CT2018－University of Azores

A categorical explanation of why Church＇s Thesis holds in the Effective Topos

Fabio Pasquali
University of Padova
j．w．w．
M．E．Maietti and G．Rosolini

Arithmetic doctrines

- $P: C^{o p} \rightarrow$ Heyt
- \mathcal{C} has finite products
- for $f: X \rightarrow Y$ the map $P(f): P(Y) \rightarrow P(X)$ has (natural) a left and a right adjoint

$$
\exists_{f}: P(X) \rightarrow P(Y) \quad \forall_{f}: P(X) \rightarrow P(Y)
$$

- \mathcal{C} is weakly cartesian closed (wcc)
- C has a parametrized nno (pnno) $1 \xrightarrow{\mathbf{o}} \mathbf{N} \xrightarrow{\mathbf{s}} \mathbf{N}$
- P satisfies the induction principle on \mathbf{N}

Examples

Examples

Subobjects

C is

- elementary topos
$\operatorname{Sub}_{C}: C^{o p} \rightarrow \mathcal{H e y t}$
- nno

Examples

Subobjects

\mathcal{C} is

- elementary topos
- nno

$$
\operatorname{Sub}_{C}: \mathcal{C}^{o p} \rightarrow \mathcal{H e y t}
$$

Weak subobjects
C is

- lex
- finite co-products
- weakly Icc
- pnno

$$
\begin{aligned}
\Psi_{C}: C^{o p} & \rightarrow \mathcal{H e y t} \\
A & \mapsto(C / A)_{\mathrm{po}}
\end{aligned}
$$

Internal language

$$
\begin{array}{l|l|l|l}
A \text { in } C & f: X \rightarrow A & \alpha \in P(A) & P(f)(\alpha) \in P(X) \\
\text { a: } A & x: X \mid f(x): A & \text { a: } A \mid \alpha(a) & x: X \mid \alpha(f(x))
\end{array}
$$

Internal language

$$
\begin{array}{l|l|l|l}
A \text { in } \mathcal{C} & f: X \rightarrow A & \alpha \in P(A) & P(f)(\alpha) \in P(X) \\
\text { a: } A & x: X \mid f(x): A & \text { a: } A \mid \alpha(a) & x: X \mid \alpha(f(x)) \\
& \phi_{1} \wedge \ldots \wedge \phi_{n} \leq \psi \text { in } P\left(A_{1} \times \ldots \times A_{k}\right)
\end{array}
$$

becomes

$$
a_{1}: A_{1}, \ldots, a_{k}: A_{k} \mid \phi_{1}\left(a_{1}, \ldots, a_{k}\right), \ldots, \phi_{n}\left(a_{1}, \ldots, a_{k}\right) \vdash \psi\left(a_{1}, \ldots, a_{k}\right)
$$

Internal language

$$
\begin{array}{l|l|l|l}
A \text { in } \mathcal{C} & f: X \rightarrow A & \alpha \in P(A) & P(f)(\alpha) \in P(X) \\
\text { a: } A & x: X \mid f(x): A & \text { a: } A \mid \alpha(a) & x: X \mid \alpha(f(x)) \\
& \phi_{1} \wedge \ldots \wedge \phi_{n} \leq \psi \text { in } P\left(A_{1} \times \ldots \times A_{k}\right)
\end{array}
$$

becomes

$$
\begin{gathered}
a_{1}: A_{1}, \ldots, a_{k}: A_{k} \mid \phi_{1}\left(a_{1}, \ldots, a_{k}\right), \ldots, \phi_{n}\left(a_{1}, \ldots, a_{k}\right) \vdash \psi\left(a_{1}, \ldots, a_{k}\right) \\
\alpha=\top_{A} \text { becomes } a: A \vdash_{P} \alpha(a)
\end{gathered}
$$

The equality predicate

$$
\exists_{\left\langle\mathrm{id}_{x}, \mathrm{id}_{x}\right\rangle}\left(\top_{x}\right) \in P(X \times X)
$$

The equality predicate

$$
\exists_{\left\langle\operatorname{id}_{X}, \operatorname{id}_{X}\right\rangle}\left(\top_{x}\right) \in P(X \times X)
$$

abbreviated by $=x$ becomes

$$
x: X, x^{\prime}: X \mid x=x x^{\prime}
$$

The equality predicate

$$
\exists_{\left\langle i \mathrm{id}_{x}, \mathrm{id} \chi\right\rangle}\left(\top^{\top}\right) \in P(X \times X)
$$

abbreviated by $=x$ becomes

$$
x: X, x^{\prime}: X \mid x=x x^{\prime}
$$

P has comprehensive diagonals if for all $f, g: A \rightarrow X$

$$
f=g \quad \text { iff } \quad a: A \vdash_{p} f(a)=x g(a)
$$

Formal Church's Thesis

P is arithmetic. $\mathbf{N}^{\mathbf{N}}$ is a weak exp.

Formal Church's Thesis

P is arithmetic. $\mathbf{N}^{\mathbf{N}}$ is a weak exp.
Formal Church's Thesis (CT)
$\vdash_{P} \forall_{x: \mathbf{N}} \exists_{y}: \mathbf{N} R(x, y) \rightarrow \exists_{e: \mathbf{N}} \forall_{x}: \mathbf{N} \exists_{y}: \mathbf{N}[\mathrm{T}(e, x, y)=\mathbf{N} \mathbf{1} \wedge R(x, \mathrm{U}(y))]$

Formal Church's Thesis

P is arithmetic. $\mathbf{N}^{\mathbf{N}}$ is a weak exp.
Formal Church's Thesis (CT)
$\vdash_{P} \forall_{x: \mathbf{N}} \exists_{y}: \mathbf{N} R(x, y) \rightarrow \exists_{e: \mathbf{N}} \forall_{x: \mathbf{N}} \exists_{y}: \mathbf{N}[\mathrm{T}(e, x, y)=\mathbf{N} \mathbf{1} \wedge R(x, \mathrm{U}(y))]$
Formal Type-Theoretic Church's Thesis (TCT)
$\vdash_{P} \forall_{f: \mathbf{N}} \exists_{e: \mathbf{N}} \forall_{x: \mathbf{N}} \exists_{y: \mathbf{N}}[\mathrm{T}(e, x, y)=\mathbf{N} \mathbf{1} \wedge \mathrm{U}(y)=\mathbf{N} \operatorname{ev}(x, f)]$

Formal Church's Thesis

P is arithmetic. $\mathbf{N}^{\mathbf{N}}$ is a weak exp.
Formal Church's Thesis (CT)
$\vdash_{P} \forall_{x: \mathbf{N}} \exists_{y}: \mathbf{N} R(x, y) \rightarrow \exists_{e: \mathbf{N}} \forall_{x: \mathbf{N}} \exists_{y}: \mathbf{N}[\mathrm{T}(e, x, y)=\mathbf{N} \mathbf{1} \wedge R(x, \mathrm{U}(y))]$
Formal Type-Theoretic Church's Thesis (TCT)
$\vdash_{P} \forall_{f: \mathbf{N}} \exists_{e: \mathbf{N}} \forall_{x: N} \exists_{y: \mathbf{N}}[\mathrm{T}(e, x, y)=\mathbf{N} \mathbf{1} \wedge \mathrm{U}(y)=\mathbf{N} \operatorname{ev}(x, f)]$
Rule of choice (RC)
if $a: A \vdash_{P} \exists_{b: B} R(a, b)$, there is $f: A \rightarrow B$ s.t. $a: A \vdash_{P} R(a, f(a))$

Formal Church's Thesis

P is arithmetic. $\mathbf{N}^{\mathbf{N}}$ is a weak exp.
Formal Church's Thesis (CT)
$\vdash_{P} \forall_{x: \mathbf{N}} \exists_{y}: \mathbf{N} R(x, y) \rightarrow \exists_{e: \mathbf{N}} \forall_{x: \mathbf{N}} \exists_{y}: \mathbf{N}[\mathrm{T}(e, x, y)=\mathbf{N} \mathbf{1} \wedge R(x, \mathrm{U}(y))]$
Formal Type-Theoretic Church's Thesis (TCT)
$\vdash_{P} \forall_{f: \mathbf{N}} \exists_{e: \mathbf{N}} \forall_{x: \mathbf{N}} \exists_{y: \mathbf{N}}[\mathrm{T}(e, x, y)=\mathbf{N} \mathbf{1} \wedge \mathrm{U}(y)=\mathbf{N} \operatorname{ev}(x, f)]$
Rule of choice (RC)
if $a: A \vdash_{P} \exists_{b: B} R(a, b)$, there is $f: A \rightarrow B$ s.t. $a: A \vdash_{P} R(a, f(a))$
$(T C T)+(R C)+$ full weak comprehension $\Rightarrow(C T)$

Weak comprehension

Weak comprehension

Weak comprehension is full iff $\exists\{-\}=\operatorname{id}_{P}$.

Weak comprehension

Weak comprehension is full iff $\exists\{-\}=\operatorname{id}_{P}$.

Theorem: $\{-\} \exists=\operatorname{id} \Psi_{C}$ iff P satisfies (RC)
[Maietti, Pasquali, Rosolini. Tbilisi Mathematical Journal. 2017]

Elementary quotient completion

[Maietti, Rosolini. Elementary quotient completion. 2013]
[Maietti, Rosolini. Unifying exact completions. 2015]

Elementary quotient completion

[Maietti, Rosolini. Elementary quotient completion. 2013]
[Maietti, Rosolini. Unifying exact completions. 2015]

Elementary quotient completion

[Maietti, Rosolini. Elementary quotient completion. 2013]
[Maietti, Rosolini. Unifying exact completions. 2015]

Elementary quotient completion

\widehat{P} has effective quotients. \widehat{P} is the free such on P.
[Maietti, Rosolini. Elementary quotient completion. 2013]
[Maietti, Rosolini. Unifying exact completions. 2015]

Elementary quotient completion

\widehat{P} has effective quotients. \widehat{P} is the free such on P.

[Maietti, Rosolini. Elementary quotient completion. 2013]
[Maietti, Rosolini. Unifying exact completions. 2015]

Elementary quotient completion and full comprehension

$P: \mathcal{C}^{o p} \rightarrow \mathcal{H e y t}$ has full weak comprehension and \mathcal{C} is lex

Elementary quotient completion and full comprehension

$P: \mathcal{C}^{o p} \rightarrow \mathcal{H e y t}$ has full weak comprehension and \mathcal{C} is lex

Elementary quotient completion and full comprehension

$P: \mathcal{C}^{o p} \rightarrow \mathcal{H e y t}$ has full weak comprehension and \mathcal{C} is lex

Elementary quotient completion and full comprehension

$P: \mathcal{C}^{o p} \rightarrow \mathcal{H e y t}$ has full weak comprehension and \mathcal{C} is lex

Elementary quotient completion and full comprehension

$P: \mathcal{C}^{o p} \rightarrow \mathcal{H e y t}$ has full weak comprehension and \mathcal{C} is lex

Elementary quotient completion and full comprehension

$P: \mathcal{C}^{o p} \rightarrow \mathcal{H e y t}$ has full weak comprehension and \mathcal{C} is lex

Elementary quotient completion and full comprehension

$P: \mathcal{C}^{o p} \rightarrow \mathcal{H e y t}$ has full weak comprehension and \mathcal{C} is lex

Elementary quotient completion and full comprehension

$P: \mathcal{C}^{o p} \rightarrow \mathcal{H e y t}$ has full weak comprehension and \mathcal{C} is lex

R is full and faithful
L preserves finite products

Elementary quotient completion and (TCT), (CT)

Elementary quotient completion and (TCT), (CT)

$\nabla_{P}(\mathbf{N})$ is a pnno in Q_{P}

Elementary quotient completion and (TCT), (CT)

$\nabla_{P}(\mathbf{N})$ is a pnno in Q_{P}

Theorem:

- P satisfies (TCT) if and only if \widehat{P} satisfies (TCT)
- P satisfies (CT) if and only if \widehat{P} satisfies (CT)

Full comprehension and (TCT), (CT)

$$
P_{\underset{\{-\}}{\stackrel{\exists}{\leftrightarrows}}}^{\stackrel{\perp}{\leftrightarrows}} \Psi_{C}
$$

(RC) iff $\{-\} \exists=\operatorname{id} \Psi_{c}$

Full comprehension and (TCT), (CT)

$$
\begin{aligned}
& P \stackrel{\frac{1}{1-\}}}{\stackrel{\exists}{\leftrightarrows}} \Psi_{C} \quad(\mathrm{RC}) \text { iff } \quad\left\{-\xi \exists=\mathrm{id} \psi_{C}\right. \\
& \alpha \leq \beta \text { in } P(A) \text { iff } \quad\{\alpha\} \leq\{\beta\} \text { in } \Psi_{C}(A)
\end{aligned}
$$

Full comprehension and (TCT), (CT)

$$
\begin{aligned}
& P \underset{\{-\}}{\stackrel{\exists}{\perp}} \Psi_{C} \\
& \alpha \leq \beta \text { in } P(A) \quad \text { iff }\{\alpha\} \leq\{\beta\} \text { in } \Psi_{\mathcal{C}}(A) \\
& \{=A\}==_{A} \\
& \{P(f)(\alpha)\}=\Psi_{\mathcal{C}}(f)\{\alpha\} \\
& \{\alpha \wedge \beta\}=\{\alpha\} \wedge\{\beta\} \\
& \{\alpha \rightarrow \beta\}=\{\alpha\} \rightarrow\{\beta\} \\
& \left\{\forall_{f} \phi\right\}=\Pi_{f}\{\phi\}
\end{aligned}
$$

Full comprehension and (TCT), (CT)

$$
\begin{aligned}
& P \underset{\{-\}}{\stackrel{\exists}{\perp}} \Psi_{C} \\
& \alpha \leq \beta \text { in } P(A) \quad \text { iff }\{\alpha\} \leq\{\beta\} \text { in } \Psi_{\mathcal{C}}(A) \\
& \{=A\}=A_{A} \\
& \{P(f)(\alpha)\}=\Psi_{\mathcal{C}}(f)\{\alpha\} \\
& \{\alpha \wedge \beta\}=\{\alpha\} \wedge\{\beta\} \\
& \{\alpha \rightarrow \beta\}=\{\alpha\} \rightarrow\{\beta\} \\
& \left\{\forall_{f} \phi\right\}=\Pi_{f}\{\phi\} \\
& \{\alpha \vee \beta\}=\{-\} \exists \exists\{\alpha\} \vee \vee\{\beta\}] \\
& \left\{\exists_{f} \phi\right\}=\left\{-\beta \exists\left[\Sigma_{f}\{\phi\}\right]\right.
\end{aligned}
$$

Full comprehension and (TCT), (CT)

$$
R \in P(A \times B)
$$

R has a Skolem arrow for B if there is $f: A \rightarrow B$ s.t.

$$
x: A \mid \exists y: B R(x, y) \vdash R(x, f(x))
$$

Full comprehension and (TCT), (CT)

$R \in P(A \times B)$
R has a Skolem arrow for B if there is $f: A \rightarrow B$ s.t.

$$
x: A \mid \exists y: B R(x, y) \vdash R(x, f(x))
$$

Theorem: if R has a Skolem arrow for B

$$
\left\{\exists_{\pi} \phi\right\}=\{-\} \exists\left[\Sigma_{\pi}\{\phi\}\right]=\Sigma_{\pi}\{\phi\}
$$

where $\pi: A \times B \rightarrow A$, i.e.

$$
\left\{\exists_{y: B} \phi(x, y)\right\}=\Sigma_{y: B}\{\phi\}(x, y)
$$

Full comprehension and (TCT), (CT)

(TCT) $\quad \forall_{f: N} \exists_{e} \exists_{e} \forall_{x: N} \exists_{y: N}\left[T(e, x, y)={ }_{N} \mathbf{1} \wedge U(y)={ }_{N} \operatorname{ev}(x, f)\right]$

Full comprehension and (TCT), (CT)

(TCT) $\quad \forall_{f: N^{N} \exists_{e: N}} \forall_{x: N} \exists_{y: N} \underbrace{\left[\mathrm{~T}(e, x, y)={ }_{\mathrm{N}} \mathbf{1} \wedge \mathrm{U}(y)={ }_{\mathrm{N}} \operatorname{ev}(x, f)\right]}$

Full comprehension and (TCT), (CT)

(TCT) $\quad \forall_{f: N}{ }^{\mathrm{N}} \exists_{e: N} \underbrace{\forall_{x: N} \exists_{y: N}} \underbrace{\left[T(e, x, y)=_{N} \mathbf{1} \wedge \cup(y)=_{\mathrm{N}} \operatorname{ev}(x, f)\right]}$

Full comprehension and (TCT), (CT)

(TCT) $\quad \forall_{f: \mathbf{N}^{\mathrm{N}} \exists_{e: N}} \underbrace{\forall_{x: N} \exists_{y: N}} \underbrace{\left[T(e, x, y)=_{\mathrm{N}} \mathbf{1} \wedge \mathrm{U}(y)=_{\mathrm{N}} \operatorname{ev}(x, f)\right]}$
Suppose P has Skolem arrows:

$$
\mathbf{N}^{\mathbf{N}} \times \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}
$$

$\mathbf{N}^{\mathbf{N}} \rightarrow \mathbf{N}$

Full comprehension and (TCT), (CT)

(TCT) $\quad \forall_{f: \mathbf{N}^{\mathrm{N}} \exists_{e: N}} \underbrace{\forall_{x: N} \exists_{y: N}} \underbrace{\left[T(e, x, y)=_{\mathrm{N}} \mathbf{1} \wedge \mathrm{U}(y)=_{\mathrm{N}} \operatorname{ev}(x, f)\right]}$
Suppose P has Skolem arrows:
$\mathbf{N}^{\mathbf{N}} \rightarrow \mathbf{N}$

Full comprehension and (TCT), (CT)

(TCT) $\quad \forall_{f: \mathbf{N}^{\mathrm{N}} \exists_{e: N}} \underbrace{\forall_{x: N} \exists_{y: N}} \underbrace{\left[T(e, x, y)=_{\mathrm{N}} \mathbf{1} \wedge \mathrm{U}(y)=_{\mathrm{N}} \operatorname{ev}(x, f)\right]}$
Suppose P has Skolem arrows:
$\mathbf{N}^{\mathbf{N}} \times \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$
$\mathbf{N N}^{\mathrm{N}} \rightarrow \mathbf{N}$

Full comprehension and (TCT), (CT)

(TCT) $\quad \forall_{f: \mathbf{N}^{\mathrm{N}} \exists_{e: N}} \underbrace{\forall_{x: N} \exists_{y: N}} \underbrace{\left[T(e, x, y)=_{\mathrm{N}} \mathbf{1} \wedge \mathrm{U}(y)=_{\mathrm{N}} \operatorname{ev}(x, f)\right]}$
Suppose P has Skolem arrows:
$\mathbf{N}^{\mathbf{N}} \times \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$
$\mathbf{N}^{\mathbf{N}} \rightarrow \mathbf{N}$
(TCT)

(TCT)
(TCT)

Full comprehension and (TCT), (CT)

(TCT) $\forall_{f: N} \mathbf{N}^{\mathrm{N}} \exists_{e: N} \underbrace{\forall_{x: N} \exists_{y: N}} \underbrace{\left[\mathrm{~T}(e, x, y)=_{\mathrm{N}} \mathbf{1} \wedge \mathrm{U}(y)=_{\mathrm{N}} \operatorname{ev}(x, f)\right]}$
Suppose P has Skolem arrows:
$\mathbf{N}^{\mathbf{N}} \times \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$
$\mathbf{N}^{\mathbf{N}} \rightarrow \mathbf{N}$
(TCT)

(TCT)
(TCT) (CT)

Full comprehension and (TCT), (CT)

(TCT) $\forall_{f: N} \mathbf{N}^{\mathrm{N}} \exists_{e: N} \underbrace{\forall_{x: N} \exists_{y: N}} \underbrace{\left[\mathrm{~T}(e, x, y)=_{\mathrm{N}} \mathbf{1} \wedge \mathrm{U}(y)=_{\mathrm{N}} \operatorname{ev}(x, f)\right]}$
Suppose P has Skolem arrows:
$\mathbf{N}^{\mathbf{N}} \times \mathbf{N} \times \mathbf{N} \rightarrow \mathbf{N}$
$\mathbf{N}^{\mathrm{N}} \rightarrow \mathbf{N}$
(TCT)

(TCT) (CT)
(TCT) (CT)

Application to assemblies

Application to assemblies

The category of $\mathcal{A s m}$

Application to assemblies

The category of $\mathcal{A} s m$
objects: (A, α) where $\alpha: A \rightarrow \operatorname{Pow}_{*}(\mathbb{N})$

Application to assemblies

The category of $\mathcal{A} s m$
objects: (A, α) where $\alpha: A \rightarrow \operatorname{Pow}_{*}(\mathbb{N})$
arrows: $f:(A, \alpha) \rightarrow(B, \beta)$ where $f: A \rightarrow B$ has a track

Application to assemblies

The category of $\mathcal{A} s m$
objects: (A, α) where $\alpha: A \rightarrow \operatorname{Pow}_{*}(\mathbb{N})$
arrows: $f:(A, \alpha) \rightarrow(B, \beta)$ where $f: A \rightarrow B$ has a track, i.e.
there exists $n \in \mathbb{N}$, such that
for all $a \in A$ and all $p \in \alpha(a)$

$$
\varphi_{n}(p) \downarrow \text { and } \varphi_{n}(p) \in \beta(f(a))
$$

Application to assemblies

The category of $\mathcal{A} s m$
objects: (A, α) where $\alpha: A \rightarrow \operatorname{Pow}_{*}(\mathbb{N})$
arrows: $f:(A, \alpha) \rightarrow(B, \beta)$ where $f: A \rightarrow B$ has a track, i.e.
there exists $n \in \mathbb{N}$, such that
for all $a \in A$ and all $p \in \alpha(a)$

$$
\varphi_{n}(p) \downarrow \text { and } \varphi_{n}(p) \in \beta(f(a))
$$

$\mathcal{P A s m} \subseteq_{\text {full }} \mathcal{A} s m$ on those (A, α) where $\alpha(a)$ is a singleton, i.e.

$$
\alpha: A \rightarrow \mathbb{N}
$$

Application to assemblies

Application to assemblies

Application to assemblies

Application to assemblies

Theorem: $\widehat{\mathcal{S}_{\mathcal{P A} s m}} \equiv \mathcal{S}_{\mathcal{A} s m}$

Application to assemblies (TCT), (CT)

$\mathcal{S}_{\text {PAsm }}:$ PAsm $^{\circ \mathrm{P}} \longrightarrow \mathcal{H}$ eyt
$\mathbf{N}=\left(\mathbb{N}, \operatorname{id}_{\mathbb{N}}\right)$

Application to assemblies (TCT), (CT)

$\mathcal{S}_{\mathcal{P A s m}}: \mathcal{P A s m}{ }^{\circ p} \longrightarrow \mathcal{H e y t} \quad \mathbf{N}=\left(\mathbb{N}, \mathrm{id}_{\mathbb{N}}\right)$

- (CT) fails to hold

$$
\forall_{x: \mathbf{N}} \exists_{y}: \mathbf{N} R(x, y) \rightarrow \exists_{e: \mathbf{N}} \forall_{x}: \mathbf{N} \exists_{y: \mathbf{N}}[\mathrm{T}(e, x, y)=1 \wedge R(x, \mathrm{U}(y))]
$$

take for R the graph of a non-computable function

Application to assemblies (TCT), (CT)

$\mathcal{S}_{\mathcal{P A s m}}: \mathcal{P A s m}^{o p} \longrightarrow \mathcal{H e y t} \quad \mathbf{N}=\left(\mathbb{N}, \mathrm{id}_{\mathbb{N}}\right)$

- (CT) fails to hold

$$
\forall_{x: \mathbf{N}} \exists_{y}: \mathbf{N} R(x, y) \rightarrow \exists_{e: \mathbf{N}} \forall_{x}: \mathbf{N} \exists_{y: \mathbf{N}}[\mathrm{T}(e, x, y)=1 \wedge R(x, \mathrm{U}(y))]
$$

take for R the graph of a non-computable function

- (TCT) holds
definition of arrow in $\mathcal{P A}$ sm

Application to assemblies (TCT), (CT)

$\mathcal{S}_{\mathcal{P A s m}}: \mathcal{P A s m}{ }^{\circ p} \longrightarrow \mathcal{H}$ eyt $\quad \mathbf{N}=\left(\mathbb{N}, \mathrm{id}_{\mathbb{N}}\right)$

- (CT) fails to hold

$$
\forall_{x: \mathbf{N}} \exists_{y}: \mathbf{N} R(x, y) \rightarrow \exists_{e: \mathbf{N}} \forall_{x}: \mathbf{N} \exists_{y: \mathbf{N}}[\mathrm{T}(e, x, y)=1 \wedge R(x, \mathrm{U}(y))]
$$

take for R the graph of a non-computable function

- (TCT) holds
definition of arrow in $\mathcal{P A} s m+$ Skolem arrows

Application to assemblies (TCT), (CT)

Application to assemblies (TCT), (CT)

(TCT)
Skolem arrows

Application to assemblies (TCT), (CT)

(TCT)
(TCT)
Skolem arrows

(CT)
(CT)

Thank you

References

A. Carboni.

Some free constructions in realizability and proof theory.
J. Pure Appl. Algebra, 103 117-148 1995.
A. Carboni, P.J. Freyd and A. Scedrov.

A categorical approach to realizability and polymorphic types.
Mathematical Foundations of Programming Language Semantics 298 23-42 1988.
J. M. E. Hyland.

The effective topos.
The L.E.J. Brouwer Centenary Symposium. 1982.
F. W. Lawvere.

Equality in hyperdoctrines and comprehension schema as an adjoint functor.
A. Heller, editor, Proc. New York Symposium on Application of Categorical Algebra. 1970.

References

M.E. Maietti, F. Pasquali. and G. Rosolini.

Triposes, exact completions, and Hilbert's ϵ-operator.
Tbilisi Mathematical Journal. 2017.
M.E. Maietti. and G. Rosolini.

Relating quotient completions via categorical logic.
Dieter Probst and Peter Schuster (eds.), "Concepts of Proof in Mathematics, Philosophy, and Computer Science". De Gruyter. 2016.
M.E. Maietti. and G. Rosolini.

Unifying exact completions.
Applied Categorical Structures. 2013.
M.E. Maietti. and G. Rosolini.

Elementary quotient completion.
Theory and Applications of Categories. 2013.
M.E. Maietti. and G. Rosolini.

Quotient completion for the foundation of constructive mathematics.
Logica Universalis. 2013.

