

Johns Hopkins University

A proof of the model-independence of $(\infty, 1)$ -category theory joint with Dominic Verity

CT2018, Universidade dos Açores

Goal: build model-independent foundations of $(\infty, 1)$ -category theory

Goal: build model-independent foundations of $(\infty, 1)$ -category theory

- I. What are model-independent foundations?
- 2. ∞ -cosmoi of $(\infty, 1)$ -categories
- 3. A taste of the formal category theory of $(\infty, 1)$ -categories
- 4. The proof of model-independence of $(\infty, 1)$ -category theory

What are model-independent foundations?

Models of $(\infty, 1)$ -categories

Schematically, an $(\infty, 1)$ -category is a category "weakly enriched" over ∞ -groupoids/homotopy types ... but this is tricky to make precise.

Models of $(\infty, 1)$ -categories

Schematically, an $(\infty, 1)$ -category is a category "weakly enriched" over ∞ -groupoids/homotopy types ... but this is tricky to make precise.

• topological categories and relative categories are the simplest to define but do not have enough maps between them

Models of $(\infty, 1)$ -categories

Schematically, an $(\infty, 1)$ -category is a category "weakly enriched" over ∞ -groupoids/homotopy types ... but this is tricky to make precise.

 topological categories and relative categories are the simplest to define but do not have enough maps between them

quasi-categories (nee. weak Kan complexes), Rezk spaces (nee. complete Segal spaces), Segal categories, and (saturated I-trivial weak) I-complicial sets

each have a homotopically meaningful internal hom.

Q: How might you develop the category theory of $(\infty, 1)$ -categories?

Q: How might you develop the category theory of $(\infty, 1)$ -categories?

Two strategies:

• work analytically to give categorical definitions and prove theorems using the combinatorics of one model

(eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat; Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

Q: How might you develop the category theory of $(\infty, 1)$ -categories?

Two strategies:

• work analytically to give categorical definitions and prove theorems using the combinatorics of one model

(eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat; Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

• work synthetically to give categorical definitions and prove theorems in all four models qCat, Rezk, Segal, 1-Comp at once

Q: How might you develop the category theory of $(\infty, 1)$ -categories?

Two strategies:

• work analytically to give categorical definitions and prove theorems using the combinatorics of one model

(eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat; Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

• work synthetically to give categorical definitions and prove theorems in all four models qCat, Rezk, Segal, 1-Comp at once

Our method: introduce an ∞ -cosmos to axiomatize common features of the categories qCat, Rezk, Segal, 1-Comp of $(\infty, 1)$ -categories.

Idea: An ∞ -cosmos is an " $(\infty, 2)$ -category with $(\infty, 2)$ -categorical limits" whose objects we call ∞ -categories.

Idea: An ∞ -cosmos is an " $(\infty, 2)$ -category with $(\infty, 2)$ -categorical limits" whose objects we call ∞ -categories.

An ∞ -cosmos is a category that

Idea: An ∞ -cosmos is an " $(\infty, 2)$ -category with $(\infty, 2)$ -categorical limits" whose objects we call ∞ -categories.

An ∞ -cosmos is a category that

• is enriched over quasi-categories, i.e., functors $f \colon A \to B$ between ∞ -categories define the points of a quasi-category Fun(A, B),

Idea: An ∞ -cosmos is an " $(\infty, 2)$ -category with $(\infty, 2)$ -categorical limits" whose objects we call ∞ -categories.

An ∞ -cosmos is a category that

- is enriched over quasi-categories, i.e., functors $f \colon A \to B$ between ∞ -categories define the points of a quasi-category Fun(A, B),
- has a class of isofibrations $E \twoheadrightarrow B$ with familiar closure properties,

Idea: An ∞ -cosmos is an " $(\infty, 2)$ -category with $(\infty, 2)$ -categorical limits" whose objects we call ∞ -categories.

An ∞ -cosmos is a category that

- is enriched over quasi-categories, i.e., functors $f \colon A \to B$ between ∞ -categories define the points of a quasi-category Fun(A, B),
- has a class of isofibrations $E \twoheadrightarrow B$ with familiar closure properties,
- and has flexibly-weighted simplicially-enriched limits, constructed as limits of diagrams of ∞ -categories and isofibrations.

Idea: An ∞ -cosmos is an " $(\infty, 2)$ -category with $(\infty, 2)$ -categorical limits" whose objects we call ∞ -categories.

An ∞ -cosmos is a category that

- is enriched over quasi-categories, i.e., functors $f \colon A \to B$ between ∞ -categories define the points of a quasi-category Fun(A, B),
- has a class of isofibrations $E \twoheadrightarrow B$ with familiar closure properties,
- and has flexibly-weighted simplicially-enriched limits, constructed as limits of diagrams of ∞ -categories and isofibrations.

Theorem. qCat, Rezk, Segal, and 1-Comp define ∞ -cosmoi

Idea: An ∞ -cosmos is an " $(\infty, 2)$ -category with $(\infty, 2)$ -categorical limits" whose objects we call ∞ -categories.

An ∞ -cosmos is a category that

- is enriched over quasi-categories, i.e., functors $f \colon A \to B$ between ∞ -categories define the points of a quasi-category Fun(A, B),
- has a class of isofibrations $E \twoheadrightarrow B$ with familiar closure properties,
- and has flexibly-weighted simplicially-enriched limits, constructed as limits of diagrams of ∞ -categories and isofibrations.

Theorem. qCat, Rezk, Segal, and 1-Comp define ∞ -cosmoi, and so do certain models of (∞, n) -categories for $0 \le n \le \infty$, fibered versions of all of the above, and many more things besides.

Idea: An ∞ -cosmos is an " $(\infty, 2)$ -category with $(\infty, 2)$ -categorical limits" whose objects we call ∞ -categories.

An ∞ -cosmos is a category that

- is enriched over quasi-categories, i.e., functors $f \colon A \to B$ between ∞ -categories define the points of a quasi-category Fun(A, B),
- has a class of isofibrations $E \twoheadrightarrow B$ with familiar closure properties,
- and has flexibly-weighted simplicially-enriched limits, constructed as limits of diagrams of ∞ -categories and isofibrations.

Theorem. qCat, Rezk, Segal, and 1-Comp define ∞ -cosmoi, and so do certain models of (∞, n) -categories for $0 \le n \le \infty$, fibered versions of all of the above, and many more things besides.

Henceforth ∞ -category and ∞ -functor are technical terms that mean the objects and morphisms of some ∞ -cosmos.

The homotopy 2-category of an ∞ -cosmos is a strict 2-category whose:

- objects are the ∞ -categories A, B in the ∞ -cosmos
- I-cells are the ∞ -functors $f \colon A \to B$ in the ∞ -cosmos

The homotopy 2-category of an ∞ -cosmos is a strict 2-category whose:

- objects are the ∞ -categories A, B in the ∞ -cosmos
- I-cells are the ∞ -functors $f \colon A \to B$ in the ∞ -cosmos

• 2-cells we call ∞ -natural transformations $A \bigoplus_{g} B$ which are defined to be homotopy classes of I-simplices in Fun(A, B)

The homotopy 2-category of an ∞ -cosmos is a strict 2-category whose:

- objects are the ∞ -categories A, B in the ∞ -cosmos
- I-cells are the ∞ -functors $f \colon A \to B$ in the ∞ -cosmos

• 2-cells we call ∞ -natural transformations $A \bigoplus_{g} B$ which are defined to be homotopy classes of I-simplices in Fun(A, B)

Prop. Equivalences in the homotopy 2-category

$$A \xrightarrow{f}_{g} B \qquad A \xrightarrow{1_A}_{gf} A \qquad B \xrightarrow{1_B}_{fg} B$$

coincide with equivalences in the ∞ -cosmos.

The homotopy 2-category of an ∞ -cosmos is a strict 2-category whose:

- objects are the ∞ -categories A, B in the ∞ -cosmos
- I-cells are the ∞ -functors $f \colon A \to B$ in the ∞ -cosmos

• 2-cells we call ∞ -natural transformations $A \bigoplus_{g} B$ which are defined to be homotopy classes of I-simplices in Fun(A, B)

Prop. Equivalences in the homotopy 2-category

$$A \xrightarrow{f} B \qquad A \xrightarrow{1_A} A \qquad B \xrightarrow{1_B} B$$

coincide with equivalences in the ∞ -cosmos.

Thus, non-evil 2-categorical definitions are "homotopically correct."

A taste of the formal category theory of $(\infty,1)\text{-}\mathsf{categories}$

Absolute lifting diagrams

B $\begin{array}{c} \stackrel{r}{\underset{\Downarrow}{\rightarrow}} \stackrel{}{\underset{}}{\underset{}} f \text{ is an absolute right lifting diagram if it and any restriction} \\ C \stackrel{}{\underset{}}{\underset{}}{\underset{}}{\underset{A}{\rightarrow}} A \end{array}$

Absolute lifting diagrams

 $C \xrightarrow{r}_{\substack{\downarrow \rho \\ y \rho}} \int_{f} f$ is an absolute right lifting diagram if it and any restriction $C \xrightarrow{g} A$

are right liftings: $\begin{array}{c} X \xrightarrow{b} B \\ c \downarrow & \forall \Downarrow \chi & \downarrow f \\ C \xrightarrow{g} A \end{array} = \begin{array}{c} X \xrightarrow{b} B \\ c \downarrow & \forall \downarrow \zeta & \checkmark & f \\ P & \downarrow \zeta & \uparrow & \downarrow f \\ P & \downarrow \zeta & \uparrow & \downarrow f \\ P & \downarrow f & \downarrow f \\ Q & \downarrow \zeta & \uparrow & \downarrow f \\ P & \downarrow f & \downarrow f \\ Q & \downarrow \zeta & \downarrow f \\ P & \downarrow f & \downarrow f \\ Q & \downarrow \zeta & \downarrow f \\ P & \downarrow f & \downarrow f \\ Q & \downarrow f & \downarrow f & \downarrow f \\ Q & \downarrow f & \downarrow f \\$

Absolute lifting diagrams

 $C \xrightarrow{r \\ \downarrow \rho} f$ is an absolute right lifting diagram if it and any restriction $C \xrightarrow{q} A$

are right liftings: $\begin{array}{c|c} X \xrightarrow{b} B \\ c \\ \downarrow & \forall \Downarrow \chi \\ C \xrightarrow{q} A \end{array} \xrightarrow{f} \left(\begin{array}{c|c} X \xrightarrow{b} B \\ c \\ \swarrow & \downarrow \chi \\ \swarrow & \downarrow f \\ \downarrow & \downarrow \varphi \\ \downarrow & \downarrow f \\ \downarrow & \downarrow \varphi \\ \downarrow & \downarrow f \\ \downarrow & \downarrow \varphi \\ \downarrow & \downarrow f \\ \downarrow & \downarrow \varphi \\ \downarrow & \downarrow f \\ \downarrow & \downarrow \varphi \\ \downarrow & \downarrow f \\ \downarrow & \downarrow \varphi \\ \downarrow & \downarrow f \\ \downarrow & \downarrow \varphi \\ \downarrow & \downarrow f \\ \downarrow & \downarrow \varphi \\ \downarrow & \downarrow f \\ \downarrow & \downarrow \varphi \\ \downarrow & \downarrow \\ \downarrow & \downarrow \varphi \\ \downarrow \\ \downarrow & \downarrow \varphi \\ \downarrow \\ \downarrow & \downarrow \varphi \\ \downarrow \\ \downarrow & \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\$ $X \xrightarrow{c} C \xrightarrow{r} A^{\mathcal{B}} f$ is absolute right lifting • E• $\downarrow_{\sigma} \downarrow_{k}$ is absolute right lifting iff $\downarrow_{\sigma} B$ is $C \xrightarrow{r} B$ $C \xrightarrow{r} \downarrow_{\rho} \downarrow_{f}$

An adjunction between ∞ -categories is an adjunction $(A, B, f, u, \eta, \epsilon)$ in the homotopy 2-category.

An adjunction between ∞ -categories is an adjunction $(A, B, f, u, \eta, \epsilon)$ in the homotopy 2-category.

 \rightsquigarrow Hence all 2-categorical theorems about adjunctions become theorems about adjunctions between ∞ -categories!

An adjunction between ∞ -categories is an adjunction $(A, B, f, u, \eta, \epsilon)$ in the homotopy 2-category.

 \rightsquigarrow Hence all 2-categorical theorems about adjunctions become theorems about adjunctions between $\infty\text{-categories!}$ In particular:

An adjunction between ∞ -categories is an adjunction $(A, B, f, u, \eta, \epsilon)$ in the homotopy 2-category.

 \rightsquigarrow Hence all 2-categorical theorems about adjunctions become theorems about adjunctions between $\infty\text{-}categories!$ In particular:

Hence, a limit functor or limit of $d: 1 \rightarrow A^J$ is an absolute right lifting

Proof: It suffices to show the transposed cone is absolute right lifting

Prop (right adjoints preserve limits). If
$$A \xrightarrow[u]{\perp} B$$
 and $\lambda \colon \Delta \ell \Rightarrow d$ is
a limit cone then $A \xrightarrow[u]{\downarrow} \Delta \qquad \qquad \downarrow \Delta$ is absolute right lifting.
 $1 \xrightarrow[d]{\downarrow} A^J \xrightarrow[u]{\downarrow} B^J$

Proof: It suffices to show the transposed cone is absolute right lifting

which is the case by 2-naturality

Prop (right adjoints preserve limits). If
$$A \xrightarrow[u]{\perp} B$$
 and $\lambda \colon \Delta \ell \Rightarrow d$ is
a limit cone then $A \xrightarrow[u]{\downarrow} \Delta \qquad \qquad \downarrow \Delta$ is absolute right lifting.
 $1 \xrightarrow[d]{\downarrow} A^J \xrightarrow[u]{\downarrow} B^J$

Proof: It suffices to show the transposed cone is absolute right lifting

which is the case by 2-naturality

Prop (right adjoints preserve limits). If
$$A \xrightarrow[u]{\perp} B$$
 and $\lambda \colon \Delta \ell \Rightarrow d$ is
a limit cone then
 $A \xrightarrow[u]{} B$ is absolute right lifting.
 $1 \xrightarrow[d]{} A^J \xrightarrow[u]{} B^J$

Proof: It suffices to show the transposed cone is absolute right lifting

which is the case by 2-naturality and composition of absolute right liftings.

Universal properties of adjunctions and limits

Thm. Any ∞ -cosmos has a virtual equipment of ∞ -categories, ∞ -functors, modules, and "multilinear" module maps:

Thm. Any ∞ -cosmos has a virtual equipment of ∞ -categories, ∞ -functors, modules, and "multilinear" module maps:

Thm. Any ∞ -cosmos has a virtual equipment of ∞ -categories, ∞ -functors, modules, and "multilinear" module maps:

→ The homotopy 2-category embeds covariantly and contravariantly.

Thm. Any ∞ -cosmos has a virtual equipment of ∞ -categories, ∞ -functors, modules, and "multilinear" module maps:

 \rightsquigarrow The homotopy 2-category embeds covariantly and contravariantly. Modules $A \stackrel{E}{\twoheadrightarrow} B$ and $A \stackrel{F}{\twoheadrightarrow} B$ are isomorphic iff $E \simeq_{A \times B} F$ so the virtual equipment captures the formal category theory of ∞ -categories.

The proof of model-independence of $(\infty,1)\text{-category theory}$

A cosmological biequivalence $F: \mathcal{K} \xrightarrow{\sim} \mathcal{L}$ between ∞ -cosmoi is

- A cosmological biequivalence $F: \mathcal{K} \xrightarrow{\sim} \mathcal{L}$ between ∞ -cosmoi is
 - a cosmological functor: a simplicial functor that preserves isofibrations and the simplicial limits

- A cosmological biequivalence $F \colon \mathcal{K} \xrightarrow{\sim} \mathcal{L}$ between ∞ -cosmoi is
 - a cosmological functor: a simplicial functor that preserves isofibrations and the simplicial limits
 - surjective on objects up to equivalence: if $C \in \mathcal{L}$ there exists $A \in \mathcal{K}$ with $FA \simeq C \in \mathcal{L}$

- A cosmological biequivalence $F \colon \mathcal{K} \xrightarrow{\sim} \mathcal{L}$ between ∞ -cosmoi is
 - a cosmological functor: a simplicial functor that preserves isofibrations and the simplicial limits
 - surjective on objects up to equivalence: if $C \in \mathcal{L}$ there exists $A \in \mathcal{K}$ with $FA \simeq C \in \mathcal{L}$
 - a local equivalence: $\operatorname{Fun}(A,B) \xrightarrow{\sim} \operatorname{Fun}(FA,FB) \in \operatorname{qCat}$

A cosmological biequivalence $F: \mathcal{K} \xrightarrow{\sim} \mathcal{L}$ between ∞ -cosmoi is

- a cosmological functor: a simplicial functor that preserves isofibrations and the simplicial limits
- surjective on objects up to equivalence: if $C \in \mathcal{L}$ there exists $A \in \mathcal{K}$ with $FA \simeq C \in \mathcal{L}$
- a local equivalence: $\operatorname{Fun}(A,B) \xrightarrow{\sim} \operatorname{Fun}(FA,FB) \in \operatorname{qCat}$

Prop. A cosmological biequivalence induces a biequivalence of homotopy 2-categories, defining (local) bijections on:

- equivalence classes of ∞ -categories
- isomorphism classes of parallel ∞ -functors
- 2-cells with corresponding boundary

A cosmological biequivalence $F: \mathcal{K} \xrightarrow{\sim} \mathcal{L}$ between ∞ -cosmoi is

- a cosmological functor: a simplicial functor that preserves isofibrations and the simplicial limits
- surjective on objects up to equivalence: if $C \in \mathcal{L}$ there exists $A \in \mathcal{K}$ with $FA \simeq C \in \mathcal{L}$
- a local equivalence: $\operatorname{Fun}(A,B) \xrightarrow{\sim} \operatorname{Fun}(FA,FB) \in \operatorname{qCat}$

Prop. A cosmological biequivalence induces a biequivalence of homotopy 2-categories, defining (local) bijections on:

- equivalence classes of ∞ -categories
- isomorphism classes of parallel ∞ -functors
- 2-cells with corresponding boundary

and fibered equivalence classes of modules, respecting representability.

A cosmological biequivalence $F: \mathcal{K} \xrightarrow{\sim} \mathcal{L}$ between ∞ -cosmoi is

- a cosmological functor: a simplicial functor that preserves isofibrations and the simplicial limits
- surjective on objects up to equivalence: if $C \in \mathcal{L}$ there exists $A \in \mathcal{K}$ with $FA \simeq C \in \mathcal{L}$
- a local equivalence: $\operatorname{Fun}(A,B) \xrightarrow{\sim} \operatorname{Fun}(FA,FB) \in \operatorname{qCat}$

Prop. A cosmological biequivalence induces a biequivalence of homotopy 2-categories, defining (local) bijections on:

- equivalence classes of ∞ -categories
- isomorphism classes of parallel ∞ -functors
- 2-cells with corresponding boundary

and fibered equivalence classes of modules, respecting representability.

 $\mathsf{Idea:} \ FA \simeq A', FB \simeq B' \rightsquigarrow \ \mathfrak{K}_{/A \times B} \xrightarrow{\simeq} \mathcal{L}_{/FA \times FB} \xrightarrow{\simeq} \mathcal{L}_{/A' \times B'}$

 \leftarrow

cosmological biequivalences between models of $(\infty,1)\text{-}\mathsf{categories}$

cosmological biequivalences between models of $(\infty,1)\text{-}\mathsf{categories}$

Model-Independence Theorem. A cosmological biequivalence induces a biequivalence of virtual equipments of modules

<∿

 \leftarrow

cosmological biequivalences between models of $(\infty,1)\text{-}\mathsf{categories}$

Model-Independence Theorem. A cosmological biequivalence induces a biequivalence of virtual equipments of modules and thus preserves, reflects, and creates all ∞ -categorical properties and structures.

 \leftarrow

cosmological biequivalences between models of $(\infty,1)\text{-}\mathsf{categories}$

Model-Independence Theorem. A cosmological biequivalence induces a biequivalence of virtual equipments of modules and thus preserves, reflects, and creates all ∞ -categorical properties and structures.

- The existence of an adjoint to a given functor.
- The existence of a limit for a given diagram.
- The property of a given functor defining a cartesian fibration.
- The existence of a pointwise Kan extension.

∻∿

cosmological biequivalences between models of $(\infty,1)\text{-}\mathsf{categories}$

Model-Independence Theorem. A cosmological biequivalence induces a biequivalence of virtual equipments of modules and thus preserves, reflects, and creates all ∞ -categorical properties and structures.

- The existence of an adjoint to a given functor.
- The existence of a limit for a given diagram.
- The property of a given functor defining a cartesian fibration.
- The existence of a pointwise Kan extension.

Analytically-proven theorems also transfer along biequivalences:

 \leftarrow

cosmological biequivalences between models of $(\infty,1)\text{-}\mathsf{categories}$

Model-Independence Theorem. A cosmological biequivalence induces a biequivalence of virtual equipments of modules and thus preserves, reflects, and creates all ∞ -categorical properties and structures.

- The existence of an adjoint to a given functor.
- The existence of a limit for a given diagram.
- The property of a given functor defining a cartesian fibration.
- The existence of a pointwise Kan extension.

Analytically-proven theorems also transfer along biequivalences:

• Universal properties in an $(\infty, 1)$ -category A are determined elementwise, by each $a: 1 \rightarrow A$.

• In the past, the theory of $(\infty, 1)$ -categories has been developed analytically, in a particular model.

- In the past, the theory of $(\infty, 1)$ -categories has been developed analytically, in a particular model.
- A large part of that theory can be developed simultaneously in many models by working synthetically with $(\infty, 1)$ -categories as objects in an ∞ -cosmos.

- In the past, the theory of $(\infty, 1)$ -categories has been developed analytically, in a particular model.
- A large part of that theory can be developed simultaneously in many models by working synthetically with $(\infty, 1)$ -categories as objects in an ∞ -cosmos.
- The axioms of an ∞-cosmos are chosen to simplify proofs by allowing us to work strictly up to isomorphism insofar as possible.

- In the past, the theory of $(\infty, 1)$ -categories has been developed analytically, in a particular model.
- A large part of that theory can be developed simultaneously in many models by working synthetically with $(\infty, 1)$ -categories as objects in an ∞ -cosmos.
- The axioms of an ∞-cosmos are chosen to simplify proofs by allowing us to work strictly up to isomorphism insofar as possible.
- Much of this development in fact takes place in a strict 2-category of $(\infty, 1)$ -categories, $(\infty, 1)$ -functors, and $(\infty, 1)$ -natural transformations using the methods of formal category theory.

- In the past, the theory of $(\infty, 1)$ -categories has been developed analytically, in a particular model.
- A large part of that theory can be developed simultaneously in many models by working synthetically with $(\infty, 1)$ -categories as objects in an ∞ -cosmos.
- The axioms of an ∞-cosmos are chosen to simplify proofs by allowing us to work strictly up to isomorphism insofar as possible.
- Much of this development in fact takes place in a strict 2-category of $(\infty, 1)$ -categories, $(\infty, 1)$ -functors, and $(\infty, 1)$ -natural transformations using the methods of formal category theory.
- Both analytically- and synthetically-proven results about $(\infty, 1)$ -categories transfer across "change-of-model" functors called biequivalences.

- In the past, the theory of $(\infty, 1)$ -categories has been developed analytically, in a particular model.
- A large part of that theory can be developed simultaneously in many models by working synthetically with $(\infty, 1)$ -categories as objects in an ∞ -cosmos.
- The axioms of an ∞-cosmos are chosen to simplify proofs by allowing us to work strictly up to isomorphism insofar as possible.
- Much of this development in fact takes place in a strict 2-category of $(\infty, 1)$ -categories, $(\infty, 1)$ -functors, and $(\infty, 1)$ -natural transformations using the methods of formal category theory.
- Both analytically- and synthetically-proven results about $(\infty, 1)$ -categories transfer across "change-of-model" functors called biequivalences.
- Open problems: many (∞, 1)-categorical notions are yet to be incorporated into ∞-cosmology.

References

For more on the model-independent theory of $(\infty, 1)$ -categories see:

Emily Riehl and Dominic Verity

mini-course lecture notes:

∞-Category Theory from Scratch arXiv:1608.05314

• draft book in progress:

Elements of ∞ -Category Theory www.math.jhu.edu/~eriehl/elements.pdf

Obrigada!