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Equivalence relations in E are represented with the simplicial
notations; there is a left exact forgetful functor to the ground category:
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The functor ( )0 is a fibration whose fibers of are preorders
I what is equivalent to the fact that the functor ( )0 is faithful
I accordingly, given any diagram where R and S are equivalence

relations:

R
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f̂ // S
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1��
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f
//
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Y

OO

there exist at most one map above f .
It is the case if and only if R ⊂ f−1(S).
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I ∇(X ) the undiscrete equiv. relation is the greatest element in the
fibre above X
while ∆(X ) the discrete equiv. relation is the smallest one

I they give to the functor ( ) both a right and a left adjoint.
I A morphism of equivalence relation is called fibrant, when it is a

discrete fibration:

R
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X

f
//

OO

Y

OO

i.e. when any of the squares in the diagram are pullbacks.



I ∇(X ) the undiscrete equiv. relation is the greatest element in the
fibre above X
while ∆(X ) the discrete equiv. relation is the smallest one

I they give to the functor ( ) both a right and a left adjoint.
I A morphism of equivalence relation is called fibrant, when it is a

discrete fibration:

R
dR

0 ��
dR

1��

f̂ // S
dS

0 ��
dS

1��
X

f
//

OO

Y

OO

i.e. when any of the squares in the diagram are pullbacks.



I ∇(X ) the undiscrete equiv. relation is the greatest element in the
fibre above X
while ∆(X ) the discrete equiv. relation is the smallest one

I they give to the functor ( ) both a right and a left adjoint.
I A morphism of equivalence relation is called fibrant, when it is a

discrete fibration:

R
dR

0 ��
dR

1��

f̂ // S
dS

0 ��
dS

1��
X

f
//

OO

Y

OO

i.e. when any of the squares in the diagram are pullbacks.



One of the most important and classical result concerning
equivalence relations is the following one:

Theorem
I Given any split epimorphism (f , s) : X � Y, the inverse image

f−1 : EquY E→ EquX E induces a preorder bijection between:
I 1) the equivalence relations on Y
I 2) the equivalence relations on X containing R[f ].
I Its inverse mapping is given by the restriction of s−1.
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We get the following characterizations in any finitely complete
category E:

Proposition

I Given any extremal epimorphism (f , f̂ ) : S → T in EquE, its
underlying map f is an extremal epimorphism in E.

I Suppose f is an extremal epimorphism in E. The following
conditions are equivalent in EquE:
1) the map (f , f̂ ) : S → T is extremal in EquE
2) the following diagram is a pushout:

∆X
��
��

∆f // ∆Y
��
��

S
(f ,̂f )

// T

3) the map (f , f̂ ) : S → T is cocartesian with respect to the
fibration ( )0.

I The extremal epimorphism (f , f̂ ) : S → T is a regular
epimorphism in EquE if and only if its underlying map f : X → Y
is a regular epimorphism in E.
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Here is the main observation of this talk: a characterization of the
regular epimorphisms in EquE above split epimorphisms:

I Proposition
Given a split epimorphism (g, t) : X � Z in E,
a map (g, ĝ) : R → T above g is a regular epimorphism in EquE
if and only if we have g−1(T ) = R[g]

∨
R.

I
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ĝ

��
R[g]

∨
R //

d0

��

d1

��

T

dT
0

��

dT
1

��

oo

X
g //

OO\\:::::::::::::

z

OO

t
oo



Here is the main observation of this talk: a characterization of the
regular epimorphisms in EquE above split epimorphisms:

I Proposition
Given a split epimorphism (g, t) : X � Z in E,
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Proposition
Let (R, S) be any pair of equivalence relations on X in E. TFAE:

I 1) the supremum R
∨

S does exist in EquE
I 2) there is a cocartesian map (and hence a regular epimorphism)

(dR
1 , d̄1) in EquE above the split epimorphism (dR

1 , sR
0 ):
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In this case we get: W = R
∨

S, where W is the cocartesian
image of (dR

0 )−1(S) along dR
1 .
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And the major result:

Theorem
The following conditions are equivalent:

I 1) Any pair (R, S) of equivalence relations has a supremum
R

∨
S

I 2) EquE has cocartesian maps with any domain above the split
epimorphisms in E.

I Under these assumptions, a morphism of equivalence relation is
a regular epimorphism above the split epimorphism (f , s) in
EquE:

S
dS

0 �� dS
1��

f̂ // V
dV

0 �� dV
1��

X
f //

OO

Y

OO

s
oo

if and only if we have f−1(V ) = R[f ]
∨

S.
I We then set V = f!(S), for the cocartesian image of S along f .
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Basic situation where the fibration ( )0 is a cofibration as well:

Proposition
Suppose that a category E is such
that the preorder determined by any fibre EquY E has infima.
Then the fibration OE : EquE→ E is a cofibration as well.

I Accordingly it has regular epimorphisms with any domain above
regular epimorphisms and a fortiori above split epimorphisms.;
and consequently it has suprema of pairs of equiv. relations.

I Proof.
Given any map f : X → Y and any equivalence relation R on X , set
f!(R) =

∧
i∈I Ti where

I = {W ; equivalence relation on Y/R ⊂ f−1(W)}

I Of course, it is the case for any variety of Universal Algebra.
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Congruence modularity:

(R ∨ S) ∧ T ) = R ∨ (S ∧ T ); provided that : R ⊂ T

So, we get:

I Proposition
Suppose E has suprema of pairs of equivalence relations. TFAE:

1) E is congruence modular

2) the cocartesian maps above split epimorphims are stable under
pullbacks along maps in the fibers of ( )0.

I Accordingly the categorical congruence modularity is a kind of
part of the property of EquE being regular; so that:

I EquE with suprema of pairs + EquE regular category
imply categorical congruence modularity.
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Congruence distributivity:

T ∨ (R ∧ S) = (T ∨ R) ∧ (T ∨ S)

So, we get:

I Proposition
Suppose E has suprema of pairs of equivalence relations. TFAE:

1) E is congruence distributive

2) given any split epimorphism (f , s) : X � Y, we get:

f!(R ∧ S) = f!(R) ∧ f!(S)

I Of course, as for varieties, any congruence distributive category
is congruence modular.
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What is missing in order to make EquE regular:
I Pullback stability of cocartesian maps along cartesian maps

in EquE

Theorem
Suppose E has suprema of pairs of equivalence relations. TFAE:

1) the cocartesian maps above split epimorphism (f , s) are stable
under pullbacks along cartesian maps in EquE

2) given any fibrant morphism (g, ĝ) : R → R′ of equivalence
relations with g : X → X ′ and any equivalence relation T on X ′, we
get: g−1(R′

∨
T ) = R

∨
g−1(T ).
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We shall suppose now that the ground category E is regular.
I It is well known that we can extend the result on inverse images

from split epimorphisms to regular epimorphisms:

I Theorem
When E is a regular category, given any regular epimorphism
f : X � Y, the inverse image f−1 : EquY E→ EquX E induces a
preorder bijection between:
1) the equivalence relations on Y
2)the equivalence relations on X containing R[f ].
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From that, it is a very easy to extend the previous characterization to
any regular epimorphisms in EquE:

Proposition

I Given a regular category E and a regular epimorphism
g : X � Z, a map (g, ĝ) : R → T above g in EquE:
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any regular epimorphisms in EquE:
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So, we can also extend our theorem about the existence of suprema
of pairs of equivalence relations in a very interesting formulation:

Proposition

I Let E be a regular category. TFAE
I (i) EquE has suprema of equivalence relations.
I (ii) EquE has coequalizers of effective relations
I (iii) EquE has cocartesian maps with any domain above any

regular epimorphism in E
I In this case a morphism (f , f̂ ) : S → T is regular in EquE if and

only if f is regular in E and f−1(T ) = R[f ]
∨

S.



So, we can also extend our theorem about the existence of suprema
of pairs of equivalence relations in a very interesting formulation:

Proposition

I Let E be a regular category. TFAE
I (i) EquE has suprema of equivalence relations.
I (ii) EquE has coequalizers of effective relations
I (iii) EquE has cocartesian maps with any domain above any

regular epimorphism in E
I In this case a morphism (f , f̂ ) : S → T is regular in EquE if and

only if f is regular in E and f−1(T ) = R[f ]
∨

S.



So, we can also extend our theorem about the existence of suprema
of pairs of equivalence relations in a very interesting formulation:

Proposition

I Let E be a regular category. TFAE
I (i) EquE has suprema of equivalence relations.
I (ii) EquE has coequalizers of effective relations
I (iii) EquE has cocartesian maps with any domain above any

regular epimorphism in E
I In this case a morphism (f , f̂ ) : S → T is regular in EquE if and

only if f is regular in E and f−1(T ) = R[f ]
∨

S.



So, we can also extend our theorem about the existence of suprema
of pairs of equivalence relations in a very interesting formulation:

Proposition

I Let E be a regular category. TFAE
I (i) EquE has suprema of equivalence relations.
I (ii) EquE has coequalizers of effective relations
I (iii) EquE has cocartesian maps with any domain above any

regular epimorphism in E
I In this case a morphism (f , f̂ ) : S → T is regular in EquE if and

only if f is regular in E and f−1(T ) = R[f ]
∨

S.



So, we can also extend our theorem about the existence of suprema
of pairs of equivalence relations in a very interesting formulation:

Proposition

I Let E be a regular category. TFAE
I (i) EquE has suprema of equivalence relations.
I (ii) EquE has coequalizers of effective relations
I (iii) EquE has cocartesian maps with any domain above any

regular epimorphism in E
I In this case a morphism (f , f̂ ) : S → T is regular in EquE if and

only if f is regular in E and f−1(T ) = R[f ]
∨

S.



So, we can also extend our theorem about the existence of suprema
of pairs of equivalence relations in a very interesting formulation:

Proposition

I Let E be a regular category. TFAE
I (i) EquE has suprema of equivalence relations.
I (ii) EquE has coequalizers of effective relations
I (iii) EquE has cocartesian maps with any domain above any

regular epimorphism in E
I In this case a morphism (f , f̂ ) : S → T is regular in EquE if and

only if f is regular in E and f−1(T ) = R[f ]
∨

S.



We are now in position to answer the question: when is EquE a
regular category?

Theorem
I Given any category E, the following conditions are equivalent:
I (i) the category EquE is regular
I (ii) the category E is regular, cc-modular

and such that:
(*) for any fibrant morphism (g, ĝ) : R → R′

and any equivalence relation S on the codomain Y of the map g
we get: g−1(R′

∨
S) = R

∨
g−1(S).
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From results from Janelidze, Marki Tholen, Ursini and Everaert, we
know that any ideal determined variety V is such that EquV is a
regular category.

I By Raftery, we know that there are ideal dtermined variety which
are not 3-permutable. For instance the variety of Lower BCK
semi-lattices.

I Accordingly we know that there are varieties V such that:
1) EquV is a regular category
2) the regular epimorphisms in EquV are not levelwise in general.
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