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Arithmetic doctrines

v

P: C%P — Heyt

v

C has finite products

v

for f: X — Y the map P(f): P(Y) — P(X) has (natural) a
left and a right adjoint

e P(X) — P(Y) Ve P(X) — P(Y)

v

C is weakly cartesian closed (wcc)

v

C has a parametrized nno (pnno) 1—>>N—=N

v

P satisfies the induction principle on N
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Examples

Cis
> elementary topos

> nno

Cis
> lex
» finite co-products
» weakly lcc

> pnno

Subobjects

Sube: CP — Heyt

Weak subobjects

\UC: COP — }[eyt
A = (C/A)po
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Internal language

AinC | £ X—=A a € P(A) | P(f)(a) € P(X)

aA x: X | f(x):A | aAla(a) | xxX|a(f(x))

P1NA .. NPy < in P(Al X ... XAk)

becomes

a1:A1, --'7ak:Ak ’ ¢1(al7 "'7ak)7"'7¢n(ala "'7ak) - ¢(317 "'7ak)

a = Ta becomes a: Abp a(a)
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The equality predicate

Fiidy,idx) (Tx) € P(X x X)

abbreviated by =x becomes

x: X, X' X | x=x X

P has comprehensive diagonals if for all f,g: A — X

f=g iff aAbpf(a)=x g(a)
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Formal Church’s Thesis

P is arithmetic. NN is a weak exp.

Formal Church’s Thesis (CT)
}_P \V/X:Nzly:NR(Xa_)’) — EIe:N\V/X:NEly:N [T(e,X7Y) =N 1A R(X, U(y))]

Formal Type-Theoretic Church's Thesis (TCT)

Fp Venn3enVen3dy:n [T(e,x,¥) =n 1 AU(y) =n ev(x, f)]
Rule of choice (RC)

if a2 Akp Jp.gR(a, b), thereis f:A— B s.t. a:Akp R(a,f(a))

(TCT) + (RC) + full weak comprehension = (CT)
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Weak comprehension

COPP\A
ide I A -} Heyt

c —,

Weak comprehension is full iff 3{—[} = idp.

Theorem: {—[}3 = idy,. iff P satisfies (RC)

[Maietti, Pasquali, Rosolini. Tbilisi Mathematical Journal. 2017]
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Elementary quotient completion

—

cop

Heyt

[Maietti, Rosolini. Elementary quotient completion. 2013]
[Maietti, Rosolini. Unifying exact completions. 2015]



Elementary quotient completion

CcoP
\
\id l . Heyt
Qe ’

[Maietti, Rosolini. Elementary quotient completion. 2013]
[Maietti, Rosolini. Unifying exact completions. 2015]



Elementary quotient completion

cop
\

\id l . Heyt
QF?p /

P has effective quotients. P is the free such on P.

[Maietti, Rosolini. Elementary quotient completion. 2013]
[Maietti, Rosolini. Unifying exact completions. 2015]



Elementary quotient completion

cop
\

\id l . Heyt
QF?p /

P has effective quotients. P is the free such on P.

\7>
Cop /bcem/lex

ex/lex

op
Qu..

Heyt

[Maietti, Rosolini. Elementary quotient completion. 2013]
[Maietti, Rosolini. Unifying exact completions. 2015]
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P: C° — Heyt has full weak comprehension and C is lex

SubCe
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P: C° — Heyt has full weak comprehension and C is lex

- SUbCex/lex

B
quC[ T/eqc
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P: C° — Heyt has full weak comprehension and C is lex
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Elementary quotient completion and full comprehension

P: C° — Heyt has full weak comprehension and C is lex

&

Cex/ lex

A
C

—_—
i
(3}
q/
v
)

B
quc[
P



Elementary quotient completion and full comprehension

P: C° — Heyt has full weak comprehension and C is lex

L
Qp L Cex/lex

5
R

leqe T/eqc V\ %P
p C

R is full and faithful
L preserves finite products
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Vp(N) is a pnno in Qp Heyt

c* i
Q¥

Theorem:
» P satisfies (TCT) if and only if P satisfies (TCT)

> P satisfies (CT) if and only if P satisfies (CT)
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Full comprehension and (TCT), (CT)

T)‘“c (RC) iff {7 =idy,

a < Bin P(A) iff {al < {8} in We(A)

{=al ==a
{P(E) ()}t = Ve(F)al
{oan Bl = {af A {8l
{oo = B} = {af — {8}
{veolt = Nelolt
{oov Bl ={-F7 [{al v {8}]
{Frol = {3 [Zellof]
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Full comprehension and (TCT), (CT)

R e P(Ax B)

R has a Skolem arrow for B if there is f: A — B s.t.

x:A|3,.8R(x,y) F R(x, f(x))

Theorem: if R has a Skolem arrow for B

{|37r¢|} = {|_|}3 [Zﬂﬂ¢|}] = ZW{I¢I}

where m:Ax B — A, i.e.

{IEIy:BQZ)(XaY)I} = zy:Bﬂ¢H(XaY)
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Full comprehension and (TCT), (CT)

(TCT) vf:NNEle:N vx:NEly:N [T(e,x,y) =N 1A U(y) =N eV(X7 f)]

Suppose P has Skolem arrows:

NVxNxN-=N NN 5 N
(TCT) P=————_Subc_ . (TCT) (CT)
,] L
3
(TCT) P 1T v, (TCT) (CT)

=}
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Application to assemblies
The category of Asm
objects: (A, a) where a: A — Pow,(N)
arrows: f:(A,a) — (B, ) where f: A — B has a track, i.e.
there exists n € N, such that

for all a€ A and all p € a(a)

@n(p) L and @n(p) € B(f(a))

PAsm Cgy Asm on those (A, ) where a(a) is a singleton, i.e.

a:A— N
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Application to assemblies

S Asm Spasm
Asm°P A Heyt  RAsm°P e Heyt

Fork\%; %%}

Set°P Set°P




Application to assemblies

Sasm
Asm°P A Heyt
Fork‘ A:
Set?

Theorem: Spasm = Sasm

PAsmOP SPAsm
/% %
SetP

Heyt
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Application to assemblies (TCT), (CT)
Spasm: PAsm°P — Il-[eyt N = (N, idN)

» (CT) fails to hold
vx:Nay:NR(Xa}/) — EIe:vi:Nzly:N [T(e,X,y) =1A R(Xa U(Y))]

take for R the graph of a non-computable function

» (TCT) holds
\V/f:NNHe:N\V/x:NHy:N [T(e7X7.y) =1A U(Y) = f(X)]

definition of arrow in RAsm + Skolem arrows
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S Asm Su bfﬂ
quc | ’ leqc
El
S’PAsm 1 W??Asm

-}
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Application to assemblies (TCT), (CT)

(TCT) S_Asm SUbfﬁ(
quc | ] quc

TCT =)
( ) SpAsm 1 \UPAsm

Skolem arrows 1



Thank you
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