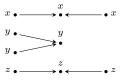
$$A \longrightarrow N \longleftarrow B$$

Define $\operatorname{Cospan}_{\Lambda} = \coprod_{\lambda \in \Lambda} \operatorname{Cospan}(\operatorname{FinSet}).$

Cospan_{Λ} is the symmetric monoidal category with **objects:** Λ -typed finite sets $t: X \to \Lambda$. **morphisms:** cospans over Λ .

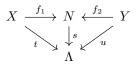


monoidal product: disjoint union

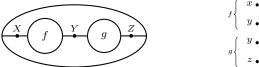


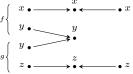
Define $\operatorname{Cospan}_{\Lambda} = \coprod_{\lambda \in \Lambda} \operatorname{Cospan}(\operatorname{FinSet}).$

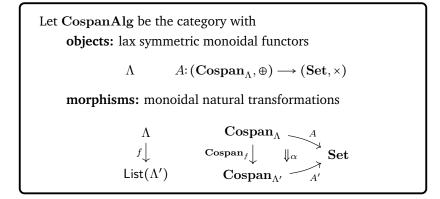
Cospan_{Λ} is the symmetric monoidal category with **objects:** Λ -typed finite sets $t: X \to \Lambda$. **morphisms:** cospans over Λ .



monoidal product: disjoint union







III. The equivalence

```
Theorem
Hyp<sub>OF</sub> and CospanAlg are (1-)equivalent.
```

Proof sketch:

- 1. Work over Λ .
- 2. Frobenius monoids define cospan algebra.
- 3. Cospan algebras define homsets of hypergraph categories.

1. Working over Λ

Lemma

There is a Grothendieck fibration Gens: $\mathbf{Hyp}_{OF} \to \mathbf{Set}_{\mathsf{List}}$ sending an objectwise-free hypergraph category to its set of generating objects.

This implies

$$\mathbf{Hyp}_{\texttt{OF}}\cong \int^{\Lambda \in \mathbf{Set}_{\texttt{List}}} \mathbf{Hyp}_{\texttt{OF}(\Lambda)}$$

Note also

$$\mathbf{CospanAlg} = \int^{\Lambda \in \mathbf{Set}_{\mathsf{List}}} \mathbf{Lax}(\mathbf{Cospan}_{\Lambda}, \mathbf{Set})$$

2. Frobenius defines cospan algebras

Lemma

 $\mathbf{Cospan}_{\Lambda}$ is the free hypergraph category over Λ (ie. with objects generated by Λ). That is, there is an adjunction

$$\mathbf{Set}_{\mathsf{List}} \xrightarrow[\mathsf{Gens}]{\mathbf{Cospan}_{-}} \mathbf{Hyp}_{\mathsf{OF}}$$

Given a hypergraph category \mathcal{H} over Λ , we can construct a cospan algebra

$$A_{\mathcal{H}}: \mathbf{Cospan}_{\Lambda} \xrightarrow{\mathsf{Frob}} \mathcal{H} \xrightarrow{\mathcal{H}(I,-)} \mathbf{Set}.$$

3. Cospans define hypergraph structure

Lemma

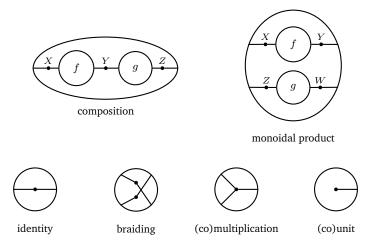
Hypergraph categories are self dual compact closed.

Given a cospan algebra A over Λ , we may define a hypergraph category \mathcal{H}_A over Λ with homsets

 $\mathcal{H}_A(X,Y) = A(X \oplus Y).$

3. Cospans define hypergraph structure

The remaining structure is defined by certain cospans.



Theorem (Coherence for hypergraph categories) Hyp_{0F} and Hyp are 2-equivalent.

Theorem Hyp_{0F} and CospanAlg are (1-)equivalent.