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Inverse Categories

The multi-object of inverse semigroups.

Defining property of inverse categories:
For each arrow f : A→ B, there is a unique arrow f ◦ : B → A
such that ff ◦f = f and f ◦ff ◦ = f ◦.

Prototypical example: sets and partial bijections, using relation
composition:

Notation: domf = f = f ◦f , convenient to think of f as the
identity on the domain of f (where f is defined).
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Groupoids Associated to Inverse Categories

As a generalization of the Ehresmann-Schein-Nambooripad
Theorem, every inverse category has an associated groupoid G(X) :

I Objects: All of the f ’s for each f : A→ B in X.
I Arrows: For each arrow f : A→ B in X, an arrow f : f → f ◦.

I Composition: for arrows f : f → f ◦ and g : g → g◦ with
f ◦ = g , we define their composite g • f : f → g◦ in G(X) to
be their composite in X.

I Identities: For any object f : A→ A in G(X), define 1f = f .
I Inverses: Given an arrow f : f → f ◦, define f −1 : f ◦ → f to be

f ◦, the unique restricted inverse of f from X’s inverse
structure.

Interesting Fact: This groupoid is what we call a top-heavy
locally inductive groupoid: the objects can be partitioned into
meet-semilattices and every arrow can be restricted to smaller
source objects (and corestricted to smaller targets).
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More Interesting Facts

Fact: The partition of the objects into meet-semilattices is done
by “anchoring” f ’s to their source objects:

For each object A in X, the set

EA =
{

f : A→ A|f : A→ B ∈ X
}

is a meet-semilattice:

I f ≤ g iff gf = f

I f ∧ g = f g

I Each EA has a top element > = idA (top-heavy)

I These EA partition G(X)0 (locally inductive)
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More Interesting Facts

Fact: The functor G is part of an equivalence of categories
between the categories of top-heavy locally inductive groupoids
and of inverse categories.

Given a top-heavy locally inductive groupoid G, we can construct
an inverse category I(G) :

The objects of the inverse category are the meet-semilattices Mi

and an arrow Mi → Mj exists for each f : Ai → Aj in G with
Ai ∈ Mi :
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More Interesting Facts

Composition in I(G) is defined using the restriction and
corestriction of the top-heavy locally localic groupoid:

This composite is called g ⊗ f .
Remarkably strictly associative.
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More Interesting Facts

Also has identities:

This is, in fact, why the groupoids must be top-heavy for the
equivalence to work.



Glueing Arrows

The ability to glue two maps together will come in handy later in
defining topologies on the groupoids associated to inverse
semigroups.

Two maps will be glueable if they are compatible in the usual
sense: that they (and their inverses) agree everywhere that they
are both defined.

Definition
Let X be an inverse category. Two arrows f and g in X are
compatible – denoted f ^ g – if and only if f g = gf and
f ◦g◦ = g◦f ◦.
A subset S ⊆ X1 of arrows in X is called a compatible set
whenever every pair of arrows in S is compatible.

Coming up: some interesting compatible sets. But first, joins!
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Adding Joins to our Inverse Categories

Definition (Cockett/Cruttwell/Gallagher, 2011)

A join inverse category is an inverse category in which for every
compatible set (fi : A→ B)i∈I , there is a map

∨
i∈I fi : A→ B

such that

(i) for all i ∈ I , fi ≤
∨

i∈I fi ,

(ii) if there exists a map g such that fi ≤ g for all i ∈ I , then∨
fi ≤ g ,

(iii) for any h : B → C , h
(∨

i∈I fi
)

=
∨

i∈I hfi .

Facts:

(i) for any j ∈ I ,
(∨

i∈I fi
)

fj = fj ,

(ii) for any h : C → A,
(∨

i∈I fi
)

h =
∨

i∈I fih,

(iii)
∨

i∈I fi =
∨

i∈I fi .
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Principal Order Ideals

Definition
For each object f in G(X), the principal order ideal of f is the set
of objects

↓ f =
{

e ∈ G(X)0 : e ≤ f
}
.

Proposition

For each object f ∈ G(X), the principal order ideal ↓ f is a
compatible set.

Proposition

Let X be a join inverse category. For each object f ∈ G(X), the
principal order ideal ↓ f is a locale with all joins inherited from X
and meet defined by a ∧ b = ab.
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Locale-Valued Functor

Proposition

Let X be a join inverse category. For each arrow α : α→ α◦ in
G(X), there is a frame homomorphism α∗ :↓ α→↓ α◦ defined by

α∗
(
b
)

= b α◦.

A
α //

B
α◦
oo ⇒

b ∈↓ α

A
α //

b

// A
⇒ B

α◦ // A
b // A ⇒ B

b α◦ // B

Corollary

Let X be a join inverse category. There is a contravariant functor

(−)∗ : G(X)op → Loc,

where Loc is the category of locales and locale morphisms.
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Locale-Valued Functor, redux

Lemma
Let X be a join inverse category. For each arrow α : α→ α◦ in
G(X), there is a frame homomorphism α∗ :↓ α◦ →↓ α defined by
α∗ (e) = e α.

Corollary

Let X be a join inverse category. There is a covariant functor

(−)∗ : G(X)→ Loc,

where Loc is the category of locales and locale morphisms.
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Fact Number 1 from Abstract

Theorem
Let X be a join inverse category. For each arrow α : α→ α◦ in
G(X), there is an equivalence of (locales as) categories

↓ α
α∗ // ↓ α◦
α∗
oo

Local topological data seems to suggest some
Grothendieck-topology-styled structure could be used to organize
this information.

The top-heavy-locally inductive groupoid associated to an inverse
category is an example of an ordered groupoid.

Mark Lawson and Benjamin Steinberg have explored topological
structures on ordered groupoids. Their work motivates Fact
Number 2 from Abstract.



Fact Number 1 from Abstract

Theorem
Let X be a join inverse category. For each arrow α : α→ α◦ in
G(X), there is an equivalence of (locales as) categories

↓ α
α∗ // ↓ α◦
α∗
oo

Local topological data seems to suggest some
Grothendieck-topology-styled structure could be used to organize
this information.

The top-heavy-locally inductive groupoid associated to an inverse
category is an example of an ordered groupoid.

Mark Lawson and Benjamin Steinberg have explored topological
structures on ordered groupoids. Their work motivates Fact
Number 2 from Abstract.



Fact Number 1 from Abstract

Theorem
Let X be a join inverse category. For each arrow α : α→ α◦ in
G(X), there is an equivalence of (locales as) categories

↓ α
α∗ // ↓ α◦
α∗
oo

Local topological data seems to suggest some
Grothendieck-topology-styled structure could be used to organize
this information.

The top-heavy-locally inductive groupoid associated to an inverse
category is an example of an ordered groupoid.

Mark Lawson and Benjamin Steinberg have explored topological
structures on ordered groupoids. Their work motivates Fact
Number 2 from Abstract.



Fact Number 1 from Abstract

Theorem
Let X be a join inverse category. For each arrow α : α→ α◦ in
G(X), there is an equivalence of (locales as) categories

↓ α
α∗ // ↓ α◦
α∗
oo

Local topological data seems to suggest some
Grothendieck-topology-styled structure could be used to organize
this information.

The top-heavy-locally inductive groupoid associated to an inverse
category is an example of an ordered groupoid.

Mark Lawson and Benjamin Steinberg have explored topological
structures on ordered groupoids. Their work motivates Fact
Number 2 from Abstract.



Quick Detour: Another Partial Order

Definition (Lawson, 2004)

Define a relation ≤J on the objects of a top-heavy locally
inductive groupoid by a ≤J b if and only if there exists an object
a′ ∼= a such that a′ ≤ b.

That is, a is isomorphic to some object sitting below b :

B

A
f // B ′

≤

NB Two ≤J -related objects permit composition using ⊗ :

B
g // C

A
f // B ′

≤ 7−→ A
f // B ′

g |B′ // C
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Ehresmann Topologies

Definition (Lawson/Steinberg, 2004)

Let (G, ◦,≤) be an ordered groupoid. An Ehresmann topology on
G is an assignment of, for each object e ∈ G, a collection T (e) of
order ideals of ↓ e – called covering ideals – satisfying

(i) ↓ e ∈ T (e) for each object e ∈ G.

(ii) Let e and f be objects of G such that f ≤J e. Then for each
x : f ∼= e ′ ≤ e and A ∈ T (e), we have x−1 ⊗A⊗ x ∈ T (f ).

(iii) Let e be an object of G, let A ∈ T (e) and let BE ↓ e be an
arbitrary order ideal of ↓ e. Suppose that, for each
x : f ∼= e ′ ≤ e (where e ′ ∈ A), we have x−1 ⊗ B ⊗ x ∈ T (f ).
Then B ∈ T (e).

An ordered groupoid equipped with an Ehresmann topology is an
Ehresmann site.
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Fact Number 2 from Abstract

Theorem
If X is a join inverse category, then G(X) admits an Ehresmann site
with, for each object e ∈ G(X),

T (e) =
{
SE ↓ e :

∨
S = e

}
.

Interesting Facts:

I Lawson/Steinberg (2004): to each Ehresmann site can be
associated a left-cancellative site.

I Lawson/Steinberg (2004) via Kock/Moerdijk (1991): every
étendue is equivalent to a topos of sheaves on an Ehresmann
site.

Question: What class of étendues is obtained by restricting this
construction to the Ehresmann sites coming from inverse
categories?
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