Generalized symmetries and arithmetic applications

James Borger

Australian National University

Category Theory 2018
University of the Azores
Ponta Delgada, 2018/07/12

Summary

- There is a concept of generalized symmetry specific to any category of algebras (groups, rings,...)

Summary

- There is a concept of generalized symmetry specific to any category of algebras (groups, rings,...)
- In Ring, these include automorphisms, derivations (infinitesimal automorphisms), but also certain non-linear symmetries

Summary

- There is a concept of generalized symmetry specific to any category of algebras (groups, rings,...)
- In Ring, these include automorphisms, derivations (infinitesimal automorphisms), but also certain non-linear symmetries
- These are responsible for Witt vectors and Λ-rings.

Summary

- There is a concept of generalized symmetry specific to any category of algebras (groups, rings,...)
- In Ring, these include automorphisms, derivations (infinitesimal automorphisms), but also certain non-linear symmetries
- These are responsible for Witt vectors and Λ-rings.
- Witt vectors and Λ-rings are important in arithmetic algebraic geometry

Summary

- There is a concept of generalized symmetry specific to any category of algebras (groups, rings,...)
- In Ring, these include automorphisms, derivations (infinitesimal automorphisms), but also certain non-linear symmetries
- These are responsible for Witt vectors and Λ-rings.
- Witt vectors and Λ-rings are important in arithmetic algebraic geometry
- but have famously complicated definitions.

Summary

- There is a concept of generalized symmetry specific to any category of algebras (groups, rings,...)
- In Ring, these include automorphisms, derivations (infinitesimal automorphisms), but also certain non-linear symmetries
- These are responsible for Witt vectors and Λ-rings.
- Witt vectors and Λ-rings are important in arithmetic algebraic geometry
- but have famously complicated definitions.
- This can be explained by the non-linearity of the symmetries.

Summary

- There is a concept of generalized symmetry specific to any category of algebras (groups, rings,...)
- In Ring, these include automorphisms, derivations (infinitesimal automorphisms), but also certain non-linear symmetries
- These are responsible for Witt vectors and Λ-rings.
- Witt vectors and Λ-rings are important in arithmetic algebraic geometry
- but have famously complicated definitions.
- This can be explained by the non-linearity of the symmetries.
- But generalized symmetries should be important everywhere

Summary

- There is a concept of generalized symmetry specific to any category of algebras (groups, rings,...)
- In Ring, these include automorphisms, derivations (infinitesimal automorphisms), but also certain non-linear symmetries
- These are responsible for Witt vectors and Λ-rings.
- Witt vectors and Λ-rings are important in arithmetic algebraic geometry
- but have famously complicated definitions.
- This can be explained by the non-linearity of the symmetries.
- But generalized symmetries should be important everywhere
- Are there other kinds of generalized symmetries on rings?

Summary

- There is a concept of generalized symmetry specific to any category of algebras (groups, rings,...)
- In Ring, these include automorphisms, derivations (infinitesimal automorphisms), but also certain non-linear symmetries
- These are responsible for Witt vectors and Λ-rings.
- Witt vectors and Λ-rings are important in arithmetic algebraic geometry
- but have famously complicated definitions.
- This can be explained by the non-linearity of the symmetries.
- But generalized symmetries should be important everywhere
- Are there other kinds of generalized symmetries on rings?
- Are there new kinds of generalized symmetries in other categories of algebras?

Summary

- There is a concept of generalized symmetry specific to any category of algebras (groups, rings,...)
- In Ring, these include automorphisms, derivations (infinitesimal automorphisms), but also certain non-linear symmetries
- These are responsible for Witt vectors and Λ-rings.
- Witt vectors and Λ-rings are important in arithmetic algebraic geometry
- but have famously complicated definitions.
- This can be explained by the non-linearity of the symmetries.
- But generalized symmetries should be important everywhere
- Are there other kinds of generalized symmetries on rings?
- Are there new kinds of generalized symmetries in other categories of algebras?
- Today: open questions, the work of other people, some of my own

I. Basic example: Frobenius lifts

$p=$ prime

$R=$ ring (commutative, with 1)

I. Basic example: Frobenius lifts

$p=$ prime

$R=$ ring (commutative, with 1)
Frobenius lift

$$
\begin{aligned}
& \forall x \in R \exists x^{\prime} \in R \\
& \psi(x)=x^{p}+p x^{\prime}
\end{aligned}
$$

I. Basic example: Frobenius lifts

$p=$ prime
$R=$ ring (commutative, with 1)
Frobenius lift

- Rings with Frobenius lift naturally form a category

I. Basic example: Frobenius lifts

$p=$ prime
$R=$ ring (commutative, with 1)
Frobenius lift

- Rings with Frobenius lift naturally form a category
- But not a good one! It doesn't have equalizers.

I. Basic example: Frobenius lifts

$p=$ prime
$R=$ ring (commutative, with 1)
Frobenius lift

- Rings with Frobenius lift naturally form a category
- But not a good one! It doesn't have equalizers.
- No control over x^{\prime}-it is only determined up to p-torsion.

I. Basic example: Frobenius lifts

$p=$ prime
$R=$ ring (commutative, with 1)
Frobenius lift

- Rings with Frobenius lift naturally form a category
- But not a good one! It doesn't have equalizers.
- No control over x^{\prime}-it is only determined up to p-torsion.
- Solution: make x^{\prime} part of the data

I. Basic example: Frobenius lifts

$p=$ prime
$R=$ ring (commutative, with 1)
Frobenius lift

- Rings with Frobenius lift naturally form a category
- But not a good one! It doesn't have equalizers.
- No control over x^{\prime}-it is only determined up to p-torsion.
- Solution: make x^{\prime} part of the data
- Property of existence \rightarrow a structure

p-derivations (Joyal, Buium)

A p-derivation on R is a function $\delta: R \rightarrow R$ modeled on

$$
\delta(x)=x^{\prime}=\frac{\psi(x)-x^{p}}{p},
$$

i.e., satisfying all the axioms it does when ψ is a Frobenius lift and R is p-torsion free:

p-derivations (Joyal, Buium)

A p-derivation on R is a function $\delta: R \rightarrow R$ modeled on

$$
\delta(x)=x^{\prime}=\frac{\psi(x)-x^{p}}{p},
$$

i.e., satisfying all the axioms it does when ψ is a Frobenius lift and R is p-torsion free:
[writes on blackboard]

p-derivations (Joyal, Buium)

A p-derivation on R is a function $\delta: R \rightarrow R$ modeled on

$$
\delta(x)=x^{\prime}=\frac{\psi(x)-x^{p}}{p},
$$

i.e., satisfying all the axioms it does when ψ is a Frobenius lift and R is p-torsion free:

$$
\begin{aligned}
\delta(x+y) & =\delta(x)+\delta(y)-\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x^{i} y^{p-i} \\
\delta(x y) & =\delta(x) y^{p}+x^{p} \delta(y)+p \delta(x) \delta(y) \\
\delta(0) & =0 \\
\delta(1) & =0
\end{aligned}
$$

p-derivations (Joyal, Buium)

A p-derivation on R is a function $\delta: R \rightarrow R$ modeled on

$$
\delta(x)=x^{\prime}=\frac{\psi(x)-x^{p}}{p},
$$

i.e., satisfying all the axioms it does when ψ is a Frobenius lift and R is p-torsion free:

$$
\begin{aligned}
\delta(x+y) & =\delta(x)+\delta(y)-\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x^{i} y^{p-i} \\
\delta(x y) & =\delta(x) y^{p}+x^{p} \delta(y)+p \delta(x) \delta(y) \\
\delta(0) & =0 \\
\delta(1) & =0
\end{aligned}
$$

Leibniz rules for multiplication and addition: $\delta(x)=x^{\prime}=" \partial x / \partial p "$

p-derivations (Joyal, Buium)

A p-derivation on R is a function $\delta: R \rightarrow R$ modeled on

$$
\delta(x)=x^{\prime}=\frac{\psi(x)-x^{p}}{p}
$$

i.e., satisfying all the axioms it does when ψ is a Frobenius lift and R is p-torsion free:

$$
\begin{aligned}
\delta(x+y) & =\delta(x)+\delta(y)-\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x^{i} y^{p-i} \\
\delta(x y) & =\delta(x) y^{p}+x^{p} \delta(y)+p \delta(x) \delta(y) \\
\delta(0) & =0 \\
\delta(1) & =0
\end{aligned}
$$

Leibniz rules for multiplication and addition: $\delta(x)=x^{\prime}=" \partial x / \partial p^{\prime \prime}$ Category: δ-rings

p-derivations (Joyal, Buium)

A p-derivation on R is a function $\delta: R \rightarrow R$ modeled on

$$
\delta(x)=x^{\prime}=\frac{\psi(x)-x^{p}}{p},
$$

i.e., satisfying all the axioms it does when ψ is a Frobenius lift and R is p-torsion free:

$$
\begin{aligned}
\delta(x+y) & =\delta(x)+\delta(y)-\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x^{i} y^{p-i} \\
\delta(x y) & =\delta(x) y^{p}+x^{p} \delta(y)+p \delta(x) \delta(y) \\
\delta(0) & =0 \\
\delta(1) & =0
\end{aligned}
$$

Leibniz rules for multiplication and addition: $\delta(x)=x^{\prime}=" \partial x / \partial p^{\prime \prime}$ Category: δ-rings
$\{p$-derivations on $R\} \rightarrow\{$ Frobenius lifts on $R\}$

p-derivations (Joyal, Buium)

A p-derivation on R is a function $\delta: R \rightarrow R$ modeled on

$$
\delta(x)=x^{\prime}=\frac{\psi(x)-x^{p}}{p},
$$

i.e., satisfying all the axioms it does when ψ is a Frobenius lift and R is p-torsion free:

$$
\begin{aligned}
\delta(x+y) & =\delta(x)+\delta(y)-\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x^{i} y^{p-i} \\
\delta(x y) & =\delta(x) y^{p}+x^{p} \delta(y)+p \delta(x) \delta(y) \\
\delta(0) & =0 \\
\delta(1) & =0
\end{aligned}
$$

Leibniz rules for multiplication and addition: $\delta(x)=x^{\prime}=" \partial x / \partial p^{"}$ Category: δ-rings
$\{p$-derivations on $R\} \xrightarrow{\sim}\{$ Frobenius lifts on $R\}$, if R is p-tor-free

Divided power series $=$ cofree differential ring

Consider usual derivations d, instead of p-derivations δ :

$$
\{d \text {-rings }\} \xrightarrow{U} \text { Ring }
$$

Divided power series $=$ cofree differential ring

Consider usual derivations d, instead of p-derivations δ :

$$
\left\{d \text {-rings } \underset{W^{\text {diff }}}{\stackrel{\perp}{\perp}}\right. \text { Ring }
$$

Divided power series $=$ cofree differential ring

Consider usual derivations d, instead of p-derivations δ :

$$
\begin{gathered}
\left\{d \text {-rings } \underset{W^{\frac{\perp}{\perp \text { diff }}}}{\frac{\perp}{\perp}}\right. \text { Ring } \\
W^{\text {diff }}(R)=\left\{\left.\sum_{n} a_{n} \frac{t^{n}}{n!} \right\rvert\, a_{n} \in R\right\}, \quad d=d / d t
\end{gathered}
$$

Divided power series $=$ cofree differential ring

Consider usual derivations d, instead of p-derivations δ :

$$
\begin{aligned}
& \left\{d \text {-rings } \frac{\stackrel{\perp}{\perp}}{W^{\text {diff }}}\right. \text { Ring } \\
W^{\text {diff }}(R)= & \left\{\left.\sum_{n} a_{n} \frac{t^{n}}{n!} \right\rvert\, a_{n} \in R\right\}, \quad d=d / d t \\
= & \left\{\left(a_{0}, a_{1}, \ldots\right)\right\}, \quad d=\text { shift }
\end{aligned}
$$

Multiplication law at the n-th component is given by the Leibniz rule for $d^{\circ n}(x y)$:
$\left(a_{0}, \ldots\right) \times\left(b_{0}, \ldots\right)=\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+2 a_{1} b_{1}+a_{2} b_{0}, \ldots\right)$

Witt vectors $=$ cofree δ-ring (Joyal)

$$
\{\delta \text {-rings }\} \longrightarrow \text { Ring }
$$

Witt vectors $=$ cofree δ-ring (Joyal)

Witt vectors $=$ cofree δ-ring (Joyal)

$$
W(R)=R \times R \times R \times \cdots, \quad \delta\left(a_{0}, a_{1}, \ldots\right)=\left(a_{1}, a_{2}, \ldots\right)
$$

Mulitiplication at the n-th component is again given by the Leibniz rule for $\delta^{\circ n}(x y)$, but now the same is true for addition!

Witt vectors $=$ cofree δ-ring (Joyal)

$$
W(R)=R \times R \times R \times \cdots, \quad \delta\left(a_{0}, a_{1}, \ldots\right)=\left(a_{1}, a_{2}, \ldots\right)
$$

Mulitiplication at the n-th component is again given by the Leibniz rule for $\delta^{\circ n}(x y)$, but now the same is true for addition!

$$
\begin{aligned}
& \left(a_{0}, a_{1}, \ldots\right)+\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0}+b_{0}, a_{1}+b_{1}-\sum_{i} \frac{1}{p}\binom{p}{i} a_{0}^{i} b_{0}^{p-i}, \ldots\right) \\
& \left(a_{0}, a_{1}, \ldots\right) \times\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0} b_{0}, a_{1} b_{0}^{p}+a_{0}^{p} b_{1}+p a_{1} b_{1}, \ldots\right)
\end{aligned}
$$

Witt vectors $=$ cofree δ-ring (Joyal)

$$
\{\delta \text {-rings } \underset{W}{\stackrel{\perp}{\perp}} \text { Ring }
$$

$$
W(R)=R \times R \times R \times \cdots, \quad \delta\left(a_{0}, a_{1}, \ldots\right)=\left(a_{1}, a_{2}, \ldots\right)
$$

Mulitiplication at the n-th component is again given by the Leibniz rule for $\delta^{\circ n}(x y)$, but now the same is true for addition!

$$
\left(a_{0}, a_{1}, \ldots\right)+\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0}+b_{0}, a_{1}+b_{1}-\sum_{i} \frac{1}{p}\binom{p}{i} a_{0}^{i} b_{0}^{p-i}, \ldots\right)
$$

$\left(a_{0}, a_{1}, \ldots\right) \times\left(b_{0}, b_{1}, \ldots\right)=\left(a_{0} b_{0}, a_{1} b_{0}^{p}+a_{0}^{p} b_{1}+p a_{1} b_{1}, \ldots\right)$
Leibniz rules:

$$
\begin{aligned}
\delta(x+y) & =\delta(x)+\delta(y)-\sum_{i=1}^{p-1} \frac{1}{p}\binom{p}{i} x^{i} y^{p-i} \\
\delta(x y) & =\delta(x) y^{p}+x^{p} \delta(y)+p \delta(x) \delta(y)
\end{aligned}
$$

Remarks

- Warning: The ring structure on $R \times R \times \cdots$ above is not equal to the Witt vector ring structure as it is usually defined! Only uniquely isomorphic to it.

Remarks

- Warning: The ring structure on $R \times R \times \cdots$ above is not equal to the Witt vector ring structure as it is usually defined! Only uniquely isomorphic to it.
- Ex: $W(\mathbb{Z} / p \mathbb{Z}) \cong$ ring \mathbb{Z}_{p} of p-adic integers

Remarks

- Warning: The ring structure on $R \times R \times \cdots$ above is not equal to the Witt vector ring structure as it is usually defined! Only uniquely isomorphic to it.
- Ex: $W(\mathbb{Z} / p \mathbb{Z}) \cong$ ring \mathbb{Z}_{p} of p-adic integers \leftarrow characteristic 0 !

Remarks

- Warning: The ring structure on $R \times R \times \cdots$ above is not equal to the Witt vector ring structure as it is usually defined! Only uniquely isomorphic to it.
- Ex: $W(\mathbb{Z} / p \mathbb{Z}) \cong$ ring \mathbb{Z}_{p} of p-adic integers \leftarrow characteristic 0 !
- More generally, the map $\mathbb{Z} \rightarrow W(R)$ is injective unless $R=0$.

Remarks

- Warning: The ring structure on $R \times R \times \cdots$ above is not equal to the Witt vector ring structure as it is usually defined! Only uniquely isomorphic to it.
- Ex: $W(\mathbb{Z} / p \mathbb{Z}) \cong$ ring \mathbb{Z}_{p} of p-adic integers \leftarrow characteristic 0 !
- More generally, the map $\mathbb{Z} \rightarrow W(R)$ is injective unless $R=0$.
- Witt vectors are a machine for functorially lifting rings from characteristic p to characteristic 0

Remarks

- Warning: The ring structure on $R \times R \times \cdots$ above is not equal to the Witt vector ring structure as it is usually defined! Only uniquely isomorphic to it.
- Ex: $W(\mathbb{Z} / p \mathbb{Z}) \cong$ ring \mathbb{Z}_{p} of p-adic integers \leftarrow characteristic 0 !
- More generally, the map $\mathbb{Z} \rightarrow W(R)$ is injective unless $R=0$.
- Witt vectors are a machine for functorially lifting rings from characteristic p to characteristic 0
- Better: Witt vectors are a machine for adding a Frobenius lift to your ring, interpreted in an intelligent way

de Rham-Witt complex (Bloch, Deligne, Illusie, 1970s-)

- de Rham cohomology has problems in characteristic p : any function f^{p} is a closed 0 -form

$$
d\left(f^{p}\right)=p f^{p-1} d f=0
$$

de Rham-Witt complex (Bloch, Deligne, Illusie, 1970s-)

- de Rham cohomology has problems in characteristic p : any function f^{p} is a closed 0 -form

$$
d\left(f^{p}\right)=p f^{p-1} d f=0
$$

- One can lift rings/varieties to characteristic 0 using Witt vectors

de Rham-Witt complex (Bloch, Deligne, Illusie, 1970s-)

- de Rham cohomology has problems in characteristic p : any function f^{P} is a closed 0 -form

$$
d\left(f^{p}\right)=p f^{p-1} d f=0
$$

- One can lift rings/varieties to characteristic 0 using Witt vectors
- ... the de Rham-Witt complex $W \Omega_{X}^{*}$

de Rham-Witt complex (Bloch, Deligne, Illusie, 1970s-)

- de Rham cohomology has problems in characteristic p : any function f^{p} is a closed 0 -form

$$
d\left(f^{p}\right)=p f^{p-1} d f=0
$$

- One can lift rings/varieties to characteristic 0 using Witt vectors
- ... the de Rham-Witt complex $W \Omega_{X}^{*}$
- Calculates crystalline cohomology (with its Frobenius operator)

de Rham-Witt complex (Bloch, Deligne, Illusie, 1970s-)

- de Rham cohomology has problems in characteristic p : any function f^{P} is a closed 0 -form

$$
d\left(f^{p}\right)=p f^{p-1} d f=0
$$

- One can lift rings/varieties to characteristic 0 using Witt vectors
- ... the de Rham-Witt complex $W \Omega_{X}^{*}$
- Calculates crystalline cohomology (with its Frobenius operator)
- Thus, if one is sufficiently enlightened, the concept of Frobenius lift, or p-derivation, leads automatically to crystalline cohomology.

II. Generalized symmetries

(Tall-Wraith, Bergman-Hausknecht, Wieland \& me, Stacey-Whitehouse)

$$
\mathrm{C}=\mathrm{a} \text { category of 'algebras' (rings, groups, Lie algebras,... })
$$

II. Generalized symmetries

(Tall-Wraith, Bergman-Hausknecht, Wieland \& me, Stacey-Whitehouse)
C =a category of 'algebras' (rings, groups, Lie algebras,...)
$U: \mathrm{D} \rightarrow \mathrm{C}$ comonadic, where the comonad W is representable:
$\operatorname{Hom}_{\mathrm{C}}(P, R)=$ underlying set of $W(R)$

II. Generalized symmetries

(Tall-Wraith, Bergman-Hausknecht, Wieland \& me, Stacey-Whitehouse)
C =a category of 'algebras' (rings, groups, Lie algebras,...)
$U: \mathrm{D} \rightarrow \mathrm{C}$ comonadic, where the comonad W is representable:
$\operatorname{Hom}_{\mathrm{C}}(P, R)=$ underlying set of $W(R)$
$P=U$ (free object of D on one generator)
$=\{$ natural 1-ary operations on objects of D$\}$

II. Generalized symmetries

(Tall-Wraith, Bergman-Hausknecht, Wieland \& me, Stacey-Whitehouse)
C =a category of 'algebras' (rings, groups, Lie algebras,...)
$U: \mathrm{D} \rightarrow \mathrm{C}$ comonadic, where the comonad W is representable:
$\operatorname{Hom}_{\mathrm{C}}(P, R)=$ underlying set of $W(R)$
$P=U$ (free object of D on one generator)
$=\{$ natural 1-ary operations on objects of D$\}$

- G-rings \rightarrow Ring, $G=$ group or monoid $P=\{$ polynomials in elements of $G\}=\operatorname{Sym}(\mathbb{Z} G)$

II. Generalized symmetries

(Tall-Wraith, Bergman-Hausknecht, Wieland \& me, Stacey-Whitehouse)
C =a category of 'algebras' (rings, groups, Lie algebras,...)
$U: \mathrm{D} \rightarrow \mathrm{C}$ comonadic, where the comonad W is representable:
$\operatorname{Hom}_{\mathrm{C}}(P, R)=$ underlying set of $W(R)$

$$
\begin{aligned}
P & =U(\text { free object of } \mathrm{D} \text { on one generator }) \\
& =\{\text { natural 1-ary operations on objects of } \mathrm{D}\}
\end{aligned}
$$

- G-rings \rightarrow Ring, $G=$ group or monoid $P=\{$ polynomials in elements of $G\}=\operatorname{Sym}(\mathbb{Z} G)$
- d-rings \rightarrow Ring, $W=W^{\text {diff }}=$ divided power series functor $P=\mathbb{Z}\left[e, d, d^{\circ 2}, \ldots\right]=$ differential operators

II. Generalized symmetries

(Tall-Wraith, Bergman-Hausknecht, Wieland \& me, Stacey-Whitehouse)
C =a category of 'algebras' (rings, groups, Lie algebras,...)
$U: \mathrm{D} \rightarrow \mathrm{C}$ comonadic, where the comonad W is representable:
$\operatorname{Hom}_{\mathrm{C}}(P, R)=$ underlying set of $W(R)$

$$
\begin{aligned}
P & =U(\text { free object of } D \text { on one generator }) \\
& =\{\text { natural 1-ary operations on objects of } D\}
\end{aligned}
$$

- G-rings \rightarrow Ring, $G=$ group or monoid $P=\{$ polynomials in elements of $G\}=\operatorname{Sym}(\mathbb{Z} G)$
- d-rings \rightarrow Ring, $W=W^{\text {diff }}=$ divided power series functor $P=\mathbb{Z}\left[e, d, d^{\circ 2}, \ldots\right]=$ differential operators
- δ-rings \rightarrow Ring, $W=$ Witt vector functor $P=\mathbb{Z}\left[e, \delta, \delta^{\circ 2}, \ldots\right]=$ ' p-differential operators'

II. Generalized symmetries

(Tall-Wraith, Bergman-Hausknecht, Wieland \& me, Stacey-Whitehouse)
C =a category of 'algebras' (rings, groups, Lie algebras,...)
$U: \mathrm{D} \rightarrow \mathrm{C}$ comonadic, where the comonad W is representable:
$\operatorname{Hom}_{\mathrm{C}}(P, R)=$ underlying set of $W(R)$

$$
\begin{aligned}
P & =U(\text { free object of } D \text { on one generator }) \\
& =\{\text { natural 1-ary operations on objects of } D\}
\end{aligned}
$$

- G-rings \rightarrow Ring, $G=$ group or monoid $P=\{$ polynomials in elements of $G\}=\operatorname{Sym}(\mathbb{Z} G)$
- d-rings \rightarrow Ring, $W=W^{\text {diff }}=$ divided power series functor $P=\mathbb{Z}\left[e, d, d^{\circ 2}, \ldots\right]=$ differential operators
- δ-rings \rightarrow Ring, $W=$ Witt vector functor $P=\mathbb{Z}\left[e, \delta, \delta^{\circ 2}, \ldots\right]=$ ' p-differential operators'
A composition object of C is an object P of C plus a comonad structure on the functor it represents. ('Tall-Wraith monad object')

Generalized symmetries, continued

- Since P is the set of natural operations on objects of D,

Generalized symmetries, continued

- Since P is the set of natural operations on objects of D, we may think of it as a system of generalized symmetries which may act on objects of C

Generalized symmetries, continued

- Since P is the set of natural operations on objects of D, we may think of it as a system of generalized symmetries which may act on objects of C
- It is closed under composition and the all the operations of C
- E.g.: differential operators $\mathbb{Z}\left[e, d, d^{\circ 2}, \ldots\right]$

Generalized symmetries, continued

- Since P is the set of natural operations on objects of D, we may think of it as a system of generalized symmetries which may act on objects of C
- It is closed under composition and the all the operations of C
- E.g.: differential operators $\mathbb{Z}\left[e, d, d^{\circ 2}, \ldots\right]$
- An element f in a composition ring P is linear if it acts additively whenever P acts on a ring

Generalized symmetries, continued

- Since P is the set of natural operations on objects of D, we may think of it as a system of generalized symmetries which may act on objects of C
- It is closed under composition and the all the operations of C
- E.g.: differential operators $\mathbb{Z}\left[e, d, d^{\circ 2}, \ldots\right]$
- An element f in a composition ring P is linear if it acts additively whenever P acts on a ring
- The p-derivation $\delta \in \mathbb{Z}\left[e, \delta, \delta^{\circ 2}, \ldots\right]$ is not linear, but the Frobenius lift $\psi=e^{p}+p \delta$ is.

Generalized symmetries, continued

- Since P is the set of natural operations on objects of D, we may think of it as a system of generalized symmetries which may act on objects of C
- It is closed under composition and the all the operations of C
- E.g.: differential operators $\mathbb{Z}\left[e, d, d^{\circ 2}, \ldots\right]$
- An element f in a composition ring P is linear if it acts additively whenever P acts on a ring
- The p-derivation $\delta \in \mathbb{Z}\left[e, \delta, \delta^{\circ 2}, \ldots\right]$ is not linear, but the Frobenius lift $\psi=e^{p}+p \delta$ is.
- In fact, the composition ring $\mathbb{Z}\left[e, \delta, \delta^{\circ 2}, \ldots\right]$ cannot be generated by linear operators! It is fundamentally nonlinear.

Imperative task \#1

Given C, determine all its composition objets P

Imperative task \#1

Given C, determine all its composition objets P

- R-modules: $P=$ (noncomm.) ring with a map $R \rightarrow P$

Imperative task \#1

Given C, determine all its composition objets P

- R-modules: $P=$ (noncomm.) ring with a map $R \rightarrow P$
- Groups (Kan): P is the free group on some monoid M. So generalized symmetries are words in endomorphisms

Imperative task \#1

Given C, determine all its composition objets P

- R-modules: $P=$ (noncomm.) ring with a map $R \rightarrow P$
- Groups (Kan): P is the free group on some monoid M. So generalized symmetries are words in endomorphisms
- Monoids (Bergman-Hausknecht): Generalized symmetries are words in endomorphisms and anti-endomorphisms (but there can be relations!)

Imperative task \#1

Given C, determine all its composition objets P

- R-modules: $P=$ (noncomm.) ring with a map $R \rightarrow P$
- Groups (Kan): P is the free group on some monoid M. So generalized symmetries are words in endomorphisms
- Monoids (Bergman-Hausknecht): Generalized symmetries are words in endomorphisms and anti-endomorphisms (but there can be relations!)
- Magnus Carlson (2016): If K is a field of characteristic 0, all composition objects of CAlg_{K} are freely generated by bialgebras of linear operators!

Imperative task \#1

Given C, determine all its composition objets P

- R-modules: $P=$ (noncomm.) ring with a map $R \rightarrow P$
- Groups (Kan): P is the free group on some monoid M. So generalized symmetries are words in endomorphisms
- Monoids (Bergman-Hausknecht): Generalized symmetries are words in endomorphisms and anti-endomorphisms (but there can be relations!)
- Magnus Carlson (2016): If K is a field of characteristic 0 , all composition objects of CAlg_{K} are freely generated by bialgebras of linear operators!
- Is it possible to classify all composition objects in Ring?

Imperative task \#1

Given C, determine all its composition objets P

- R-modules: $P=$ (noncomm.) ring with a map $R \rightarrow P$
- Groups (Kan): P is the free group on some monoid M. So generalized symmetries are words in endomorphisms
- Monoids (Bergman-Hausknecht): Generalized symmetries are words in endomorphisms and anti-endomorphisms (but there can be relations!)
- Magnus Carlson (2016): If K is a field of characteristic 0 , all composition objects of CAlg_{K} are freely generated by bialgebras of linear operators!
- Is it possible to classify all composition objects in Ring?
- Carlson: Yes, if we allow denominators
- Buium: Some positive classification results for composition rings generated by a single operator
- All known examples come from linear operators or lifting Frobenius-like constructions from char p to char 0 .

Imperative task \#2 (with Garner)

Given C and an object X of interest.

- Everyone: To understand X, it is important to know all of its symmetries

Imperative task \#2 (with Garner)

Given C and an object X of interest.

- Everyone: To understand X, it is important to know all of its symmetries
- Also everyone: If X is a manifold/scheme/ring/..., this should be understood to include infinitesimal symmetries (vector fields and derivations)

Imperative task \#2 (with Garner)

Given C and an object X of interest.

- Everyone: To understand X, it is important to know all of its symmetries
- Also everyone: If X is a manifold/scheme/ring/..., this should be understood to include infinitesimal symmetries (vector fields and derivations)
- But it should really include all generalized symmetries!

Imperative task \#2 (with Garner)

Given C and an object X of interest.

- Everyone: To understand X, it is important to know all of its symmetries
- Also everyone: If X is a manifold/scheme/ring/..., this should be understood to include infinitesimal symmetries (vector fields and derivations)
- But it should really include all generalized symmetries!
- Thm (Bird): Given an object X of C, there is a terminal composition object acting on X.

Imperative task \#2 (with Garner)

Given C and an object X of interest.

- Everyone: To understand X, it is important to know all of its symmetries
- Also everyone: If X is a manifold/scheme/ring/..., this should be understood to include infinitesimal symmetries (vector fields and derivations)
- But it should really include all generalized symmetries!
- Thm (Bird): Given an object X of C, there is a terminal composition object acting on X.
- Call it $\operatorname{END}(X)$, the full symmetry composition object of X.

Imperative task \#2 (with Garner)

Given C and an object X of interest.

- Everyone: To understand X, it is important to know all of its symmetries
- Also everyone: If X is a manifold/scheme/ring/..., this should be understood to include infinitesimal symmetries (vector fields and derivations)
- But it should really include all generalized symmetries!
- Thm (Bird): Given an object X of C, there is a terminal composition object acting on X.
- Call it $\operatorname{END}(X)$, the full symmetry composition object of X.

If you are interested in X, you must determine $\operatorname{END}(X)$, and then you should try to work "END (X)-equivariantly"

Imperative task \#2 (with Garner)

Given C and an object X of interest.

- Everyone: To understand X, it is important to know all of its symmetries
- Also everyone: If X is a manifold/scheme/ring/..., this should be understood to include infinitesimal symmetries (vector fields and derivations)
- But it should really include all generalized symmetries!
- Thm (Bird): Given an object X of C, there is a terminal composition object acting on X.
- Call it $\operatorname{END}(X)$, the full symmetry composition object of X.

If you are interested in X, you must determine $\operatorname{END}(X)$, and then you should try to work "END (X)-equivariantly"

- $\operatorname{END}(\mathbb{Z}) \stackrel{?}{=}$ quasi-polynomials $\mathbb{Z} \rightarrow \mathbb{Z}\}$ (with Garner)

Imperative task \#2 (with Garner)

Given C and an object X of interest.

- Everyone: To understand X, it is important to know all of its symmetries
- Also everyone: If X is a manifold/scheme/ring/..., this should be understood to include infinitesimal symmetries (vector fields and derivations)
- But it should really include all generalized symmetries!
- Thm (Bird): Given an object X of C , there is a terminal composition object acting on X.
- Call it $\operatorname{END}(X)$, the full symmetry composition object of X.

If you are interested in X, you must determine $\operatorname{END}(X)$, and then you should try to work " $\operatorname{END}(X)$-equivariantly"

- $\operatorname{END}(\mathbb{Z}) \stackrel{?}{=}\{$ quasi-polynomials $\mathbb{Z} \rightarrow \mathbb{Z}\}$ (with Garner)
- $\operatorname{END}\left(\mathbb{F}_{p}[t]\right)=$?. Includes derivation $d / d t, t$-derivation $f \mapsto\left(f-f^{q}\right) / t, \ldots$

III. Generalized-equivariant algebriac geometry

Principal categories of algebraic geometry:

$$
\operatorname{Ring}^{\text {op }}=\operatorname{Aff} \subset \operatorname{Sch} \subset \operatorname{AlgSp} \subset \operatorname{Sh}_{\text {ett }}(\mathrm{Aff}) \subset \operatorname{PSh}(\text { Aff })
$$

III. Generalized-equivariant algebriac geometry

Principal categories of algebraic geometry:

$$
\operatorname{Ring}^{\mathrm{op}}=\mathrm{Aff} \subset \mathrm{Sch} \subset \mathrm{AlgSp} \subset \mathrm{Sh}_{\text {êt }}(\mathrm{Aff}) \subset \operatorname{PSh}(\mathrm{Aff})
$$

Is it possible to extend the theory of generalized symmetries from Ring to non-affine schemes?

III. Generalized-equivariant algebriac geometry

Principal categories of algebraic geometry:

$$
\text { Ring }^{\mathrm{op}}=\mathrm{Aff} \subset \mathrm{Sch} \subset \operatorname{AlgSp} \subset \operatorname{Sh}_{\text {êt }}(\mathrm{Aff}) \subset \operatorname{PSh}(\mathrm{Aff})
$$

Is it possible to extend the theory of generalized symmetries from Ring to non-affine schemes?

- Monoid and Lie algebra actions (linear symmetries) are OK: G-schemes, \mathfrak{g}-schemes
- Can this be done for p-derivations and similar non-linear symmetries? (Yes! See below.)

III. Generalized-equivariant algebriac geometry

Principal categories of algebraic geometry:

$$
\operatorname{Ring}^{\mathrm{op}}=\mathrm{Aff} \subset \mathrm{Sch} \subset \operatorname{AlgSp} \subset \mathrm{Sh}_{\text {ét }}(\mathrm{Aff}) \subset \mathrm{PSh}(\mathrm{Aff})
$$

Is it possible to extend the theory of generalized symmetries from Ring to non-affine schemes?

- Monoid and Lie algebra actions (linear symmetries) are OK: G-schemes, \mathfrak{g}-schemes
- Can this be done for p-derivations and similar non-linear symmetries? (Yes! See below.)
- Can this be done for every composition ring?

III. Generalized-equivariant algebriac geometry

Principal categories of algebraic geometry:

$$
\operatorname{Ring}^{\text {op }}=\operatorname{Aff} \subset S c h \subset \operatorname{AlgSp} \subset \operatorname{Sh}_{\text {ett }}(A f f) \subset \operatorname{PSh}(\text { Aff })
$$

Is it possible to extend the theory of generalized symmetries from Ring to non-affine schemes?

- Monoid and Lie algebra actions (linear symmetries) are OK: G-schemes, \mathfrak{g}-schemes
- Can this be done for p-derivations and similar non-linear symmetries? (Yes! See below.)
- Can this be done for every composition ring?
- Could there some kind of new generalized symmetry structures that exist only at the non-affine level?

δ-structures on schemes (Greenberg, Buium, me)

Given a functor X : Ring \rightarrow Set, define

$$
W_{n *}(X): C \mapsto X\left(W_{n}(C)\right)
$$

where $W_{n}(C)$ is the ring of truncated Witt vectors $\left(a_{0}, \ldots, a_{n}\right)$.

δ-structures on schemes (Greenberg, Buium, me)

Given a functor X : Ring \rightarrow Set, define

$$
W_{n *}(X): C \mapsto X\left(W_{n}(C)\right)
$$

where $W_{n}(C)$ is the ring of truncated Witt vectors $\left(a_{0}, \ldots, a_{n}\right)$.

- $W_{n}(C)$ is analogous to the truncated power series ring. So $W_{n *}(X)$ is a Witt vector analogue of the n-th jet space, the "arithmetic jet space"

δ-structures on schemes (Greenberg, Buium, me)

Given a functor X : Ring \rightarrow Set, define

$$
W_{n *}(X): C \mapsto X\left(W_{n}(C)\right)
$$

where $W_{n}(C)$ is the ring of truncated Witt vectors $\left(a_{0}, \ldots, a_{n}\right)$.

- $W_{n}(C)$ is analogous to the truncated power series ring. So $W_{n *}(X)$ is a Witt vector analogue of the n-th jet space, the "arithmetic jet space"

Thm: If X is a scheme, then so is $W_{n *}(X)$. Likewise for algebraic spaces and sheaves in the étale topology.

δ-structures on schemes (Greenberg, Buium, me)

Given a functor X : Ring \rightarrow Set, define

$$
W_{n *}(X): C \mapsto X\left(W_{n}(C)\right)
$$

where $W_{n}(C)$ is the ring of truncated Witt vectors $\left(a_{0}, \ldots, a_{n}\right)$.

- $W_{n}(C)$ is analogous to the truncated power series ring. So $W_{n *}(X)$ is a Witt vector analogue of the n-th jet space, the "arithmetic jet space"

Thm: If X is a scheme, then so is $W_{n *}(X)$. Likewise for algebraic spaces and sheaves in the étale topology.

- This allows us to extend the theory of p-derivations, δ-structures, and Witt vectors from rings to schemes \rightarrow " δ-equivariant algebraic geometry"

δ-structures on schemes (Greenberg, Buium, me)

Given a functor X : Ring \rightarrow Set, define

$$
W_{n *}(X): C \mapsto X\left(W_{n}(C)\right)
$$

where $W_{n}(C)$ is the ring of truncated Witt vectors $\left(a_{0}, \ldots, a_{n}\right)$.

- $W_{n}(C)$ is analogous to the truncated power series ring. So $W_{n *}(X)$ is a Witt vector analogue of the n-th jet space, the "arithmetic jet space"

Thm: If X is a scheme, then so is $W_{n *}(X)$. Likewise for algebraic spaces and sheaves in the étale topology.

- This allows us to extend the theory of p-derivations, δ-structures, and Witt vectors from rings to schemes \rightarrow " δ-equivariant algebraic geometry"
- The proof (Illusie, van der Kallen, Langer-Zink, me) is not formal!

Hilbert's 12th Problem

Given a finite extension K / \mathbb{Q}, is there an explicit description of K^{ab}, its maximal Galois extension with abelian Galois group?

- $K=\mathbb{Q}$: Yes, the Kronecker-Weber theorem (1853-1896): adjoin all roots of unity $\exp \left(\frac{2 \pi i}{n}\right)$ to \mathbb{Q}

Hilbert's 12th Problem

Given a finite extension K / \mathbb{Q}, is there an explicit description of K^{ab}, its maximal Galois extension with abelian Galois group?

- $K=\mathbb{Q}$: Yes, the Kronecker-Weber theorem (1853-1896): adjoin all roots of unity $\exp \left(\frac{2 \pi i}{n}\right)$ to \mathbb{Q}
- $K=\mathbb{Q}(\sqrt{-d}), d>0$: Yes, Kronecker's Jugendtraum (1850s-1920): adjoin certain special values of elliptic and modular functions to $\mathbb{Q}(\sqrt{-d})$

Hilbert's 12th Problem

Given a finite extension K / \mathbb{Q}, is there an explicit description of K^{ab}, its maximal Galois extension with abelian Galois group?

- $K=\mathbb{Q}$: Yes, the Kronecker-Weber theorem (1853-1896): adjoin all roots of unity $\exp \left(\frac{2 \pi i}{n}\right)$ to \mathbb{Q}
- $K=\mathbb{Q}(\sqrt{-d}), d>0$: Yes, Kronecker's Jugendtraum (1850s-1920): adjoin certain special values of elliptic and modular functions to $\mathbb{Q}(\sqrt{-d})$
- Nowadays, people usually express them in terms of adjoining the coordinates of torsion points on commutative group schemes, instead of special values of transcendental functions

Hilbert's 12th Problem

Given a finite extension K / \mathbb{Q}, is there an explicit description of $K^{\text {ab }}$, its maximal Galois extension with abelian Galois group?

- $K=\mathbb{Q}$: Yes, the Kronecker-Weber theorem (1853-1896): adjoin all roots of unity $\exp \left(\frac{2 \pi i}{n}\right)$ to \mathbb{Q}
- $K=\mathbb{Q}(\sqrt{-d}), d>0$: Yes, Kronecker's Jugendtraum (1850s-1920): adjoin certain special values of elliptic and modular functions to $\mathbb{Q}(\sqrt{-d})$
- Nowadays, people usually express them in terms of adjoining the coordinates of torsion points on commutative group schemes, instead of special values of transcendental functions
- No other answers to H 12 are known. But H 12 is imprecise!

Hilbert's 12th Problem

Given a finite extension K / \mathbb{Q}, is there an explicit description of $K^{\text {ab }}$, its maximal Galois extension with abelian Galois group?

- $K=\mathbb{Q}$: Yes, the Kronecker-Weber theorem (1853-1896): adjoin all roots of unity $\exp \left(\frac{2 \pi i}{n}\right)$ to \mathbb{Q}
- $K=\mathbb{Q}(\sqrt{-d}), d>0$: Yes, Kronecker's Jugendtraum (1850s-1920): adjoin certain special values of elliptic and modular functions to $\mathbb{Q}(\sqrt{-d})$
- Nowadays, people usually express them in terms of adjoining the coordinates of torsion points on commutative group schemes, instead of special values of transcendental functions
- No other answers to H 12 are known. But H 12 is imprecise!
- Class field theory (Hilbert-Takagi-Artin, 1896-1927) gives an explicit description of $\mathrm{Gal}\left(K^{\mathrm{ab}} / K\right)$-but not of K^{ab} !

Hilbert's 12th Problem

Given a finite extension K / \mathbb{Q}, is there an explicit description of $K^{\text {ab }}$, its maximal Galois extension with abelian Galois group?

- $K=\mathbb{Q}$: Yes, the Kronecker-Weber theorem (1853-1896): adjoin all roots of unity $\exp \left(\frac{2 \pi i}{n}\right)$ to \mathbb{Q}
- $K=\mathbb{Q}(\sqrt{-d}), d>0$: Yes, Kronecker's Jugendtraum (1850s-1920): adjoin certain special values of elliptic and modular functions to $\mathbb{Q}(\sqrt{-d})$
- Nowadays, people usually express them in terms of adjoining the coordinates of torsion points on commutative group schemes, instead of special values of transcendental functions
- No other answers to H12 are known. But H12 is imprecise!
- Class field theory (Hilbert-Takagi-Artin, 1896-1927) gives an explicit description of $\mathrm{Gal}\left(K^{\mathrm{ab}} / K\right)$-but not of K^{ab} !
- New idea: Use periodic points on \wedge_{K}-schemes instead!

Λ_{K}-structures

Fix a finite extension K / \mathbb{Q}. Let \mathcal{O}_{K} denote its subring of algebraic integers. Let R be an \mathcal{O}_{K}-algebra.

- A Λ_{K}-structure on R is a commuting family of endomorphisms $\psi_{\mathfrak{p}}$, one for each nonzero prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ such that $\psi_{\mathfrak{p}}(x) \equiv x^{N(\mathfrak{p})} \bmod \mathfrak{p} R$, where $N(\mathfrak{p})=\left|\mathcal{O}_{K} / \mathfrak{p}\right|$.

Λ_{K}-structures

Fix a finite extension K / \mathbb{Q}. Let \mathcal{O}_{K} denote its subring of algebraic integers. Let R be an \mathcal{O}_{K}-algebra.

- A Λ_{K}-structure on R is a commuting family of endomorphisms $\psi_{\mathfrak{p}}$, one for each nonzero prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ such that $\psi_{\mathfrak{p}}(x) \equiv x^{N(\mathfrak{p})} \bmod \mathfrak{p} R$, where $N(\mathfrak{p})=\left|\mathcal{O}_{K} / \mathfrak{p}\right|$.
- Similarly for schemes.

Λ_{K}-structures

Fix a finite extension K / \mathbb{Q}. Let \mathcal{O}_{K} denote its subring of algebraic integers. Let R be an \mathcal{O}_{K}-algebra.

- A Λ_{K}-structure on R is a commuting family of endomorphisms $\psi_{\mathfrak{p}}$, one for each nonzero prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ such that $\psi_{\mathfrak{p}}(x) \equiv x^{N(\mathfrak{p})} \bmod \mathfrak{p} R$, where $N(\mathfrak{p})=\left|\mathcal{O}_{K} / \mathfrak{p}\right|$.
- Similarly for schemes.
- If there is nontrivial torsion, we have to interpret all this in the enlightened way, as with Frobenius lifts at a single prime.

Λ_{K}-structures

Fix a finite extension K / \mathbb{Q}. Let \mathcal{O}_{K} denote its subring of algebraic integers. Let R be an \mathcal{O}_{K}-algebra.

- A Λ_{K}-structure on R is a commuting family of endomorphisms $\psi_{\mathfrak{p}}$, one for each nonzero prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ such that $\psi_{\mathfrak{p}}(x) \equiv x^{N(\mathfrak{p})} \bmod \mathfrak{p} R$, where $N(\mathfrak{p})=\left|\mathcal{O}_{K} / \mathfrak{p}\right|$.
- Similarly for schemes.
- If there is nontrivial torsion, we have to interpret all this in the enlightened way, as with Frobenius lifts at a single prime.
- \rightarrow composition \mathcal{O}_{K}-algebra Λ_{K}, again nonlinear!

Λ_{K}-structures

Fix a finite extension K / \mathbb{Q}. Let \mathcal{O}_{K} denote its subring of algebraic integers. Let R be an \mathcal{O}_{K}-algebra.

- A Λ_{K}-structure on R is a commuting family of endomorphisms $\psi_{\mathfrak{p}}$, one for each nonzero prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ such that $\psi_{\mathfrak{p}}(x) \equiv x^{N(\mathfrak{p})} \bmod \mathfrak{p} R$, where $N(\mathfrak{p})=\left|\mathcal{O}_{K} / \mathfrak{p}\right|$.
- Similarly for schemes.
- If there is nontrivial torsion, we have to interpret all this in the enlightened way, as with Frobenius lifts at a single prime.
- \rightarrow composition \mathcal{O}_{K}-algebra Λ_{K}, again nonlinear!
- Wilkerson, Joyal: $\Lambda_{\mathbb{Q}}$-ring $=\lambda$-ring as in K-theory

Λ_{K}-structures and Hilbert's 12th Problem (with de Smit)

- Given a Λ_{K}-scheme X, a point x is periodic if $\psi_{\mathfrak{p}}(x)$ is periodic as a function of \mathfrak{p} (in a certain technical sense)

Λ_{K}-structures and Hilbert's 12th Problem (with de Smit)

- Given a Λ_{K}-scheme X, a point x is periodic if $\psi_{\mathfrak{p}}(x)$ is periodic as a function of \mathfrak{p} (in a certain technical sense)

Λ_{K}-structures and Hilbert's 12th Problem (with de Smit)

- Given a Λ_{K}-scheme X, a point x is periodic if $\psi_{\mathfrak{p}}(x)$ is periodic as a function of \mathfrak{p} (in a certain technical sense)
- E.g. $K=\mathbb{Q}, X(C)=C^{*}, \psi_{p}(x)=x^{p}$ Then x is periodic $\Leftrightarrow x$ is a root of unity

Λ_{K}-structures and Hilbert's 12th Problem (with de Smit)

- Given a Λ_{K}-scheme X, a point x is periodic if $\psi_{\mathfrak{p}}(x)$ is periodic as a function of \mathfrak{p} (in a certain technical sense)
- E.g. $K=\mathbb{Q}, X(C)=C^{*}, \psi_{p}(x)=x^{p}$ Then x is periodic $\Leftrightarrow x$ is a root of unity
- Thm: The coordinates of the periodic points of X generate an abelian extension of K (if X is of finite type).

Λ_{K}-structures and Hilbert's 12th Problem (with de Smit)

- Given a Λ_{K}-scheme X, a point x is periodic if $\psi_{\mathfrak{p}}(x)$ is periodic as a function of \mathfrak{p} (in a certain technical sense)
- E.g. $K=\mathbb{Q}, X(C)=C^{*}, \psi_{p}(x)=x^{p}$ Then x is periodic $\Leftrightarrow x$ is a root of unity
- Thm: The coordinates of the periodic points of X generate an abelian extension of K (if X is of finite type).
- An extension L / K is Λ-geometric if it can be generated by the periodic points of some such X

Λ_{K}-structures and Hilbert's 12th Problem (with de Smit)

- Given a Λ_{K}-scheme X, a point x is periodic if $\psi_{\mathfrak{p}}(x)$ is periodic as a function of \mathfrak{p} (in a certain technical sense)
- E.g. $K=\mathbb{Q}, X(C)=C^{*}, \psi_{p}(x)=x^{p}$ Then x is periodic $\Leftrightarrow x$ is a root of unity
- Thm: The coordinates of the periodic points of X generate an abelian extension of K (if X is of finite type).
- An extension L / K is Λ-geometric if it can be generated by the periodic points of some such X
- This allows for a yes/no formulation of Hilbert's 12th Problem: Is K^{ab} / K a Λ-geometric extension?

Λ_{K}-structures and Hilbert's 12th Problem (with de Smit)

- Given a Λ_{K}-scheme X, a point x is periodic if $\psi_{\mathfrak{p}}(x)$ is periodic as a function of \mathfrak{p} (in a certain technical sense)
- E.g. $K=\mathbb{Q}, X(C)=C^{*}, \psi_{p}(x)=x^{p}$ Then x is periodic $\Leftrightarrow x$ is a root of unity
- Thm: The coordinates of the periodic points of X generate an abelian extension of K (if X is of finite type).
- An extension L / K is Λ-geometric if it can be generated by the periodic points of some such X
- This allows for a yes/no formulation of Hilbert's 12th Problem: Is K^{ab} / K a Λ-geometric extension?
- Thm: Yes, in the Kroneckerian cases: \mathbb{Q} and $\mathbb{Q}(\sqrt{-d})$.

Λ_{K}-structures and Hilbert's 12th Problem (with de Smit)

- Given a Λ_{K}-scheme X, a point x is periodic if $\psi_{\mathfrak{p}}(x)$ is periodic as a function of \mathfrak{p} (in a certain technical sense)
- E.g. $K=\mathbb{Q}, X(C)=C^{*}, \psi_{p}(x)=x^{p}$ Then x is periodic $\Leftrightarrow x$ is a root of unity
- Thm: The coordinates of the periodic points of X generate an abelian extension of K (if X is of finite type).
- An extension L / K is Λ-geometric if it can be generated by the periodic points of some such X
- This allows for a yes/no formulation of Hilbert's 12th Problem: Is K^{ab} / K a Λ-geometric extension?
- Thm: Yes, in the Kroneckerian cases: \mathbb{Q} and $\mathbb{Q}(\sqrt{-d})$.
- Any answer, positive or negative, for any other K would be very interesting!

IV. Concluding questions

- Given any composition ring P, can the notion of P-structure be extended from rings to schemes?
- Yes in the cases we care most about so far: linear, δ-structures, Λ-structures

IV. Concluding questions

- Given any composition ring P, can the notion of P-structure be extended from rings to schemes?
- Yes in the cases we care most about so far: linear, δ-structures, Λ-structures
- But the non-linear ones here require real theorems!

IV. Concluding questions

- Given any composition ring P, can the notion of P-structure be extended from rings to schemes?
- Yes in the cases we care most about so far: linear, δ-structures, Λ-structures
- But the non-linear ones here require real theorems!
- However, that might be enough in general if there is a classification result for composition rings

IV. Concluding questions

- Given any composition ring P, can the notion of P-structure be extended from rings to schemes?
- Yes in the cases we care most about so far: linear, δ-structures, Λ-structures
- But the non-linear ones here require real theorems!
- However, that might be enough in general if there is a classification result for composition rings
- Can we make sense of $\operatorname{END}(X)$ for non-affine schemes?

IV. Concluding questions

- Given any composition ring P, can the notion of P-structure be extended from rings to schemes?
- Yes in the cases we care most about so far: linear, δ-structures, Λ-structures
- But the non-linear ones here require real theorems!
- However, that might be enough in general if there is a classification result for composition rings
- Can we make sense of $\operatorname{END}(X)$ for non-affine schemes?
- If so, we might hope to find new Λ_{κ}-schemes, and hence say something about Hilbert's 12th Problem, by looking and $\operatorname{END}(X)$ for specific X, say $\mathbb{P}_{\mathbf{O}_{K}}^{2}$

IV. Concluding questions

- Given any composition ring P, can the notion of P-structure be extended from rings to schemes?
- Yes in the cases we care most about so far: linear, δ-structures, Λ-structures
- But the non-linear ones here require real theorems!
- However, that might be enough in general if there is a classification result for composition rings
- Can we make sense of $\operatorname{END}(X)$ for non-affine schemes?
- If so, we might hope to find new Λ_{κ}-schemes, and hence say something about Hilbert's 12th Problem, by looking and $\operatorname{END}(X)$ for specific X, say $\mathbb{P}_{\mathbf{O}_{K}}^{2}$
- Can one classify the composition objects in $\mathrm{CAlg}_{\mathbb{R}_{\geq 0}}$?

IV. Concluding questions

- Given any composition ring P, can the notion of P-structure be extended from rings to schemes?
- Yes in the cases we care most about so far: linear, δ-structures, Λ-structures
- But the non-linear ones here require real theorems!
- However, that might be enough in general if there is a classification result for composition rings
- Can we make sense of $\operatorname{END}(X)$ for non-affine schemes?
- If so, we might hope to find new Λ_{κ}-schemes, and hence say something about Hilbert's 12th Problem, by looking and $\operatorname{END}(X)$ for specific X, say $\mathbb{P}_{\mathbf{O}_{K}}^{2}$
- Can one classify the composition objects in $\mathrm{CAlg}_{\mathbb{R}_{\geq 0}}$?
- There are nonlinear ones! Use positivity instead of integrality!

IV. Concluding questions

- Given any composition ring P, can the notion of P-structure be extended from rings to schemes?
- Yes in the cases we care most about so far: linear, δ-structures, Λ-structures
- But the non-linear ones here require real theorems!
- However, that might be enough in general if there is a classification result for composition rings
- Can we make sense of $\operatorname{END}(X)$ for non-affine schemes?
- If so, we might hope to find new Λ_{κ}-schemes, and hence say something about Hilbert's 12th Problem, by looking and $\operatorname{END}(X)$ for specific X, say $\mathbb{P}_{\mathbf{O}_{K}}^{2}$
- Can one classify the composition objects in $\mathrm{CAlg}_{\mathbb{R}_{\geq 0}}$?
- There are nonlinear ones! Use positivity instead of integrality!
- There must be many examples of other categories of algebras with generalized symmetries which are interesting and important!

