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Setting

A : Cop → CAT, p ∈ Mor(C)

[Janelidze and Tholen 1997]
Facets of descent II
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Setting

A : Cop → CAT, p ∈ Mor(C)

Mains constructions:
The descent category DescA(p);
The category of (Eilenberg Moore) algebras of the monad
induced by A(p)! a A(p).

[Janelidze and Tholen 1997]
Facets of descent II
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Setting

A : Cop → CAT, p ∈ Mor(C)

Mains constructions:
The descent category DescA(p);
The category of (Eilenberg Moore) algebras of the monad
induced by A(p)! a A(p).

[Ross Street 1976]
Limits indexed by category-valued 2-functors

[Ross Street 1980]
Correction to: “Fibrations in bicategories”

[Ross Street 2004]
Categorical and combinatorial aspects of descent theory
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Aim

Work
The original idea was to investigate whether formal methods
and commuting properties of (weighted) bilimits are useful in
proving theorems of descent theory in the context of Facets of
Descent II.

[Lucatelli Nunes 2018]
Pseudo-Kan Extensions and Descent Theory
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Aim

Work
The original idea was to investigate whether formal methods
and commuting properties of (weighted) bilimits are useful in
proving theorems of descent theory in the context of Facets of
Descent II.

Talk
Give an idea of the work, giving an overview of some results,
including the approach to understand Descent vs Monadicity
(Bénabou Roubaud Theorem).

[Lucatelli Nunes 2018]
Pseudo-Kan Extensions and Descent Theory
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Outline

1 Pseudo-Kan extension
Definition
Weighted bilimits

2 Commutativity
Most basic result
Main consequence

3 Bénabou-Roubaud Theorem
Eilenberg Moore
Descent Object
First Lemma on Bénabou Roubaud
Corollary of the Lemma

4 Usual context of Facets of Descent
Basic Definitions
Bénabou-Roubaud Theorem
Overview of Further Examples of Consequences
Effective Descent Morphisms V -Cat

5 Current Work
Bénabou Roubaud Counterpart: a formal monadicity theorem
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Right pseudo-Kan extension

v : S → Ṡ, 2-category H

[
Ṡ,H

]
PS

[v,H]PS

��
[S,H]PS
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Right pseudo-Kan extension

v : S → Ṡ, 2-category H

[
Ṡ,H

]
PS

[v,H]PS

��

a

[S,H]PS

Ps-Ranv

[[

ε : [v,H]PS ◦ Ps-Ranv → Id

η : Id→ Ps-Ranv ◦ [v,H]PS

s : IdL
∼= (εL) ◦ (Lη)

t : (Uε) ◦ (ηU) ∼= IdU

plus coherence
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Right pseudo-Kan extension

v : S → Ṡ, 2-category H

[
Ṡ,H

]
PS

[v,H]PS

��

a

[S,H]PS

Ps-Ranv

\\

ε : [v,H]PS ◦ Ps-Ranv → Id
η : Id→ Ps-Ranv ◦ [v,H]PS

s : IdL ∼= (εL) ◦ (Lη)

t : (Uε) ◦ (ηU) ∼= IdU

plus coherence

v-effective

D : Ṡ → H is v-effective/exact if ηD : D −→ Ps-Ranv (D ◦ v) is a
pseudonatural equivalence.
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Factorization and Comparison

f.f. v : S → Ṡ, Obj(Ṡ) = {e} ∪ Obj(S), D : Ṡ → H

v-comparison: ηDe : D(e)→ Ps-Ranv (D ◦ v) (e)

v-“factorizations”:

For each morphism f : e→ a of Ṡ,

D(e)
ηDe //

D(f ) ##

Ps-Ranv (D ◦ v) (e)

vv
D(a)

∼=
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Factorization and Comparison

f.f. v : S → Ṡ, Obj(Ṡ) = {e} ∪ Obj(S), D : Ṡ → H

v-comparison: ηDe : D(e)→ Ps-Ranv (D ◦ v) (e)

v-“factorizations”:

For each morphism f : a→ e of Ṡ,

D(e)
ηDe // Ps-Ranv (D ◦ v) (e)

D(a)

66

D(f )

cc
∼=
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Pointwise Pseudo-Kan extension

Theorem
Given a pseudofunctor D : S → H,

Ps-RanvD(a) =
{
Ṡ(a, v−),D

}
bi
,

provided that these weighted bilimits exist in H.
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Pointwise Pseudo-Kan extension

Theorem

Ps-RanvD(a) =
{
Ṡ(a, v−),D

}
bi

Consequence

f.f. v : S → Ṡ, Obj(Ṡ) = {e} ∪ Obj(S), D : Ṡ → H

D is v-effective
if and only if

D(e)→
{
Ṡ(e, v−),D

}
bi

is an equivalence.
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Diagram of effective diagrams

f.f. v : S → Ṡ
Obj(Ṡ) = {e} ∪ Obj(S)

f.f. j : R → Ṙ
Obj(Ṙ) = {z} ∪ Obj(R)

Theorem (Basic commuting property)

Given a pseudofunctor M : Ṡ →
[
Ṙ,H

]
PS

The image of M ◦v : S →
[
Ṙ,H

]
PS

has only j-effective diagrams;

Every diagram in the image of the mate M̂ : Ṙ →
[
Ṡ,H

]
PS

is

v-effective

Then M(e) : Ṙ → H is j-effective as well.
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Diagram of effective diagrams

Obj(Ṡ) = {e} ∪ Obj(S) Obj(Ṙ) = {z} ∪ Obj(R)

Theorem (Basic commuting property)

Given a pseudofunctor M : Ṡ →
[
Ṙ,H

]
PS

The image of M ◦ v : S →
[
Ṙ,H

]
PS

has only j-effective diagrams;

Every diagram in the image of the mate M̂ : Ṙ →
[
Ṡ,H

]
PS

is v-effective

Then M(e) : Ṙ → H is j-effective as well.

Comment
This very basic result and further non-basic results on commutativity
of bilimits of the paper are consequences of 2-dimensional versions
of Dubuc’s adjoint triangle theorem proved therein.
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Corollary

Obj(Ṡ) = {e} ∪ Obj(S) Obj(Ṙ) = {z} ∪ Obj(R)

Corollary (Basic commuting property)

Given a pseudofunctor M : Ṡ →
[
Ṙ,H

]
PS

, we consider its mate

M̂ : Ṙ →
[
Ṡ,H

]
PS

.

The image of M ◦v : S →
[
Ṙ,H

]
PS

has only j-effective diagrams;

The image of M̂ ◦ j : R →
[
Ṡ,H

]
PS

has only v-effective diagrams;

Then M(e) : Ṙ → H is j-effective iff M̂(z) : Ṡ → H is v-effective.
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Corollary

Obj(Ṡ) = {e} ∪ Obj(S) Obj(Ṙ) = {z} ∪ Obj(R)

Corollary (Basic commuting property)

Given a pseudofunctor M : Ṡ →
[
Ṙ,H

]
PS

, we consider its mate

M̂ : Ṙ →
[
Ṡ,H

]
PS

.

The image of M ◦v : S →
[
Ṙ,H

]
PS

has only j-effective diagrams;

The image of M̂ ◦ j : R →
[
Ṡ,H

]
PS

has only v-effective diagrams;

Then M(e) : Ṙ → H is j-effective iff M̂(z) : Ṡ → H is v-effective.

Proof

M̂ satisfies the hypotheses of the Theorem (on commuting properties of bilimits);

Reciprocally, M satisfies the hypotheses of the Theorem.
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The 2-category Adj

Free Adjunction (Street and Schanuel)
We denote by Adj the 2-category generated by the diagram

e
u // a
f

oo

with 2-cells

η : Ida → uf
ε : fu → Ide

satisfying the triangular identities.

We define the full inclusion m : Mnd→ Adj , with Obj(Mnd) = {a}

[S. Schanuel and R. Street 1986]
The Free Adjunction
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Eilenberg Moore Factorization

Each adjunction in a 2-category H corresponds to a diagram

D : Adj → H.

The m-factorization gives the Eilenberg Moore factorization (if H is
bicategorically complete) and the Eilenberg Moore comparison 1-cell.

D(e) //

D(u) ##

Ps-Ranv (D ◦ v) (e)

ww
D(a)

∼=

Thereby D is m-effective if and only if the right adjoint D(u) is
monadic.

[S. Schanuel and R. Street 1986]
The Free Adjunction
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The category ∆

Definition ∆̇

We denote by ∆̇ the category of finite ordinals and order-preserving
functions

0 d // 1
d0

//

d1
//
2s0oo

d0
//

d1 //

d2
//
3

s0

[[

s1

��

···

d3
//

d0
//

We define the full inclusion g : ∆→ ∆̇, with Obj(∆̇) = Obj(∆) ∪ {0}
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The category ∆

Definition

We denote by ∆̇ the category of finite ordinals and order-preserving
functions

0
d=d0 // 1

d0 //

d1
// 2s0oo

d0 //
d1 //

d2
// 3

s0

ee

s1

yy
···

d3
//

d0 //

Full inclusion g : ∆→ ∆̇, with Obj(∆̇) = Obj(∆) ∪ {0}

Coherence Theorem (Descent Object)

D : ∆→ H

Ps-RangD(0) is indeed the descent object of

D(1)
//
// D(2)oo ////// D(3)
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First Lemma

Lemma on pseudonatural transformations

(α : D −→ D′) : ∆̇→ H

α is pointwise right adjoint in
H;

α satisfies Beck-Chevalley
condition;

αi is monadic in H, ∀i > 0;

D′ is g-effective.

=⇒ α0 is monadic if and only if D is g-effective.
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First Lemma

Lemma on pseudonatural transformations

α is pointwise right adjoint in
H;

α satisfies Beck-Chevalley
condition;

αi is monadic in H, ∀i > 0;

D′ is g-effective.

=⇒ α0 is monadic if and only if D is g-effective.

D(0)

∼=α0

��

// D(1)

∼=α1

��

//
// D(2)

∼=α2

��

oo ////// D(3)

α3

��
D′(0) // D′(1)

//
// D′(2)oo ////// D′(3)
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(Hypotheses of the) First Lemma

Hypotheses

α is pointwise right adjoint in
H;

α satisfies Beck-Chevalley
condition;

αi is monadic in H, ∀i > 0;

D′ is g-effective.

D(0)

∼=α0

��

// D(1)

∼=α1

��

//
// D(2)

∼=α2

��

oo ////// D(3)

α3

��
D′(0) // D′(1)

//
// D′(2)oo ////// D′(3)

⇒ M : Adj →
[
∆̇,H

]
PS



Pseudo-Kan extension Commutativity Bénabou-Roubaud Theorem Usual context of Facets of Descent Current Work

(Hypotheses of the) First Lemma

Hypotheses

α is pointwise right adjoint in
H;

α satisfies Beck-Chevalley
condition;

αi is monadic in H, ∀i > 0;

D′ is g-effective.

D(0)

∼=α0

��

// D(1)

∼=α1

��

//
// D(2)

∼=α2

��

oo ////// D(3)

α3

��
D′(0) // D′(1)

//
// D′(2)oo ////// D′(3)

⇒ All the diagrams in the image of M̂ ◦ g : ∆→ [Adj ,H]PS are
m-effective.
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(Hypotheses of the) First Lemma

Hypotheses

α is pointwise right adjoint in
H;

α satisfies Beck-Chevalley
condition;

αi is monadic in H, ∀i > 0;

D′ is g-effective.

D(0)

∼=α0

��

// D(1)

∼=α1

��

//
// D(2)

∼=α2

��

oo ////// D(3)

α3

��
D′(0) // D′(1)

//
// D′(2)oo ////// D′(3)

⇒ The image of M̂ ◦ g : ∆→ [Adj,H]PS has only m-effective diagrams.

⇒ The diagram in the image of M ◦m : Mnd→
[
∆̇,H

]
PS

is

g-effective.

=⇒ α0 is monadic if and only if D is g-effective.
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(Hypotheses of the) First Lemma

Hypotheses

α is pointwise right adjoint in
H;

α satisfies Beck-Chevalley
condition;

αi is monadic in H, ∀i > 0;

D′ is g-effective.

⇒ The image of M̂ ◦ g : ∆→ [Adj ,H]PS has only m-effective
diagrams.

⇒ The diagram in the image of M ◦m : Mnd→
[
∆̇,H

]
PS

is

g-effective.

=⇒ M(0) is m-effective (i.e α0 is monadic) if and only if M̂(e) is
g-effective (i.e D is g-effective).
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Consequence of the First Lemma

Recall that su : ∆̇→ ∆̇ given by (1 +−).
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Consequence of the First Lemma

Recall that su : ∆̇→ ∆̇ given by (1 +−).

Lemma on pseudocosimplicial objects

D : ∆̇→ H
The invertible 2-cells of the
pseudofunctor D

D(n− 1)

∼=

D(di−1) //

D(d0)

��

D(n)

A(d0)

��
D(n)

A(di )

// D(n + 1)

satisfy the Beck-Chevalley
condition.

D ◦ su is g-effective;

D(d) and every D(d0) have
left adjoints;

=⇒ D(d) is monadic if and only if D is g-effective.
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Hypotheses of the Lemma on pseudocosimplicial objects

Hypotheses of the Lemma on pseudocosimplicial objects

Beck-Chevalley Condition
plus the fact that D(d) and
every D(d0) have left
adjoints;

D ◦ su is g-effective;

D(0)
D(d) // D(1)

D(d0) //

D(d1)

// D(2)D(s0)oo //
D(d1) //// D(3)

D(s0)

hh

D(s1)vv
···

D(d3)

//

D(d0) //
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Hypotheses of the Lemma on pseudocosimplicial objects

Hypotheses of the Lemma on pseudocosimplicial objects

Beck-Chevalley Condition
plus the fact that D(d) and
every D(d0) have left
adjoints;

D ◦ su is g-effective;

D(0)

∼=D(d)

��

D(d) // D(1)

∼=D(d0)

��

D(d0) //
// D(2)

∼=D(d0)

��

oo //
D(d1) //// D(3)

D(d0)

��
D(1) D(d1) // D(2)

//

D(d2)

// D(3)oo //
D(d2) //// D(4)

⇒ α : D −→ D ◦ su



Pseudo-Kan extension Commutativity Bénabou-Roubaud Theorem Usual context of Facets of Descent Current Work

Hypotheses of the Lemma on pseudocosimplicial objects

Hypotheses of the Lemma on pseudocosimplicial objects

Beck-Chevalley Condition
plus the fact that D(d) and
every D(d0) have left
adjoints;

D ◦ su is g-effective;

D(0)

∼=D(d)

��

D(d) // D(1)

∼=D(d0)

��

D(d0) //
// D(2)

∼=D(d0)

��

D(s0)oo //
D(d1) //// D(3)

D(d0)

��
D(1) D(d1) // D(2)

//
// D(3)oo ////// D(4)

⇒ α : D −→ D ◦ su
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Hypotheses of the Lemma on pseudocosimplicial objects

Hypotheses of the Lemma on pseudocosimplicial objects

Beck-Chevalley Condition
plus the fact that D(d) and
every D(d0) have left
adjoints;

D ◦ su is g-effective;

D(0)

∼=D(d)

��

D(d) // D(1)

∼=D(d0)

��

D(d0) //
// D(2)

∼=D(d0)

��

D(s0)oo //
D(d1) //// D(3)

D(d0)

��
D(1) // D(2)

D(d1) //

D(d2)

// D(3)oo //
D(d2) //// D(4)

⇒ α : D −→ D ◦ su has a left adjoint in
[
∆̇,H

]
PS

.
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Hypotheses of the Lemma on pseudocosimplicial objects

Hypotheses of the Lemma on pseudocosimplicial objects

Beck-Chevalley Condition
plus the fact that D(d) and
every D(d0) have left
adjoints;

D ◦ su is g-effective;

D(0)

∼=D(d)

��

D(d) // D(1)

∼=D(d0)

��

D(d0) //
// D(2)

∼=D(d0)

��

D(s0)oo //
D(d1) //// D(3)

D(d0)

��
D(1) // D(2)

D(d1) //

D(d2)

// D(3)oo //
D(d2) //// D(4)

⇒ α : D −→ D ◦ su has a left adjoint in
[
∆̇,H

]
PS

;

⇒ αi is monadic for all i > 0.
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Hypotheses of the Lemma on pseudocosimplicial objects

Hypotheses of the Lemma on pseudocosimplicial objects

Beck-Chevalley Condition plus the fact thatD(d)

and everyD(d0) have left adjoints;
D ◦ su is g-effective;

D(0)

∼=D(d)

��

D(d) // D(1)

∼=D(d0)

��

D(d0) //
// D(2)

∼=D(d0)

��

oo //
D(d1) //// D(3)

D(d0)

��
D(1) D(d1) // D(2)

//

D(d2)

// D(3)oo //
D(d2) //// D(4)

⇒ α : D −→ D ◦ su has a left adjoint in
[
∆̇,H

]
PS

;

⇒ αi is monadic for all i > 0.

=⇒ α0 is monadic (i.e. D(d) is monadic) if and only if D is g-effective.
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Context

1 C with pullbacks;
2 A : Cop → CAT;
3 A(q)! a A(q);
4 p ∈ C(E ,B)

∆̇→ C

E ×B E ×B E ×B E
//
//··· E ×B E ×B E

// //// E ×B E
//
// Eoo p // B

[Janelidze and Tholen]
Facets of descent II
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Context

1 C with pullbacks;
2 A : Cop → CAT;
3 A(q)! a A(q);
4 p ∈ C(E ,B)

ADesc

p : ∆̇→ CAT (descent diagram induced by p)

A(B)
A(p) // A(E)

//
// A(E ×p E)oo ////// A(E ×p E ×p E)

[Janelidze and Tholen]
Facets of descent II
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Context

1 C with pullbacks;
2 A : Cop → CAT;
3 A(q)! a A(q);
4 p ∈ C(E ,B)

Definition: A-effective descent

p is of A-effective descent if ADesc

p : ∆̇→ CAT is g-effective.

ADesc

p : ∆̇→ CAT (descent diagram induced by p)

A(B)
A(p) // A(E)

//
// A(E ×p E)oo ////// A(E ×p E ×p E)

[Janelidze and Tholen]
Facets of descent II
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Proof

Definition: A-effective descent

p is of A-effective descent if ADesc

p : ∆̇→ CAT is g-effective.

Apply Lemma on pseudocosimplicial objects to:

A(B)
A(p) // A(E)

//
// A(E ×p E)oo ////// A(E ×p E ×p E)
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Proof

Definition: A-effective descent

p is of A-effective descent if ADesc

p : ∆̇→ CAT is g-effective.

Apply Lemma on pseudocosimplicial objects to:

A(B)
A(p) // A(E)

//
// A(E ×p E)oo ////// A(E ×p E ×p E)

Beck-Chevalley is equivalent to the usual Beck-Chevalley
condition;
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Proof

Definition: A-effective descent

p is of A-effective descent if ADesc

p : ∆̇→ CAT is g-effective.

Apply Lemma on pseudocosimplicial objects to:

A(B)
A(p) // A(E)

//
// A(E ×p E)oo ////// A(E ×p E ×p E)

Beck-Chevalley is equivalent to the usual Beck-Chevalley
condition;

ADesc

p ◦ su ∼= A
Desc

E×pE→E
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Proof

Definition: A-effective descent

p is of A-effective descent if ADesc

p : ∆̇→ CAT is g-effective.

Apply Lemma on pseudocosimplicial objects to:

A(B)
A(p) // A(E)

//
// A(E ×p E)oo ////// A(E ×p E ×p E)

Beck-Chevalley is equivalent to the usual Beck-Chevalley
condition;

ADesc

p ◦ su ∼= A
Desc

E×pE→E

Assumed Result

Projections E ×p E → E are of A-effective descent (it is a direct
a consequence of the fact that split epimorphisms are absolute
A-effective descent Facets of Descent II) ;
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Proof

Definition: A-effective descent

p is of A-effective descent if ADesc

p : ∆̇→ CAT is g-effective.

Apply Lemma on pseudocosimplicial objects to:

A(B)
A(p) // A(E)

//
// A(E ×p E)oo ////// A(E ×p E ×p E)

Beck-Chevalley is equivalent to the usual Beck-Chevalley
condition;

Assumed Result

Projections E ×p E → E are of A-effective descent (it is a direct
a consequence of the fact that split epimorphisms are absolute
A-effective descent Facets of Descent II) ;

ADesc

p ◦ su ∼= A
Desc

E×pE→E is always g-effective
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Proof

Definition: A-effective descent

p is of A-effective descent if ADesc

p : ∆̇→ CAT is g-effective.

Apply Lemma on pseudocosimplicial objects to:

A(B)
A(p) // A(E)

//
// A(E ×p E)oo ////// A(E ×p E ×p E)

Beck-Chevalley is equivalent to the usual Beck-Chevalley
condition;

ADesc

p ◦ su ∼= A
Desc

E×pE→E is always g-effective

⇒ p is of A-effective descent if and only if A(p) is monadic.
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Consequences of results on commutativity of bilimits

Overview of Examples of Results
Pseudopullback theorem

[Lucatelli Nunes]
Pseudo-Kan Extensions and Descent Theory
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Consequences of results on commutativity of bilimits

Overview of Examples of Results
Pseudopullback theorem

(Pseudopullback) Theorem
Q,C,D and E be categories with pullbacks.

Q
S //

Z
��

C

F
��

D

∼=

// E

such that S, G, F and Z are pullback preserving functors. If p is a
morphism in Q such that S(p),Z (p) are of effective descent w.r.t. the
basic fibration and FS(p) is of descent w.r.t. the basic fibration, then p
is of effective descent.

[Lucatelli Nunes]

Pseudo-Kan Extensions and Descent Theory
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Consequences of results on commutativity of bilimits

Overview of Examples of Results
Pseudopullback theorem

Effective descent morphisms for categories of enriched
categories satisfying suitable hypotheses;

[Lucatelli Nunes]
Pseudo-Kan Extensions and Descent Theory



Pseudo-Kan extension Commutativity Bénabou-Roubaud Theorem Usual context of Facets of Descent Current Work

Consequences of results on commutativity of bilimits

Overview of Examples of Results
Pseudopullback theorem

Effective descent morphisms for categories of enriched
categories satisfying suitable hypotheses;

Results (including the classical ones) on reflection of
effective morphisms by embeddings;

[Lucatelli Nunes]
Pseudo-Kan Extensions and Descent Theory
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Consequences of results on commutativity of bilimits

Overview of Examples of Results
Pseudopullback theorem

Effective descent morphisms for categories of enriched
categories satisfying suitable hypotheses;

Results (including the classical ones) on reflection of
effective morphisms by embeddings;
A “Galois” theorem of Janelidze-Schumacher-Street.

[Lucatelli Nunes]
Pseudo-Kan Extensions and Descent Theory
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Enriched Categories

Theorem on Enriched Categories
Let V be a infinitary lextensive category such that there is a full
inclusion Set→ V : X 7→ X ⊗ 1.

V − Cat //

��

Cat(V )

��
Set

∼=

// V

is a pseudopullback such that the arrows are pullback
preserving functors.
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Enriched Categories

Theorem on Enriched Categories

Let V be a infinitary lextensive category such that there is a full inclusion Set→ V : X 7→ X ⊗ 1.

V − Cat //

��

Cat(V )

��
Set

∼=

// V

is a pseudopullback such that the arrows are pullback preserving functors.

Corollary
Let V be as above and such that it has a regular epi-mono
factorization. Then V -Cat→ Cat(V ) reflects effective descent
morphisms.
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Enriched Categories

Theorem on Enriched Categories

Let V be a infinitary lextensive category such that there is a full inclusion Set→ V : X 7→ X ⊗ 1.

V − Cat //

��

Cat(V )

��
Set

∼=

// V

is a pseudopullback such that the arrows are pullback preserving functors.

Corollary
Let V be as above and such that it has a regular epi-mono
factorization. Then V -Cat→ Cat(V ) reflects effective descent
morphisms.

[Le Creurer 1999]

Descent of internal categories
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Bénabou Roubaud Counterpart

Theorem
Let H be a 2-category of lax descent objects and comma
colimits (i.e. the dual notion of comma objects).
A morphism f : A→ B is monadic if and only if it gives the lax
descent object of the lax cosimplicial object (higher cokernel)

B
D0 //

D1

// bp,pcoo ////// D0 qB D1
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Bénabou Roubaud Counterpart

Theorem
f is monadic iff f gives the lax descent object of its higher cokernel.
That is to say,

A f // B
D0 //

D1

// bp,pcoo ////// D0 qB D1

is effective/exact (after defining a different domain category ∆).
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Bénabou Roubaud Counterpart

Theorem

f is monadic iff f gives the lax descent object of its higher cokernel. That is to say,

A
f // B

D0 //
D1

// bp, pcoo ////// D0 qB D1

is effective/exact (after defining a different domain category ∆).

Comments

I have a explicit proof of the result;
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Bénabou Roubaud Counterpart

Theorem

f is monadic iff f gives the lax descent object of its higher cokernel. That is to say,

A
f // B

D0 //
D1

// bp, pcoo ////// D0 qB D1

is effective/exact (after defining a different domain category ∆).

Comments

I have a explicit proof of the result;

But I am working on a lax version of the lemma for
pseudocosimplicial objects that actually gives the result above
as a direct consequence;
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Bénabou Roubaud Counterpart

Theorem
f is monadic iff f gives the lax descent object of its higher cokernel.

Comments

I have a explicit proof of the result;

But I am working on a lax version of the lemma for
pseudocosimplicial objects that actually gives the result above
as a direct consequence;

I am mostly employing the techniques already introduced in the
paper;

[Lucatelli Nunes, TAC, 2018]

Pseudo-Kan Extensions and Descent Theory
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Bénabou Roubaud Counterpart

Theorem
f is monadic iff f gives the lax descent object of its higher cokernel.

Comments

I have a explicit proof of the result;

But I am working on a lax version of the lemma for
pseudocosimplicial objects that actually gives the result above
as a direct consequence;

I am mostly employing the techniques already introduced in the
paper;

Finally, this lax version also implies in Bénabou Roubaud,
putting Bénabou Roubaud and the result on Monadicity above
as consequences of the very same version of the result on
commutativity.
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Thank you!
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