A topos-theoretic approach to systems and behavior

David I. Spivak* and Patrick Schultz

Mathematics Department Massachusetts Institute of Technology

Category Theory Conference 2018/07/09

Outline

1 Introduction

- The National Airspace System
- Summary: motivation and plan

2 The topos ${\mathcal B}$ of behavior types

- **3** Temporal type theory
- **4** Application to the NAS

5 Conclusion

An example system

The National Airspace System (NAS)

- Safe separation problem:
 - Planes need to remain at a safe distance.
 - Can't generally communicate directly.
 - Use radars, pilots, ground control, radios, and TCAS.¹

¹Traffic Collision Avoidance System.

An example system

The National Airspace System (NAS)

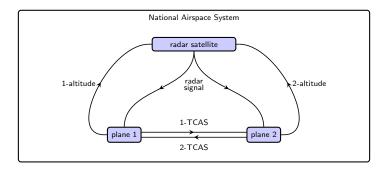
- Safe separation problem:
 - Planes need to remain at a safe distance.
 - Can't generally communicate directly.
 - Use radars, pilots, ground control, radios, and TCAS.¹

Systems of systems:

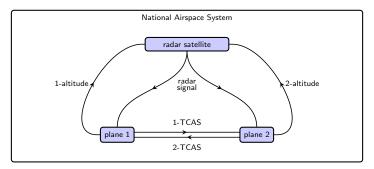
- A great variety of interconnected systems.
- Work in concert to enforce global property: safe separation.

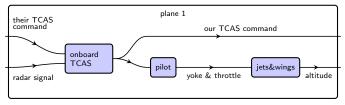
¹Traffic Collision Avoidance System.

Systems of interacting systems in the NAS

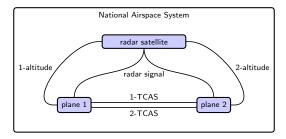


Systems of interacting systems in the NAS





Behavior contracts as predicates

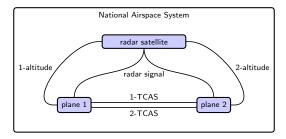


We assign to each...

... wire: a sheaf.

■ ... box: a predicate—a behavior contract—on the product of its wires. Prove that if each box's predicate is satisfied, safe separation is achieved.

Behavior contracts as predicates



We assign to each...

... wire: a sheaf.

■ ... box: a predicate—a behavior contract—on the product of its wires. Prove that if each box's predicate is satisfied, safe separation is achieved.

We'll discuss such a situation using topos theory.

NAS use-case as guide

What's the topos for the National Airspace System?

- This question was a major guide for our work.
- Need to combine many common frameworks into a "big tent".
 - Differential equations, continuous dynamical systems.
 - Labeled transition systems, discrete dynamical systems.
 - Delays, non-instantaneous rules.
 - Determinism, non-determinism.

NAS use-case as guide

What's the topos for the National Airspace System?

- This question was a major guide for our work.
- Need to combine many common frameworks into a "big tent".
 - Differential equations, continuous dynamical systems.
 - Labeled transition systems, discrete dynamical systems.
 - Delays, non-instantaneous rules.
 - Determinism, non-determinism.
- Need a logic so engineers can prove safety of combined systems.

NAS use-case as guide

What's the topos for the National Airspace System?

- This question was a major guide for our work.
- Need to combine many common frameworks into a "big tent".
 - Differential equations, continuous dynamical systems.
 - Labeled transition systems, discrete dynamical systems.
 - Delays, non-instantaneous rules.
 - Determinism, non-determinism.
- Need a logic so engineers can prove safety of combined systems.

Relationship to toposes:

- Toposes have an associated internal language and logic.
- Can use formal methods (proof assistants) to prove properties of NAS.

Plan of the talk

- 1. Define a topos $\mathcal B$ of behavior types.
- 2. Discuss temporal type theory, which is sound in \mathcal{B} .
- 3. Return to a NAS use-case.

Outline

1 Introduction

2 The topos \mathcal{B} of behavior types

- Choosing a topos
- An intervallic time-line, IR
- $\blacksquare \ {\mathcal B}$ the topos of behavior types
- **3** Temporal type theory
- **4** Application to the NAS

5 Conclusion

What is behavior?

We want to model various types of behavior.

- What is a behavior type?
 - A behavior type is like "airplane behavior" or "pilot behavior"
 - Both are collections of possibilities, indexed by time intervals.
 - I want to conceptualize them as sheaves on time intervals.

What is behavior?

We want to model various types of behavior.

- What is a behavior type?
 - A behavior type is like "airplane behavior" or "pilot behavior"
 - Both are collections of possibilities, indexed by time intervals.
 - I want to conceptualize them as sheaves on time intervals.

So what should we mean by time?

 ${\mathbb R}$ as timeline: Does it serve as a good site for behaviors?

 ${\mathbb R}$ as timeline: Does it serve as a good site for behaviors?

- What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b).
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."

 ${\mathbb R}$ as timeline: Does it serve as a good site for behaviors?

- What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b).
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."
 - On morphisms:
 - For each $a \le a' < b' \le b$, a function $B(a, b) \rightarrow B(a', b')$.
 - Restriction: "watch a clip of the movie".

 ${\mathbb R}$ as timeline: Does it serve as a good site for behaviors?

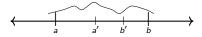
- What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b).
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."
 - On morphisms:
 - For each $a \le a' < b' \le b$, a function $B(a, b) \rightarrow B(a', b')$.
 - Restriction: "watch a clip of the movie".
 - Gluing conditions:

• "Continuity": $B(a, b) = \lim_{a < a' < b' < b} B(a', b')$.

 ${\mathbb R}$ as timeline: Does it serve as a good site for behaviors?

- What would a behavior type $B \in Shv(\mathbb{R})$ be?
 - On objects:
 - For each open interval $(a, b) \subseteq \mathbb{R}$, a set B(a, b).
 - "The set of *B*-behaviors that can occur on (*a*, *b*)."
 - On morphisms:
 - For each $a \le a' < b' \le b$, a function $B(a, b) \rightarrow B(a', b')$.
 - Restriction: "watch a clip of the movie".
 - Gluing conditions:
 - "Continuity": $B(a, b) = \lim_{a < a' < b' < b} B(a', b')$.

• "Composition": $B(a, b) = B(a, b') \times_{B(a', b')} B(a', b)$.



Two reasons *not to use* $Shv(\mathbb{R})$ as our topos.

- 1. Often want to consider non-composable behaviors!
 - "Roughly monotonic": $\forall (t_1, t_2). t_1 + 5 \le t_2 \Rightarrow f(t_1) \le f(t_2).$
 - "Don't move much": $\forall (t_1, t_2) 5 < f(t_1) f(t_2) < 5$.
 - Neither of these satisfy "composition gluing".

Two reasons *not to use* $Shv(\mathbb{R})$ as our topos.

- 1. Often want to consider non-composable behaviors!
 - "Roughly monotonic": $\forall (t_1, t_2). t_1 + 5 \le t_2 \Rightarrow f(t_1) \le f(t_2).$
 - "Don't move much": $\forall (t_1, t_2) 5 < f(t_1) f(t_2) < 5$.
 - Neither of these satisfy "composition gluing".
- 2. Want to compare behavior across different time windows.
 - Example: a delay is "the same behavior at different times."
 - Shv(\mathbb{R}) sees no relationship between B(0,3) and B(2,5).

Two reasons *not to use* $Shv(\mathbb{R})$ as our topos.

- 1. Often want to consider non-composable behaviors!
 - "Roughly monotonic": $\forall (t_1, t_2). t_1 + 5 \le t_2 \Longrightarrow f(t_1) \le f(t_2).$
 - "Don't move much": $\forall (t_1, t_2) 5 < f(t_1) f(t_2) < 5$.
 - Neither of these satisfy "composition gluing".
- 2. Want to compare behavior across different time windows.
 - Example: a delay is "the same behavior at different times."
 - Shv(\mathbb{R}) sees no relationship between B(0,3) and B(2,5).
 - We want "Translation invariance."

Two reasons not to use $Shv(\mathbb{R})$ as our topos.

- 1. Often want to consider **non-composable** behaviors!
 - "Roughly monotonic": $\forall (t_1, t_2). t_1 + 5 \le t_2 \Longrightarrow f(t_1) \le f(t_2).$
 - "Don't move much": $\forall (t_1, t_2) 5 < f(t_1) f(t_2) < 5$.
 - Neither of these satisfy "composition gluing".
- 2. Want to compare behavior across different time windows.
 - Example: a delay is "the same behavior at different times."
 - Shv(\mathbb{R}) sees no relationship between B(0,3) and B(2,5).
 - We want "Translation invariance."

Solution:

- \blacksquare Replace $\mathbb R$ with an intervallic timeline, and...
- ... quotient by translation action.

An intervallic time-line, \mathbb{IR}

For our timeline we use \mathbb{IR} "the interval domain".

An intervallic time-line, $\mathbb{I}\mathbb{R}$

For our timeline we use \mathbb{IR} "the interval domain".

• Definition
$$\mathbb{IR} = \mathsf{tw}(\mathbb{R}, \leq)^{\mathsf{op}}$$
.

- Points: $\{[a, b] \mid a \leq b \in \mathbb{R}\}.$
- $[a, b] \sqsubseteq [a', b']$ iff $a \le a' \le b' \le b$.
- [a, b] is less precise than [a', b'].
- **•** $\mathbb{R} \subseteq \mathbb{IR}$ embeds as the maximal points, [r, r].

An intervallic time-line, IR

For our timeline we use \mathbb{IR} "the interval domain".

• Definition
$$\mathbb{IR} = \mathsf{tw}(\mathbb{R}, \leq)^{\mathsf{op}}$$
.

- Points: $\{[a, b] \mid a \leq b \in \mathbb{R}\}.$
- $[a, b] \sqsubseteq [a', b'] \text{ iff } a \le a' \le b' \le b.$

• [a, b] is less precise than [a', b'].

- **•** $\mathbb{R} \subseteq \mathbb{IR}$ embeds as the maximal points, [r, r].
- IR is a Scott domain:
 - Its poset of points determines a topology...
 - ... for which \sqsubseteq is specialization order on points.
 - Basis: open intervals (a, b), denoting $\{[a', b'] \mid a < a' \le b' < b\}$.

An intervallic time-line, IR

For our timeline we use \mathbb{IR} "the interval domain".

• Definition
$$\mathbb{IR} = \operatorname{tw}(\mathbb{R}, \leq)^{\operatorname{op}}$$
.

- Points: $\{[a, b] \mid a \leq b \in \mathbb{R}\}.$
- $[a, b] \sqsubseteq [a', b'] \text{ iff } a \le a' \le b' \le b.$
- [a, b] is less precise than [a', b'].
- **•** $\mathbb{R} \subseteq \mathbb{IR}$ embeds as the maximal points, [r, r].
- **I** \mathbb{R} is a Scott domain:
 - Its poset of points determines a topology...
 - ... for which \sqsubseteq is specialization order on points.
 - Basis: open intervals (a, b), denoting $\{[a', b'] \mid a < a' \le b' < b\}$.

This space, \mathbb{IR} is our timeline, and its points are intervals.

$\mathsf{Shv}(\mathbb{IR})\text{:}$ behaviors in the context of time

Each $X \in Shv(\mathbb{IR})$ is a behavior type occurring in the context of time.

- IR is our (intervallic) time-line.
- X(a, b) is the set of X-behaviors over the interval (a, b).
- We can restrict behaviors to subintervals $a \le a' \le b' \le b$.
- And behaviors satisfy "continuity gluing,"

$$X(a,b) \cong \lim_{a < a' < b' < b} X(a',b').$$

$\mathsf{Shv}(\mathbb{IR})\text{:}$ behaviors in the context of time

Each $X \in Shv(\mathbb{IR})$ is a behavior type occurring in the context of time.

- IR is our (intervallic) time-line.
- X(a, b) is the set of X-behaviors over the interval (a, b).
- We can restrict behaviors to subintervals $a \le a' \le b' \le b$.
- And behaviors satisfy "continuity gluing,"

$$X(a,b) \cong \lim_{a < a' < b' < b} X(a',b').$$

Next up: keep durations, drop the fixed timeline.

We want translation-invariance, to compare behaviors over different times.

We want translation-invariance, to compare behaviors over different times.

Translation action
$$\mathbb{R} \xrightarrow{\triangleright} Aut(\mathbb{IR})$$
, $r \triangleright (a, b) \coloneqq (a + r, b + r)$

We want translation-invariance, to compare behaviors over different times.

Translation action $\mathbb{R} \xrightarrow{\triangleright} Aut(\mathbb{IR})$, $r \triangleright (a, b) \coloneqq (a + r, b + r)$

This induces a *left-exact comonad* T on $Shv(\mathbb{IR})$.

- (Left-exact comonads are what define quotient toposes.)
- For $X \in Shv(\mathbb{IR})$, define $TX \in Shv(\mathbb{IR})$ by

$$(TX)(a,b) \coloneqq \prod_{r \in \mathbb{R}} X(a+r,b+r).$$

We want translation-invariance, to compare behaviors over different times.

Translation action $\mathbb{R} \xrightarrow{\triangleright} Aut(\mathbb{IR})$, $r \triangleright (a, b) \coloneqq (a + r, b + r)$

• This induces a *left-exact comonad* T on $Shv(\mathbb{IR})$.

- (Left-exact comonads are what define quotient toposes.)
- For $X \in \text{Shv}(\mathbb{IR})$, define $TX \in \text{Shv}(\mathbb{IR})$ by

$$(TX)(a,b) \coloneqq \prod_{r \in \mathbb{R}} X(a+r,b+r).$$

- T-coalgebras are translation-equivariant sheaves.
- Define topos $\mathcal{B} \coloneqq T$ -coAlg of "behavior types".
- \blacksquare In fact ${\mathcal B}$ is an étendue, meaning...

We want translation-invariance, to compare behaviors over different times.

Translation action $\mathbb{R} \xrightarrow{\triangleright} Aut(\mathbb{IR})$, $r \triangleright (a, b) \coloneqq (a + r, b + r)$

• This induces a *left-exact comonad* T on $Shv(\mathbb{IR})$.

- (Left-exact comonads are what define quotient toposes.)
- For $X \in \text{Shv}(\mathbb{IR})$, define $TX \in \text{Shv}(\mathbb{IR})$ by

$$(TX)(a,b) \coloneqq \prod_{r \in \mathbb{R}} X(a+r,b+r).$$

- T-coalgebras are translation-equivariant sheaves.
- Define topos $\mathcal{B} \coloneqq T$ -coAlg of "behavior types".
- In fact 𝔅 is an étendue, meaning...
 - There is an inhabited object, which we call $Time \in \mathcal{B}$,
 - And an equivalence $Shv(\mathbb{IR}) \cong \mathcal{B}/Time$.
 - \blacksquare Makes precise "Shv(IR) is behavior types in the context of time."

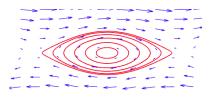
Example behavior types $X \in \mathcal{B}$

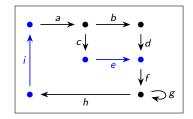
We contend that any sort of behavior can be modeled as an object $X \in \mathcal{B}$.

Example behavior types $X \in \mathcal{B}$

We contend that any sort of behavior can be modeled as an object $X \in \mathcal{B}$.

- Trajectories through a vector field,
- Delays (+ delay differential equations),
- Stochastic walk through a graph: "labeled transition system".

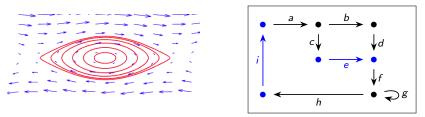




Example behavior types $X \in \mathcal{B}$

We contend that any sort of behavior can be modeled as an object $X \in \mathcal{B}$.

- Trajectories through a vector field,
- Delays (+ delay differential equations),
- Stochastic walk through a graph: "labeled transition system".



Next up: want logic to define other interesting behaviors.

"Whenever I touch blue, I'll spend 1 full sec. on blue within 5 sec's."

In any topos, logical expressions are amazingly convenient.

- "Whenever I touch blue, I'll spend 1 full sec. on blue within 5 sec's."
- $\forall (t: \texttt{Time}). \, \mathbb{Q}_{[0,0]}^t B(x) \Rightarrow \exists (r: \mathbb{R}). \, 0 \le r \le 5 \land \mathbb{Q}_{[r,r+1]}^t B(x).$

In any topos, logical expressions are amazingly convenient.

"Whenever I touch blue, I'll spend 1 full sec. on blue within 5 sec's."

$$\forall (t: \texttt{Time}). \ @_{[0,0]}^t B(x) \Rightarrow \exists (r: \mathbb{R}). \ 0 \le r \le 5 \land @_{[r,r+1]}^t B(x).$$

Kripke-Joyal semantics

- Logical expressions like the above can be interpreted in the topos \mathcal{B} .
- E.g. the above defines a map $P: X \to \Omega$, given $B: X \to \Omega$.
- This in turn gives a subtype $\{X \mid P\}$ of "*P*-satisfying behavior".

In any topos, logical expressions are amazingly convenient.

- "Whenever I touch blue, I'll spend 1 full sec. on blue within 5 sec's."
- $\forall (t: \texttt{Time}). \ @_{[0,0]}^t B(x) \Rightarrow \exists (r: \mathbb{R}). \ 0 \le r \le 5 \land @_{[r,r+1]}^t B(x).$

Kripke-Joyal semantics

- Logical expressions like the above can be interpreted in the topos \mathcal{B} .
- E.g. the above defines a map $P: X \to \Omega$, given $B: X \to \Omega$.
- This in turn gives a subtype $\{X \mid P\}$ of "*P*-satisfying behavior".

How is internal logic is convenient?

- compact notation,
- precise semantics,
- quite expressive,
- readable in natural language, e.g. English.

In any topos, logical expressions are amazingly convenient.

- "Whenever I touch blue, I'll spend 1 full sec. on blue within 5 sec's."
- $\forall (t: \texttt{Time}). \ @_{[0,0]}^t B(x) \Rightarrow \exists (r: \mathbb{R}). \ 0 \leq r \leq 5 \land @_{[r,r+1]}^t B(x).$

Kripke-Joyal semantics

- Logical expressions like the above can be interpreted in the topos \mathcal{B} .
- E.g. the above defines a map $P: X \to \Omega$, given $B: X \to \Omega$.
- This in turn gives a subtype $\{X \mid P\}$ of "*P*-satisfying behavior".

How is internal logic is convenient?

- compact notation,
- precise semantics,
- quite expressive,
- readable in natural language, e.g. English.

Next: use logic to define real "numbers".

Outline

1 Introduction

2 The topos ${\mathcal B}$ of behavior types

3 Temporal type theory

- Dedekind numeric objects
- \blacksquare A finitely-presented language with semantics in $\mathcal B$
- Local reals and derivatives

4 Application to the NAS

5 Conclusion

In any sheaf topos, use logic to define various Dedekind numeric objects.

In any sheaf topos, use logic to define various Dedekind numeric objects.

- Start with \mathbb{Q} ; it's semantically the constant sheaf \mathbb{Q} .
- Think of a function $L : \mathbb{Q} \to \Omega$ as the "Q-lower bounds" for a real.
- We can define the type \mathbb{R} of *lower reals* internally:

$$\mathbb{\underline{R}} := \{L : \mathbb{Q} \to \Omega \mid \exists q. \, Lq \land \forall q. \, Lq \Leftrightarrow \exists q'. \, q < q' \land Lq'\}.$$

In any sheaf topos, use logic to define various Dedekind numeric objects.

- Start with \mathbb{Q} ; it's semantically the constant sheaf \mathbb{Q} .
- Think of a function $L : \mathbb{Q} \to \Omega$ as the "Q-lower bounds" for a real.
- We can define the type ℝ of *lower reals* internally:

$$\mathbb{\underline{R}} := \{L : \mathbb{Q} \to \Omega \mid \exists q. \, Lq \land \forall q. \, Lq \Leftrightarrow \exists q'. \, q < q' \land Lq'\}.$$

The semantics are nice on localic toposes. If X is a top. sp.,
 [[ℝ]](U) = {lower semi-continuous functions U → ℝ ∪ {∞}}.

In any sheaf topos, use logic to define various Dedekind numeric objects.

- Start with Q; it's semantically the constant sheaf Q.
- Think of a function $L : \mathbb{Q} \to \Omega$ as the "Q-lower bounds" for a real.
- We can define the type \mathbb{R} of *lower reals* internally:

$$\mathbb{\underline{R}} := \{L : \mathbb{Q} \to \Omega \mid \exists q. \, Lq \land \forall q. \, Lq \Leftrightarrow \exists q'. \, q < q' \land Lq'\}.$$

- The semantics are nice on localic toposes. If X is a top. sp.,
 [[ℝ]](U) = {lower semi-continuous functions U → ℝ ∪ {∞}}.
- Dually, define R

 , with [[R]](U) = {upper semi-continuous...}
 R

 := R × R

 : extended intervals.
 R

 := {(L, R): R

 | ∀q. ¬(Lq ∧ Rq) ∧ ∀(q < q'). Lq ∨ Rq'}.

In any sheaf topos, use logic to define various Dedekind numeric objects.

- Start with Q; it's semantically the constant sheaf Q.
- Think of a function $L : \mathbb{Q} \to \Omega$ as the "Q-lower bounds" for a real.
- We can define the type \mathbb{R} of *lower reals* internally:

$$\mathbb{\underline{R}} := \{L : \mathbb{Q} \to \Omega \mid \exists q. \, Lq \land \forall q. \, Lq \Leftrightarrow \exists q'. \, q < q' \land Lq'\}.$$

- The semantics are nice on localic toposes. If X is a top. sp.,
 [[ℝ]](U) = {lower semi-continuous functions U → ℝ ∪ {∞}}.
- Dually, define R
 , with [[R]](U) = {upper semi-continuous...}
 R
 := R × R
 : extended intervals.
 R
 := {(L, R) : R
 | ∀q.¬(Lq ∧ Rq) ∧ ∀(q < q'). Lq ∨ Rq'}.

We refer to \mathbb{R} , $\overline{\mathbb{R}}$, $\overline{\mathbb{R}}$, \mathbb{R} , etc. as *Dedekind numeric objects*.

TTT is a finitely presented sub-language of \mathcal{B} 's internal language: • One atomic predicate symbol, unit_speed: $\mathbb{R} \to \Omega$.

TTT is a finitely presented sub-language of \mathcal{B} 's internal language: • One atomic predicate symbol, unit_speed: $\mathbb{R} \to \Omega$.

- From here, define Time := { $t : \overline{\mathbb{R}} \mid \text{unit}_{\text{speed}}(t)$ }.
- Note that we can treat times *t* : Time as real intervals.

TTT is a finitely presented sub-language of \mathcal{B} 's internal language: • One atomic predicate symbol, unit_speed: $\mathbb{R} \to \Omega$.

- From here, define Time := { $t : \overline{\mathbb{R}} \mid \text{unit}_{\text{speed}}(t)$ }.
- Note that we can treat times *t* : Time as real intervals.

TTT axiomatics: find finitely many axioms with which to "do real work". Ten axioms, e.g. that Time is an \mathbb{R} -torsor:

$$\blacksquare \forall (t: \texttt{Time})(r: \mathbb{R}). t + r \in \texttt{Time},$$

 $\blacksquare \forall (t_1, t_2 : \texttt{Time}). \exists ! (r : \mathbb{R}). t_1 + r = t_2.$

TTT is a finitely presented sub-language of \mathcal{B} 's internal language: • One atomic predicate symbol, unit_speed: $\mathbb{R} \to \Omega$.

- From here, define Time := { $t : \overline{\mathbb{R}} \mid \text{unit}_{\text{speed}}(t)$ }.
- Note that we can treat times *t* : Time as real intervals.

TTT axiomatics: find finitely many axioms with which to "do real work".Ten axioms, e.g. that Time is an R-torsor:

- \forall (*t*:Time)(*r*: \mathbb{R}). *t* + *r* \in Time,
- $\blacksquare \forall (t_1, t_2 : \texttt{Time}). \exists ! (r : \mathbb{R}). t_1 + r = t_2.$
- \blacksquare All are sound in ${\mathcal B}$
 - We already had $\text{Time} \in \mathcal{B}$ externally in the éntendue \mathcal{B} .
 - Check that with that interpretation, the ten axioms hold.

There are a number of useful modalities (Lawvere-Tierney topologies).

- Modalities are internal monads $j: \Omega \to \Omega$ on the subobject classifier.
 - That is, $P \Rightarrow jP$, $jjP \Rightarrow jP$, $j(P \land Q) \Leftrightarrow (jP \land jQ)$.
 - One-to-one correspondence $\{modalities\} \cong \{subtoposes\}.$

There are a number of useful modalities (Lawvere-Tierney topologies).

- Modalities are internal monads $j: \Omega \to \Omega$ on the subobject classifier.
 - That is, $P \Rightarrow jP$, $jjP \Rightarrow jP$, $j(P \land Q) \Leftrightarrow (jP \land jQ)$.
 - One-to-one correspondence $\{modalities\} \cong \{subtoposes\}.$

• Example 1,2: in the context of t : Time, have modalities $\int_{[a,b]}^{t} \mathcal{Q}_{[a,b]}^{t}$

$$\downarrow_{[a,b]}^{t} P \coloneqq P \lor (a < t \lor t < b).$$

$$@_{[a,b]}^{t} P \coloneqq (P \Longrightarrow (a < t \lor t < b)) \Longrightarrow (a < t \lor t < b).$$

• These are hard to read, but correspond to useful subtoposes:

■ @^t_[a,b] corresponds to single point subtopos {[a, b]} ⊆ IR.
 ■ ↓^t_[a,b] corresponds to its closure ↓ [a, b] ⊆ IR.

There are a number of useful modalities (Lawvere-Tierney topologies).

- Modalities are internal monads $j: \Omega \to \Omega$ on the subobject classifier.
 - That is, $P \Rightarrow jP$, $jjP \Rightarrow jP$, $j(P \land Q) \Leftrightarrow (jP \land jQ)$.
 - One-to-one correspondence {modalities} ≅ {subtoposes}.

• Example 1,2: in the context of t : Time, have modalities $\int_{[a,b]}^{t} \mathcal{Q}_{[a,b]}^{t}$

- These are hard to read, but correspond to useful subtoposes:
 - $\mathbb{Q}_{[a,b]}^t$ corresponds to single point subtopos $\{[a,b]\} \subseteq \mathbb{IR}$.
 - $\downarrow_{[a,b]}^t$ corresponds to its closure $\downarrow [a,b] \subseteq \mathbb{IR}$.
- Example 3: We have "pointwise" modality π .
 - $\pi P \coloneqq \forall (t : \text{Time}). \mathbb{Q}_{[0,0]}^t P.$
 - Corresponds to the dense subtopos $\mathbb{R} \subseteq \mathbb{IR}$.

There are a number of useful modalities (Lawvere-Tierney topologies).

- Modalities are internal monads $j: \Omega \to \Omega$ on the subobject classifier.
 - That is, $P \Rightarrow jP$, $jjP \Rightarrow jP$, $j(P \land Q) \Leftrightarrow (jP \land jQ)$.
 - One-to-one correspondence $\{modalities\} \cong \{subtoposes\}.$

• Example 1,2: in the context of t : Time, have modalities $\int_{[a,b]}^{t} \mathcal{Q}_{[a,b]}^{t}$

- These are hard to read, but correspond to useful subtoposes:
 - $\mathbb{Q}_{[a,b]}^t$ corresponds to single point subtopos $\{[a,b]\} \subseteq \mathbb{IR}$.
 - $\downarrow_{[a,b]}^t$ corresponds to its closure $\downarrow [a,b] \subseteq \mathbb{IR}$.
- Example 3: We have "pointwise" modality π .
 - $\pi P \coloneqq \forall (t : \text{Time}). \mathbb{Q}_{[0,0]}^t P.$
 - Corresponds to the dense subtopos $\mathbb{R} \subseteq \mathbb{IR}$.

We can use these modalities to define *local Dedekind numeric types*.

Local Dedekind numeric types

For any modality j, we can define \mathbb{R}_j , $\overline{\mathbb{R}}_j$, $\overline{\mathbb{R}}_j$, \mathbb{R}_j , etc.

Local Dedekind numeric types

For any modality j, we can define \mathbb{R}_j , $\overline{\mathbb{R}}_j$, $\overline{\mathbb{R}}_j$, \mathbb{R}_j , etc.

Local Dedekind numeric types

For any modality j, we can define \mathbb{R}_j , $\overline{\mathbb{R}}_j$, $\overline{\mathbb{R}}_j$, \mathbb{R}_j , etc.

Now we are equipped to define derivatives.

We can define derivatives internally.

- Semantics of $x : \mathbb{R}_{\pi}$ is: a continuous function on \mathbb{R} .
 - Evaluation of x at a point $r : \mathbb{R}$ is given by $\mathbb{Q}_{[r,r]} x \in \mathbb{R}_{\mathbb{Q}[r,r]}$
 - We denote this $x^{\mathbb{Q}}(r)$.

We can define derivatives internally.

- Semantics of $x : \mathbb{R}_{\pi}$ is: a continuous function on \mathbb{R} .
 - Evaluation of x at a point $r : \mathbb{R}$ is given by $\mathbb{Q}_{[r,r]} x \in \mathbb{R}_{\mathbb{Q}[r,r]}$
 - We denote this $x^{\mathbb{Q}}(r)$.
- - $q_1 < \dot{x} < q_2$ iff for all $r_1 < r_2 : \mathbb{R}$,

$$q_1 \ll \frac{x^{@}(r_2) - x^{@}(r_1)}{r_2 - r_1} \ll q_2.$$

We can define derivatives internally.

- Semantics of $x : \mathbb{R}_{\pi}$ is: a continuous function on \mathbb{R} .
 - Evaluation of x at a point $r : \mathbb{R}$ is given by $\mathbb{Q}_{[r,r]} x \in \mathbb{R}_{\mathbb{Q}[r,r]}$
 - We denote this $x^{\mathbb{Q}}(r)$.
- - $q_1 < \dot{x} < q_2$ iff for all $r_1 < r_2 : \mathbb{R}$,

$$q_1 \ll \frac{x^{@}(r_2) - x^{@}(r_1)}{r_2 - r_1} \ll q_2.$$

• Theorem: \dot{x} internally is linear in x and satisfies Leibniz rule.

We can define derivatives internally.

- Semantics of $x : \mathbb{R}_{\pi}$ is: a continuous function on \mathbb{R} .
 - Evaluation of x at a point $r : \mathbb{R}$ is given by $\mathbb{Q}_{[r,r]} x \in \mathbb{R}_{\mathbb{Q}[r,r]}$
 - We denote this $x^{\mathbb{Q}}(r)$.
- - $q_1 < \dot{x} < q_2$ iff for all $r_1 < r_2 : \mathbb{R}$,

$$q_1 \ll \frac{x^{@}(r_2) - x^{@}(r_1)}{r_2 - r_1} \ll q_2.$$

- Theorem: \dot{x} internally is linear in x and satisfies Leibniz rule.
- Theorem: \dot{x} externally has semantics of derivative of x.

Differential equations

- As a logical expression, derivatives work like anything else.
- Consider a differential equation, like

$$f(\dot{x}, \ddot{x}, a, b) = 0.$$

is just a formula in the logic.

Differential equations

- As a logical expression, derivatives work like anything else.
- Consider a differential equation, like

$$f(\dot{x}, \ddot{x}, a, b) = 0.$$

is just a formula in the logic.

- We also define "labeled transition systems" internally...
 - ... given two constant sheaves and two maps $E \rightrightarrows V$.
 - Can more generally define any "hybrid system".

Outline

1 Introduction

2 The topos \mathcal{B} of behavior types

3 Temporal type theory

4 Application to the NAS

- The internal language in action
- Combining local contracts for safety guarantee

5 Conclusion

Setup of safety problem

Variables to be used, and their types:

t: Time. T, P: Cmnd. a: \mathbb{R}_{π} . safe, margin, del, rate : \mathbb{Q} .

What these mean:

\bullet <i>t</i> : Time.	time-line	(a clock).
$\blacksquare a : \mathbb{R}_{\pi}.$	altitude	(continuously changing).
■ <i>T</i> : Cmnd.	TCAS command	(occurs at discrete instants).
■ <i>P</i> : Cmnd.	pilot's command	(occurs at discrete instants).
∎ safe∶ℚ.	safe altitude	(constant).
🔳 margin:Q.	margin-of-error	(constant).
∎ del : ℚ.	pilot delay	(constant).
∎ rate:ℚ.	maximal ascent rate	(constant).

t:Time.	time-line	(a clock).
a : ℝ _π .	altitude	(continuously changing).
T : Cmnd.	TCAS command	(occurs at discrete instants).
P : Cmnd.	pilot's command	(occurs at discrete instants).
safe: Q.	safe altitude	(constant).
margin : Q.	margin-of-error	(constant).
del : Q.	pilot delay	(constant).
🛛 rate: Q.	maximal ascent rate	(constant).

Axioms from disparate models of behavior:

• $\theta_1 \coloneqq (\text{margin} > 0) \land (a \ge 0).$

.

Behavior contracts

t:Time.	time-line	(a clock).
a : ℝ _π .	altitude	(continuously changing).
T : Cmnd.	TCAS command	(occurs at discrete instants).
P : Cmnd.	pilot's command	(occurs at discrete instants).
safe: Q.	safe altitude	(constant).
margin : Q.	margin-of-error	(constant).
del: Q.	pilot delay	(constant).
🛛 rate: Q.	maximal ascent rate	(constant).

Axioms from disparate models of behavior:

■
$$\theta_1 := (\text{margin} > 0) \land (a \ge 0).$$

■ $\theta_2 := (a > \text{safe} + \text{margin} \Rightarrow T = \text{level}).$
■ $\theta'_2 := (a < \text{safe} + \text{margin} \Rightarrow T = \text{climb}).$

t:Time.	time-line	(a clock).
a : ℝ _π .	altitude	(continuously changing).
T : Cmnd.	TCAS command	(occurs at discrete instants).
P : Cmnd.	pilot's command	(occurs at discrete instants).
safe: Q.	safe altitude	(constant).
margin : Q.	margin-of-error	(constant).
del: Q.	pilot delay	(constant).
rate : Q.	maximal ascent rate	(constant).

Axioms from disparate models of behavior:

$$\begin{array}{l} \theta_1 \coloneqq (\operatorname{margin} > 0) \land (a \ge 0). \\ \theta_2 \coloneqq (a > \operatorname{safe} + \operatorname{margin} \Rightarrow T = \operatorname{level}). \\ \theta_2' \coloneqq (a < \operatorname{safe} + \operatorname{margin} \Rightarrow T = \operatorname{climb}). \\ \theta_3 \coloneqq (P = \operatorname{level} \Rightarrow \dot{a} = 0) \land (P = \operatorname{climb} \Rightarrow \dot{a} = \operatorname{rate}). \end{array}$$

t: Time.	time-line	(a clock).
a : ℝ _π .	altitude	(continuously changing).
T : Cmnd.	TCAS command	(occurs at discrete instants).
P : Cmnd.	pilot's command	(occurs at discrete instants).
safe: Q.	safe altitude	(constant).
margin : Q.	margin-of-error	(constant).
del : Q.	pilot delay	(constant).
rate: Q.	maximal ascent rate	(constant).

Axioms from disparate models of behavior:

•
$$\theta_1 := (\text{margin} > 0) \land (a \ge 0).$$

• $\theta_2 := (a > \text{safe} + \text{margin} \Rightarrow T = \text{level}).$
• $\theta'_2 := (a < \text{safe} + \text{margin} \Rightarrow T = \text{climb}).$
• $\theta_3 := (P = \text{level} \Rightarrow \dot{a} = 0) \land (P = \text{climb} \Rightarrow \dot{a} = \text{rate}).$
• $\theta_4 := \text{is_delayed(del}, T, P).$

This is an abbreviation for a longer logical condition.

t:Time.	time-line	(a clock).
a : ℝ _π .	altitude	(continuously changing).
T : Cmnd.	TCAS command	(occurs at discrete instants).
P : Cmnd.	pilot's command	(occurs at discrete instants).
safe : Q.	safe altitude	(constant).
margin : Q.	margin-of-error	(constant).
del: Q.	pilot delay	(constant).
rate : Q.	maximal ascent rate	(constant).

Axioms from disparate models of behavior:

$$\begin{array}{l} \theta_1 \coloneqq (\operatorname{margin} > 0) \land (a \ge 0). \\ \theta_2 \coloneqq (a > \operatorname{safe} + \operatorname{margin} \Rightarrow T = \operatorname{level}). \\ \theta_2' \coloneqq (a < \operatorname{safe} + \operatorname{margin} \Rightarrow T = \operatorname{climb}). \\ \theta_3 \coloneqq (P = \operatorname{level} \Rightarrow \dot{a} = 0) \land (P = \operatorname{climb} \Rightarrow \dot{a} = \operatorname{rate}). \\ \theta_4 \coloneqq \operatorname{is_delayed}(\operatorname{del}, T, P). \\ \end{array}$$
This is an abbreviation for a longer logical condition.

Can prove safe separation

$$\forall (t: \texttt{Time}). \downarrow_0^t (t > \texttt{del} + \frac{\texttt{safe}}{\texttt{rate}} \implies a \ge \texttt{safe}).$$

Outline

1 Introduction

- **2** The topos \mathcal{B} of behavior types
- **3** Temporal type theory
- **4** Application to the NAS

5 Conclusion

Further reading

If you're interested in reading more

Two related books:

- Temporal Type Theory (Springer Berkhaüser)
 - Freely available: https://arxiv.org/abs/1710.10258
 - Technical parts, some friendly parts

If you're interested in reading more

Two related books:

Temporal Type Theory (Springer Berkhaüser)

- Freely available: https://arxiv.org/abs/1710.10258
- Technical parts, some friendly parts
- Seven Sketches in Compositionality (Cambridge University Press?)
 - Joint with Brendan Fong
 - Freely available: https://arxiv.org/abs/1803.05316
 - Chapter 7 is about this material
 - Totally friendly!

If you're interested in reading more

Two related books:

Temporal Type Theory (Springer Berkhaüser)

- Freely available: https://arxiv.org/abs/1710.10258
- Technical parts, some friendly parts
- Seven Sketches in Compositionality (Cambridge University Press?)
 - Joint with Brendan Fong
 - Freely available: https://arxiv.org/abs/1803.05316
 - Chapter 7 is about this material
 - Totally friendly!

Questions and comments are welcome. Thanks!