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Summary

I There is a concept of generalized symmetry specific to any
category of algebras (groups, rings,. . . )

I In Ring, these include automorphisms, derivations
(infinitesimal automorphisms), but also certain non-linear
symmetries

I These are responsible for Witt vectors and Λ-rings.
I Witt vectors and Λ-rings are important in arithmetic algebraic

geometry
I but have famously complicated definitions.
I This can be explained by the non-linearity of the symmetries.

I But generalized symmetries should be important everywhere

I Are there other kinds of generalized symmetries on rings?
I Are there new kinds of generalized symmetries in other

categories of algebras?
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(infinitesimal automorphisms), but also certain non-linear
symmetries

I These are responsible for Witt vectors and Λ-rings.
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I Today: open questions, the work of other people, some of my
own
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ψ(x) = xp + px ′

I Rings with Frobenius lift naturally form a category
I But not a good one! It doesn’t have equalizers.
I No control over x ′—it is only determined up to p-torsion.
I Solution: make x ′ part of the data
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A p-derivation on R is a function δ : R → R modeled on

δ(x) = x ′ =
ψ(x)− xp

p
,

i.e., satisfying all the axioms it does when ψ is a Frobenius lift and
R is p-torsion free:
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Divided power series = cofree differential ring

Consider usual derivations d , instead of p-derivations δ:

{d-rings} U // Ring

W diff(R) =
{∑

n

an
tn

n!
| an ∈ R

}
, d = d/dt

= {(a0, a1, . . . )}, d = shift

Multiplication law at the n-th component is given by the Leibniz
rule for d◦n(xy) :

(a0, . . . )×(b0, . . . ) = (a0b0, a0b1 + a1b0, a0b2+2a1b1+a2b0, . . . )
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Witt vectors = cofree δ-ring (Joyal)
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de Rham–Witt complex (Bloch, Deligne, Illusie, 1970s–)

I de Rham cohomology has problems in characteristic p: any
function f p is a closed 0-form

d(f p) = pf p−1 df = 0

I One can lift rings/varieties to characteristic 0 using Witt
vectors

I . . . the de Rham–Witt complex WΩ∗X
I Calculates crystalline cohomology (with its Frobenius operator)
I Thus, if one is sufficiently enlightened, the concept of

Frobenius lift, or p-derivation, leads automatically to
crystalline cohomology.
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II. Generalized symmetries
(Tall–Wraith, Bergman–Hausknecht, Wieland & me, Stacey–Whitehouse)
C =a category of ‘algebras’ (rings, groups, Lie algebras,. . . )

U : D→ C comonadic, where the comonad W is representable:

HomC(P,R) = underlying set of W (R)

P = U(free object of D on one generator)
= {natural 1-ary operations on objects of D}

I G -rings→ Ring, G = group or monoid
P = {polynomials in elements of G} = Sym(ZG )

I d-rings→ Ring, W = W diff = divided power series functor
P = Z[e, d , d◦2, . . . ] = differential operators

I δ-rings→ Ring, W = Witt vector functor
P = Z[e, δ, δ◦2, . . . ] = ‘p-differential operators’

A composition object of C is an object P of C plus a comonad
structure on the functor it represents. (‘Tall–Wraith monad object’)
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Generalized symmetries, continued

I Since P is the set of natural operations on objects of D,

we may think of it as a system of generalized symmetries
which may act on objects of C

I It is closed under composition and the all the operations of C

I E.g.: differential operators Z[e, d , d◦2, . . . ]

I An element f in a composition ring P is linear if it acts
additively whenever P acts on a ring

I The p-derivation δ ∈ Z[e, δ, δ◦2, . . . ] is not linear, but the
Frobenius lift ψ = ep + pδ is.

I In fact, the composition ring Z[e, δ, δ◦2, . . . ] cannot be
generated by linear operators! It is fundamentally nonlinear.
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Imperative task #1
Given C, determine all its composition objets P

I R-modules: P = (noncomm.) ring with a map R → P

I Groups (Kan): P is the free group on some monoid M.
So generalized symmetries are words in endomorphisms

I Monoids (Bergman–Hausknecht): Generalized symmetries are
words in endomorphisms and anti-endomorphisms (but there
can be relations!)

I Magnus Carlson (2016): If K is a field of characteristic 0, all
composition objects of CAlgK are freely generated by
bialgebras of linear operators!

I Is it possible to classify all composition objects in Ring?

I Carlson: Yes, if we allow denominators
I Buium: Some positive classification results for composition

rings generated by a single operator
I All known examples come from linear operators or lifting

Frobenius-like constructions from char p to char 0.
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Imperative task #2 (with Garner)
Given C and an object X of interest.

I Everyone: To understand X , it is important to know all of its
symmetries

I Also everyone: If X is a manifold/scheme/ring/. . . , this should
be understood to include infinitesimal symmetries (vector fields
and derivations)

I But it should really include all generalized symmetries!
I Thm (Bird): Given an object X of C, there is a terminal

composition object acting on X .
I Call it END(X ), the full symmetry composition object of X .

If you are interested in X , you must determine END(X ), and then
you should try to work “END(X )-equivariantly”

I END(Z)
?
= {quasi-polynomials Z→ Z} (with Garner)

I END(Fp[t]) = ?. Includes derivation d/dt, t-derivation
f 7→ (f − f q)/t,. . .



12

Imperative task #2 (with Garner)
Given C and an object X of interest.

I Everyone: To understand X , it is important to know all of its
symmetries

I Also everyone: If X is a manifold/scheme/ring/. . . , this should
be understood to include infinitesimal symmetries (vector fields
and derivations)

I But it should really include all generalized symmetries!
I Thm (Bird): Given an object X of C, there is a terminal

composition object acting on X .
I Call it END(X ), the full symmetry composition object of X .

If you are interested in X , you must determine END(X ), and then
you should try to work “END(X )-equivariantly”

I END(Z)
?
= {quasi-polynomials Z→ Z} (with Garner)

I END(Fp[t]) = ?. Includes derivation d/dt, t-derivation
f 7→ (f − f q)/t,. . .



12

Imperative task #2 (with Garner)
Given C and an object X of interest.

I Everyone: To understand X , it is important to know all of its
symmetries

I Also everyone: If X is a manifold/scheme/ring/. . . , this should
be understood to include infinitesimal symmetries (vector fields
and derivations)

I But it should really include all generalized symmetries!

I Thm (Bird): Given an object X of C, there is a terminal
composition object acting on X .

I Call it END(X ), the full symmetry composition object of X .

If you are interested in X , you must determine END(X ), and then
you should try to work “END(X )-equivariantly”

I END(Z)
?
= {quasi-polynomials Z→ Z} (with Garner)

I END(Fp[t]) = ?. Includes derivation d/dt, t-derivation
f 7→ (f − f q)/t,. . .



12

Imperative task #2 (with Garner)
Given C and an object X of interest.

I Everyone: To understand X , it is important to know all of its
symmetries

I Also everyone: If X is a manifold/scheme/ring/. . . , this should
be understood to include infinitesimal symmetries (vector fields
and derivations)

I But it should really include all generalized symmetries!
I Thm (Bird): Given an object X of C, there is a terminal

composition object acting on X .

I Call it END(X ), the full symmetry composition object of X .

If you are interested in X , you must determine END(X ), and then
you should try to work “END(X )-equivariantly”

I END(Z)
?
= {quasi-polynomials Z→ Z} (with Garner)

I END(Fp[t]) = ?. Includes derivation d/dt, t-derivation
f 7→ (f − f q)/t,. . .



12

Imperative task #2 (with Garner)
Given C and an object X of interest.

I Everyone: To understand X , it is important to know all of its
symmetries

I Also everyone: If X is a manifold/scheme/ring/. . . , this should
be understood to include infinitesimal symmetries (vector fields
and derivations)

I But it should really include all generalized symmetries!
I Thm (Bird): Given an object X of C, there is a terminal

composition object acting on X .
I Call it END(X ), the full symmetry composition object of X .

If you are interested in X , you must determine END(X ), and then
you should try to work “END(X )-equivariantly”

I END(Z)
?
= {quasi-polynomials Z→ Z} (with Garner)

I END(Fp[t]) = ?. Includes derivation d/dt, t-derivation
f 7→ (f − f q)/t,. . .



12

Imperative task #2 (with Garner)
Given C and an object X of interest.

I Everyone: To understand X , it is important to know all of its
symmetries

I Also everyone: If X is a manifold/scheme/ring/. . . , this should
be understood to include infinitesimal symmetries (vector fields
and derivations)

I But it should really include all generalized symmetries!
I Thm (Bird): Given an object X of C, there is a terminal

composition object acting on X .
I Call it END(X ), the full symmetry composition object of X .

If you are interested in X , you must determine END(X ), and then
you should try to work “END(X )-equivariantly”

I END(Z)
?
= {quasi-polynomials Z→ Z} (with Garner)

I END(Fp[t]) = ?. Includes derivation d/dt, t-derivation
f 7→ (f − f q)/t,. . .



12

Imperative task #2 (with Garner)
Given C and an object X of interest.

I Everyone: To understand X , it is important to know all of its
symmetries

I Also everyone: If X is a manifold/scheme/ring/. . . , this should
be understood to include infinitesimal symmetries (vector fields
and derivations)

I But it should really include all generalized symmetries!
I Thm (Bird): Given an object X of C, there is a terminal

composition object acting on X .
I Call it END(X ), the full symmetry composition object of X .

If you are interested in X , you must determine END(X ), and then
you should try to work “END(X )-equivariantly”

I END(Z)
?
= {quasi-polynomials Z→ Z} (with Garner)

I END(Fp[t]) = ?. Includes derivation d/dt, t-derivation
f 7→ (f − f q)/t,. . .



12

Imperative task #2 (with Garner)
Given C and an object X of interest.

I Everyone: To understand X , it is important to know all of its
symmetries

I Also everyone: If X is a manifold/scheme/ring/. . . , this should
be understood to include infinitesimal symmetries (vector fields
and derivations)

I But it should really include all generalized symmetries!
I Thm (Bird): Given an object X of C, there is a terminal

composition object acting on X .
I Call it END(X ), the full symmetry composition object of X .

If you are interested in X , you must determine END(X ), and then
you should try to work “END(X )-equivariantly”

I END(Z)
?
= {quasi-polynomials Z→ Z} (with Garner)

I END(Fp[t]) = ?. Includes derivation d/dt, t-derivation
f 7→ (f − f q)/t,. . .



13

III. Generalized-equivariant algebriac geometry
Principal categories of algebraic geometry:

Ringop = Aff ⊂ Sch ⊂ AlgSp ⊂ Shét(Aff) ⊂ PSh(Aff)

Is it possible to extend the theory of generalized symmetries from
Ring to non-affine schemes?

I Monoid and Lie algebra actions (linear symmetries) are OK:
G -schemes, g-schemes

I Can this be done for p-derivations and similar non-linear
symmetries? (Yes! See below.)

I Can this be done for every composition ring?
I Could there some kind of new generalized symmetry structures

that exist only at the non-affine level?
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δ-structures on schemes (Greenberg, Buium, me)
Given a functor X : Ring→ Set, define

Wn∗(X ) : C 7→ X (Wn(C )),

where Wn(C ) is the ring of truncated Witt vectors (a0, . . . , an).

I Wn(C ) is analogous to the truncated power series ring.
So Wn∗(X ) is a Witt vector analogue of the n-th jet space, the
“arithmetic jet space”

Thm: If X is a scheme, then so is Wn∗(X ). Likewise for algebraic
spaces and sheaves in the étale topology.

I This allows us to extend the theory of p-derivations,
δ-structures, and Witt vectors from rings to schemes →
“δ-equivariant algebraic geometry”

I The proof (Illusie, van der Kallen, Langer–Zink, me) is not
formal!
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So Wn∗(X ) is a Witt vector analogue of the n-th jet space, the
“arithmetic jet space”

Thm: If X is a scheme, then so is Wn∗(X ). Likewise for algebraic
spaces and sheaves in the étale topology.

I This allows us to extend the theory of p-derivations,
δ-structures, and Witt vectors from rings to schemes →
“δ-equivariant algebraic geometry”

I The proof (Illusie, van der Kallen, Langer–Zink, me) is not
formal!



15

Hilbert’s 12th Problem
Given a finite extension K/Q, is there an explicit description of
K ab, its maximal Galois extension with abelian Galois group?

I K = Q: Yes, the Kronecker–Weber theorem (1853–1896):
adjoin all roots of unity exp(2πin ) to Q

I K = Q(
√
−d), d > 0: Yes, Kronecker’s Jugendtraum

(1850s–1920): adjoin certain special values of elliptic and
modular functions to Q(

√
−d)

I Nowadays, people usually express them in terms of adjoining
the coordinates of torsion points on commutative group
schemes, instead of special values of transcendental functions

I No other answers to H12 are known. But H12 is imprecise!
I Class field theory (Hilbert–Takagi–Artin, 1896–1927) gives an

explicit description of Gal(K ab/K )—but not of K ab!
I New idea: Use periodic points on ΛK -schemes instead!
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ΛK -structures
Fix a finite extension K/Q. Let OK denote its subring of algebraic
integers. Let R be an OK -algebra.

I A ΛK -structure on R is a commuting family of endomorphisms
ψp, one for each nonzero prime ideal p ⊂ OK such that
ψp(x) ≡ xN(p) mod pR , where N(p) = |OK/p|.

I Similarly for schemes.
I If there is nontrivial torsion, we have to interpret all this in the

enlightened way, as with Frobenius lifts at a single prime.
I → composition OK -algebra ΛK , again nonlinear!
I Wilkerson, Joyal: ΛQ-ring = λ-ring as in K-theory
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ΛK -structures and Hilbert’s 12th Problem (with de Smit)

I Given a ΛK -scheme X , a point x is periodic if ψp(x) is
periodic as a function of p (in a certain technical sense)

I E.g. K = Q, X (C ) = C ∗, ψp(x) = xp

Then x is periodic ⇔ x is a root of unity
I Thm: The coordinates of the periodic points of X generate an

abelian extension of K (if X is of finite type).
I An extension L/K is Λ-geometric if it can be generated by the

periodic points of some such X

I This allows for a yes/no formulation of Hilbert’s 12th Problem:
Is K ab/K a Λ-geometric extension?

I Thm: Yes, in the Kroneckerian cases: Q and Q(
√
−d).

I Any answer, positive or negative, for any other K would be
very interesting!
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IV. Concluding questions

I Given any composition ring P , can the notion of P-structure
be extended from rings to schemes?

I Yes in the cases we care most about so far: linear,
δ-structures, Λ-structures

I But the non-linear ones here require real theorems!
I However, that might be enough in general if there is a

classification result for composition rings
I Can we make sense of END(X ) for non-affine schemes?

I If so, we might hope to find new ΛK -schemes, and hence say
something about Hilbert’s 12th Problem, by looking and
END(X ) for specific X , say P2

OK

I Can one classify the composition objects in CAlgR≥0
?

I There are nonlinear ones! Use positivity instead of integrality!

I There must be many examples of other categories of algebras
with generalized symmetries which are interesting and
important!
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