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What are model-independent
foundations?



Models of (∞, 1)-categories
Schematically, an (∞, 1)-category is a category “weakly enriched” over

∞-groupoids/homotopy types … but this is tricky to make precise.

Rezk Segal

RelCat Top-Cat

1-Comp qCat

• topological categories and relative categories are the simplest to

define but do not have enough maps between them

•

⎧{{
⎨{{
⎩

quasi-categories (nee. weak Kan complexes),
Rezk spaces (nee. complete Segal spaces),
Segal categories, and

(saturated 1-trivial weak) 1-complicial sets

each have a homotopically meaningful internal hom.
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The analytic vs synthetic theory of (∞, 1)-categories

Q: How might you develop the category theory of (∞, 1)-categories?

Two strategies:

• work analytically to give categorical definitions and prove theorems

using the combinatorics of one model

(eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat;

Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

• work synthetically to give categorical definitions and prove

theorems in all four models qCat, Rezk, Segal, 1-Comp at once

Our method: introduce an ∞-cosmos to axiomatize common features

of the categories qCat, Rezk, Segal, 1-Comp of (∞, 1)-categories.
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∞-cosmoi of (∞, 1)-categories



∞-cosmoi of ∞-categories

Idea: An ∞-cosmos is an “(∞, 2)-category with (∞, 2)-categorical
limits” whose objects we call ∞-categories.

An ∞-cosmos is a category that

• is enriched over quasi-categories, i.e., functors 𝑓∶ 𝐴 → 𝐵 between

∞-categories define the points of a quasi-category Fun(𝐴, 𝐵),
• has a class of isofibrations 𝐸 ↠ 𝐵 with familiar closure properties,

• and has flexibly-weighted simplicially-enriched limits, constructed as

limits of diagrams of ∞-categories and isofibrations.

Theorem. qCat, Rezk, Segal, and 1-Comp define ∞-cosmoi, and so do

certain models of (∞, 𝑛)-categories for 0 ≤ 𝑛 ≤ ∞, fibered versions of

all of the above, and many more things besides.

Henceforth ∞-category and ∞-functor are technical terms that mean

the objects and morphisms of some ∞-cosmos.
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The homotopy 2-category

The homotopy 2-category of an ∞-cosmos is a strict 2-category whose:

• objects are the ∞-categories 𝐴, 𝐵 in the ∞-cosmos

• 1-cells are the ∞-functors 𝑓∶ 𝐴 → 𝐵 in the ∞-cosmos

• 2-cells we call ∞-natural transformations 𝐴 𝐵
𝑓

𝑔

⇓𝛾 which are

defined to be homotopy classes of 1-simplices in Fun(𝐴, 𝐵)

Prop. Equivalences in the homotopy 2-category

𝐴 𝐵 𝐴 𝐴 𝐵 𝐵
𝑓

𝑔

1𝐴

⇓≅

𝑔𝑓

1𝐵

⇓≅

𝑓𝑔

coincide with equivalences in the ∞-cosmos.

Thus, non-evil 2-categorical definitions are “homotopically correct.”
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A taste of the formal category theory
of (∞, 1)-categories



Absolute lifting diagrams
𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟 is an absolute right lifting diagram if it and any restriction

are right liftings:

𝑋 𝐵 𝑋 𝐵

𝐶 𝐴 𝐶 𝐴

𝑐

𝑏

∀⇓𝜒 𝑓 = 𝑐

𝑏

∃!⇓𝜁

⇓𝜌
𝑓

𝑔 𝑔

𝑟 ,

in which case:

•
𝐵

𝑋 𝐶 𝐴
⇓𝜌

𝑓

𝑐 𝑔

𝑟 is absolute right lifting

•
𝐸

𝐶 𝐵
⇓𝜎

𝑘

𝑟

𝑠 is absolute right lifting iff

𝐸

𝐵

𝐶 𝐴

𝑘

⇓𝜌

⇓𝜎
𝑓

𝑔

𝑠

𝑟

is
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Adjunctions and limits

An adjunction between ∞-categories is an adjunction (𝐴, 𝐵, 𝑓, 𝑢, 𝜂, 𝜖)
in the homotopy 2-category.

⇝ Hence all 2-categorical theorems about adjunctions become

theorems about adjunctions between ∞-categories! In particular:

A right adjoint 𝐵 𝐴
𝑓

⊥
𝑢

is an absolute right lifting

𝐵

𝐴 𝐴
⇓𝜖

𝑓𝑢

Hence, a limit functor or limit of 𝑑∶ 1 → 𝐴𝐽 is an absolute right lifting

𝐴 𝐴𝐽
Δ

⊥

lim

↭
𝐴 𝐴

𝐴𝐽 𝐴𝐽 1 𝐴𝐽
⇓𝜆

Δ
⇓𝜆𝑑

Δlim

𝑑

lim𝑑
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Right adjoints preserve limits

Prop (right adjoints preserve limits). If 𝐴 𝐵
𝑢
⊥

𝑓

and 𝜆∶ Δℓ ⇒ 𝑑 is

a limit cone then

𝐴 𝐵

1 𝐴𝐽 𝐵𝐽
⇓𝜆

Δ

𝑢

Δ

𝑑

ℓ

𝑢𝐽

is absolute right lifting.

Proof: It suffices to show the transposed cone is absolute right lifting

𝐵

𝐴 𝐵𝐽

1 𝐴𝐽 𝐴𝐽

Δ

⇓𝜆
Δ

𝑢

⇓𝜖𝐽
𝑓𝐽

𝑑

ℓ 𝑢𝐽

which is the case by 2-naturality and composition of absolute right liftings.
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Universal properties of adjunctions and limits

Any cospan has a comma ∞-category

Hom𝐴(𝑓, 𝑔)

𝐶 𝐵

𝐴

cod dom

𝜙
⇐

𝑔 𝑓

with

comma span a two-sided discrete fibration aka a module 𝐶 𝐵
Hom𝐴(𝑓,𝑔)

.

Thm.

𝐵

𝐶 𝐴
⇓𝜌

𝑓

𝑔

𝑟 absolute lifting iff Hom𝐵(𝐵, 𝑟) ≃
𝐶×𝐵

Hom𝐴(𝑓, 𝑔).

Cor. 𝐴 𝐵
𝑢
⊥

𝑓

iff Hom𝐴(𝑓, 𝐴)≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢).

Cor. 𝑑∶ 1 → 𝐴𝐽 has a limit ℓ iff Hom𝐴(𝐴, ℓ) ≃𝐴 Hom𝐴𝐽(Δ, 𝑑).
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The calculus of modules

Thm. Any ∞-cosmos has a virtual equipment of ∞-categories,

∞-functors, modules, and “multilinear” module maps:

𝐴0 𝐴1 ⋯ 𝐴𝑛

𝐵0 𝐵𝑛

𝑓

𝐸1

⇓𝛼

𝐸2 𝐸𝑛

𝑔

𝐹

with units

𝐴 𝐴

𝐴 𝐴

⇓𝜄

Hom𝐴

and restriction of scalars

𝑋 𝑌

𝐴 𝐵

𝐸(𝑏,𝑎)

𝑎 ⇓𝜌 𝑏

𝐸

⇝ The homotopy 2-category embeds covariantly and contravariantly.

Modules 𝐴 𝐵
𝐸

and 𝐴 𝐵
𝐹

are isomorphic iff 𝐸 ≃𝐴×𝐵 𝐹 so the

virtual equipment captures the formal category theory of ∞-categories.
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4

The proof of model-independence of
(∞, 1)-category theory



Cosmological biequivalences and change-of-model

A cosmological biequivalence 𝐹∶ K L∼ between ∞-cosmoi is

• a cosmological functor: a simplicial functor that preserves

isofibrations and the simplicial limits

• surjective on objects up to equivalence: if 𝐶 ∈ L there exists

𝐴 ∈ K with 𝐹𝐴 ≃ 𝐶 ∈ L

• a local equivalence: Fun(𝐴, 𝐵) Fun(𝐹𝐴, 𝐹𝐵)∼ ∈ qCat

Prop. A cosmological biequivalence induces a biequivalence of

homotopy 2-categories, defining (local) bijections on:

• equivalence classes of ∞-categories

• isomorphism classes of parallel ∞-functors

• 2-cells with corresponding boundary

and fibered equivalence classes of modules, respecting representability.

Idea: 𝐹𝐴 ≃ 𝐴′ , 𝐹𝐵 ≃ 𝐵′ ⇝ K/𝐴×𝐵 L/𝐹𝐴×𝐹𝐵 L/𝐴′×𝐵′
∼ ∼
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Model-independence

Rezk Segal

1-Comp qCat

⇜ cosmological biequivalences between
models of (∞, 1)-categories

Model-Independence Theorem. A cosmological biequivalence induces a

biequivalence of virtual equipments of modules and thus preserves,

reflects, and creates all ∞-categorical properties and structures.

• The existence of an adjoint to a given functor.

• The existence of a limit for a given diagram.

• The property of a given functor defining a cartesian fibration.

• The existence of a pointwise Kan extension.

Analytically-proven theorems also transfer along biequivalences:

• Universal properties in an (∞, 1)-category 𝐴 are determined

elementwise, by each 𝑎∶ 1 → 𝐴.
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Summary

• In the past, the theory of (∞, 1)-categories has been developed

analytically, in a particular model.

• A large part of that theory can be developed simultaneously in

many models by working synthetically with (∞, 1)-categories as
objects in an ∞-cosmos.

• The axioms of an ∞-cosmos are chosen to simplify proofs by

allowing us to work strictly up to isomorphism insofar as possible.

• Much of this development in fact takes place in a strict 2-category

of (∞, 1)-categories, (∞, 1)-functors, and (∞, 1)-natural
transformations using the methods of formal category theory.

• Both analytically- and synthetically-proven results about

(∞, 1)-categories transfer across “change-of-model” functors called

biequivalences.

• Open problems: many (∞, 1)-categorical notions are yet to be

incorporated into ∞-cosmology.
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