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1. Overview

Test principle for weak n-categories

Doubly degenerate 3-categories should be somehow
equivalent to braided monoidal categories.

Some known results for classical tricategories

• DD tricategories ≡ braided monoidal categories (JS, GPS)

• Strict interchange/strict units ≡ symmetric

• Weak interchange/strict units ≡ braided

• Strict interchange/weak units ≡ braided (Joyal–Kock)

Trimble’s definition is most like this
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• 0-cells: doubly degenerate Trimble 3-categories
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• 2-cells: icon-like transformations (Lack)

and prove a biequivalence
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Question: what are weak maps?
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2. Algebras via distributive laws

Law vs. structure

More “natural” way to think of a ring:

a set with a group structure and a monoid structure
compatible via distributivity

• an S-algebra SA A
s

and a T -algebra TA A
t

• such that STA TSA TA
λA Ts

SA As

St t

For 2-categories this says

a 2-globular set with vertical and horizontal composition
compatible via interchange
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• a distributive law λ : ST TS ,

then for algebras

TSA

A

≡

SA

A

and TA

A

+ compatibility via λ

Eckmann–Hilton structure

SA

A

+ axiom

T -algebra part is reconstructed
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Suppose we have a weak Eckmann–Hilton structure.

Then given any TS-algebra








SUA

UA

,
TUA

UA
we have an isomorphism

TUA SUA

UA

αA

t s

STUA
hor units

TSUA

TUA

interchange

vert units

TUA SUA

UA

εA St

λA

Ts

t

1

∼ ψ−1

∼

φ

=

=
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TB

B

is a 1-cell A B
f

and a 2-cell

TA

A

TB

B

Tf

f + axioms.
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5. Weak maps

Given 2-monads S ,T on a 2-category C

and a (strict) distributive law ST TS
α

a weak map of TS-algebras










SA

A

,
TA

A











SB

B

,
TB

B

is a 1-cell A B
f

and 2-cells

TA

A

TB

B

Tf

f

SA

A

SB

B

Tf

f

+ axioms: S-algebra map, T -algebra map, interaction via λ
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5. Weak maps

Theorem.

In the presence of a weak Eckmann–Hilton structure,
a weak map of doubly degenerate TS-algebras is of the form

SA

A

as

SB

B

bs

Sf

f

σ

TA TB

A B

Tf

f

at btSA

as

SB

bs

Sf

αA αB

σ

∼= ∼=

The T -functoriality constraint
can be reconstructed from the S-functoriality constraint.
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Trimble doubly degenerate Trimble 3-categories

We can construct them via 2-monads on a 2-category
and a distributive law.
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5. Weak maps

Trimble doubly degenerate Trimble 3-categories

We can construct them via 2-monads on a 2-category
and a distributive law.

C = Cat-2-Gph A3 A2 A1 A0

︸ ︷︷ ︸

category

s

t

s

t

s

t

S = vertical composition

T = horizontal composition

}

each parametrised by an operad

Distributive law ST TS is parametrised interchange

We look at the category of strict TS-algebras and strict maps:

TS-Alg ∼= Tr3Cat
Weak 3-categories

strict functors.
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5. Weak maps

Weak functors of DD Trimble 3-categories

A weak map of TS-algebras is a priori

• a weak map of S-algebras: vertical functoriality constraint
• a weak map of T -algebras: horizontal functoriality constraint

+ compatibility axiom.

NB Weak enough if underlying object is doubly degenerate.

In that case:

• Eckmann–Hilton says the T -map constraint is redundant.

• Compatibility becomes an extra condition on the S-map
constraint.

This corresponds to
the condition on a monoidal functor making it braided.
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5. Weak maps

This helps us construct the 2-category ddTr3Cat:

• 0-cells: doubly degenerate Trimble 3-categories

• 1-cells: weak maps

• 2-cells: icon-like transformations (Lack)
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5. Weak maps

This helps us construct the 2-category ddTr3Cat:

• 0-cells: doubly degenerate Trimble 3-categories

• 1-cells: weak maps

• 2-cells: icon-like transformations (Lack)

and we get a biequivalence

ddTr3Cat ≃ BrMonCat

The proof follows the methodology of Joyal–Kock.

Abstract E–H: avoid fiddling around with reparametrisations.
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5. Weak maps

Future work (with Nick Gurski)

• Express this at the level of operads and relate it to the
little n-cubes operad.

• Examine dependence on weakness of horizontal units,
vertical units and distributive law separately.

• Explore using lax duoidal structures.
(Batanin–Cisinki–Weber, Garner–López Franco)

• Investigate what type of monads work. (Kelly)

• Better abstract description.

• Relationship between different Eckmann–Hilton structures
on the same data.

• Braiding vs. symmetry

25.


