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Structure of the talk

• Give a definition of accessible and (locally) presentable object in a 2-category.

• Cast a Gabriel-Ulmer duality for this definition.
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Recap in Cat

• A is finitely accessible if A ∼= Ind(G).

• A is locally finitely presentable if A ∼= Ind(G), for G finitely cocomplete.

But most of people prefer to say:

• A is locally finitely presentable if A is a (finitely) accessibly embedded reflective

subcategory of a presheaf category

i : A � SetG
op

: L.

The reason that sits at the core of the second formulation is the interplay between Ind

and the presheaf construction.

Ind(G) ⊂ SetG
op
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So we isolated the essential data:

Ind( ) ⊂ Set
op

And now we need to axiomatize it.

S
Y⇒ P

• S is a KZ -monad over K.

• P is a KZ -monad which is also a Yoneda structure (over K).

• Y is representably fully faithful + something else.
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What’s a KZ monad?

Definition

A KZ monad over K is a lax idempotent 2-monad.

A 2 monad is lax-idempotent if any algebra structure α : T (A)→ A is the left adjoint

of the unit A
uA→ T (A).

Definition

A Yoneda context is a natural transformation S
Y⇒ P where

• S is a KZ monad;

• P is a KZ monad which is also a Yoneda structure.

• Y is representably fully faithful and YA
∼= LanuAyA.
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Definition

Given a Yoneda context S
Y⇒ P we say that A is Y accessible if A ∼= S(G) for some G .

Definition

Given a Yoneda context S
Y⇒ P we say that A is Y -presentable if

• A is accessible;

• i : A � P(G) : L.

• i is the Kan extenstion of its restriction to the unit of S .

The last request is the translation of being accessibly embedded.

Remark

This does not imply that P(G) is accessible.
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Now I want to convince you that this definition makes sense.

Representation Theorem

The following are equivalent:

• A is Y -presentable.

• A is Y -accessible and P-cocomplete.

Can we cast a Gabriel Ulmer duality for such a weak notion of accessibity?

Well, maybe one should start by recalling what Gabriel Ulmer duality is.
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Gabriel Ulmer duality

There is an equivalence of categories.

Lexop � Lfp

• Lex is the category of small finitely complete categories and functors preserving

them.

• Lfp is the category of locally presentable categories and (finitely) accessible right

adjoints.

Can we cast a Gabriel Ulmer duality for such a weak notion of accessibity? Not really.
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As we observed our definition of presentability does not imply that presheaf objects are

presentable. In order to fix this issue we should start by understating why they are

presentable in Cat.

SetG
op ∼= Ind(Ĝ).

By Ĝ we mean the free finite colimit completion of G .

Remark

In Cat there is an envelope G → Ĝ that fills the gap between the Ind completion and

the presheaf construction.

Definition

Given a context S
Y⇒ P a Gabriel Ulmer envelope (̂ ) for Y is an addition KZ monad

such that

S((̂ )) ∼= P( )
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We have not finished to list the axiom needed to make our version of Gabriel Ulmer

duality meaningful but we announce it to itemize what we still need to comment.

Gabriel Ulmer Duality

Let S
Y⇒ P be a Yoneda context and (̂ ) GU envelope for Y . If

• (̂ ) is soaking;

• S is climbable;

then

Alg((̂ ))op ∼= Pres(Y ).
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It is not worthy to tell what soaking means, but climbability is a very interesting

concept for a KZ monad, which is also very natural to request.

In Cat, imagine we are

in the following situation

G

αG

��

G ′

αG′

��

oo

Ind(G)
i //
> Ind(G ′)
L

oo

then we know that L preserves compact objects, i.e. the dotted arrow exists.

Definition

We say that S is climbable when the same property is verified.
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