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Introduction

I Two categorical approaches to classical universal algebra:

1. Finitary monads T on Set.
2. Lawvere theories: identity on objects functors F→ T that

preserve finite coproducts, where F is a skeleton of finite sets.

I Equivalent approaches – equivalence of categories
Mndf (Set) ' Law which commutes with semantics.

I Many generalisations of this story – other bases than Set,
enrichment, other shapes of operations than finite . . .

I Today - a general class of monad–theory correspondences,
that arise naturally. Joint work with Richard Garner – see
“Monads and theories”(BG18).

I Closely related to, and inspired by, the notions of monad and
theories with arities of Berger, Mellies and Weber (BMW12) –
but has advantages.
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The basic context

I V a locally presentable symmetric monoidal closed category.
Eg. Set!

I E a locally presentable V-category and

K : A ↪→ E

a small dense full subcategory of arities .

I Main examples I will talk about are when V = Set.

I The K -nerve functor NK = E(K−, 1) : E → [Aop,V] is fully
faithful.

I If X : Aop → V is isomorphic to NKA we say that X is a
K -nerve.
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Examples of the basic context

I E = Set and A = F the full subcategory of finite cardinals.

I K -nerves Fop → Set ≡ finite product preserving functors.

I E a locally finitely presentable category and K : Ef → E the
inclusion of the skeletal full subcategory of finitely presentable
objects.

I K -nerves Eopf → Set ≡ finite limit preserving functors.

I Standard kinds of examples – E the free cocompletion of A
under some class of colimit.
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Examples of the basic context II

I E = Grph and A = ∆0. Contains graphs

[n] := 0 // 1 // · · · // n for n > 0.

I K -nerves ∆op
0 → Set ≡ functors sending the wide pushouts

[n] ∼= [1] +[0] [1] +[0] . . .+[0] [1]

to wide pullbacks (Segal condition).

I E = [Gop,Set] the category of globular sets, and A = Θ0 the
full subcategory of globular cardinals.

• •// • • •//
��
@@
//

��

��

I Globular sets indexing operations in higher categories.
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Pretheories and their models

I An A-pretheory J : A → T is an identity on objects functor.

I Category of concrete models is the pullback

Modc(T )
_�

PT //

UT
��

[T op,V]

[Jop,1]
��

E NK // [Aop,V]

Object: a pair (X ∈ E ,F : T op → V) with
NKX = F ◦ Jop : Aop → T op → V. (See also Tom Avery’s
prototheories.)

I Also ordinary model – a functor F : T op → V with
F ◦ Jop : Aop → T op → V a K -nerve.

I The functor Modc(T )→Mod(T ) from concrete to
non-concrete models is an equivalence.
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From a monad to a pretheory

I Category of pretheories PrethA(E) ↪→ A/V-Cat is full
subcategory consisting of A-pretheories.

I Given a monad T on E form A-pretheory JT : A → AT by
taking (identity on objects/fully faithful)-factorisation:

A

K
��

JT // AT

KT
��

E FT
// ET

I So ob(AT) = ob(A) and AT(X ,Y ) = ET(FTKX ,FTKY ).
I Gives a functor

R : Mnd(E)→ PrethA(E) : T 7→ JT : A → AT

from monads on E to A-pretheories.
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The adjunction between monads and pretheories

I Theorem (BG18)

The two constructions form an adjoint pair

Mnd(E)
R

//⊥ PrethA(E)
Loo

.

I Any adjunction restrict to an equivalence between its fixpoints:
i.e. objects at which the unit and counit are invertible.

I What are the fixpoints?
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Fixpoints 1 - A-nervous monads

I Recall

A JT // AT
KT // ET = A K // E FT

// ET

I Theorem (Weber’s nerve theorem)
If the monad T has arities A then

1. KT : AT → ET is dense (i.e. NKT
: ET → [Aop

T ,V] is fully
faithful) and

2. X : Aop
T → V is a KT -nerve iff X ◦ JopT : Aop → Aop

T → V is a
K -nerve.

We say that a monad T is A-nervous if Properties (1) and (2)
above hold.

Theorem (BG18)

A monad T is A-nervous if and only if εT : LRT → T is invertible.
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Fixpoints 2 - A-theories

I A pretheory J : A → T is an A-theory if for each X ∈ T the
functor T (J−,X ) : Aop → T op → V is a K -nerve.

I This just means that each representable T (−,X ) : T op → V
is a T -model.

Theorem (BG18)

A pretheory T is an A-theory if and only if ηT : T → RLT is
invertible.
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Theorem (BG18)

The adjunction between monads and pretheories restricts to an
adjoint equivalence

MndA(E)
R

//⊥ ThA(E)
Loo

(3.1)

between the categories of A-nervous monads and of A-theories.

I The equivalence commutes with semantics.
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A-theories capture in practice?

I In context F ↪→ Set the F-theories are the classical Lawvere
theories.

I Ef -theories are i.o.o. finite colimit preserving functors
Ef → T . I.e. Lawvere E-theories – Nishizawa/Power (09).

I ∆0-theories ∆0 → T are those functors preserving the wide
pushouts [n] ∼= [1] +[0] [1] +[0] . . .+[0] [1]. Capture structures
like small categories, groupoids.The ∆0-theory for groupoids is
not a theory with arities ∆0 in the sense of (BMW12).

I Θ0-theories are precisely the globular theories of Berger.They
capture Batanin higher dimensional categories (Berger02).
The Grothendieck weak ω-groupoids introduced by
Maltsiniotis in 2010 are defined as models of certain globular
theories – so we capture these.
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not a theory with arities ∆0 in the sense of (BMW12).

I Θ0-theories are precisely the globular theories of Berger.They
capture Batanin higher dimensional categories (Berger02).
The Grothendieck weak ω-groupoids introduced by
Maltsiniotis in 2010 are defined as models of certain globular
theories – so we capture these.
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Main theorems

Pinning down nervous monads via their good properties

I MndA(E) is locally presentable, though Mnd(E) isn’t
cocomplete.

I Colimits of nervous monads are algebraic: sent to limits by
Alg : MndA(E)op → Cat/E .

I SigA(E) = [obA, E ] the category of A-signatures. E.g. in the
classical case we get usual finitary signatures [obF,Set].

I Forgetful functor U : Mnd(E)→ SigA(E) has a left adjoint
F : SigA(E)→Mnd(E) and each free monad on a signature
is A-nervous.

I Theorem (BG18)

The monad T = UF on SigA(E) has MndA(E) as its category of
algebras. In particular, the nervous monads are the colimit closure
in Mnd(E) of the free monads on A-signatures.
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Main theorems

Recapturing the classical case

I The context K : A → E is said to be saturated if the class of
endofunctors E → E that are left Kan extensions along K are
closed under composition.

I I.e. if E is free cocompletion of A under some class of
colimit-shape.

I Theorem (BG18)

If A is saturated then T : E → E is nervous iff it is the left Kan
extension of its restriction along K : A → E .

I Hence F-nervous monads are the filtered colimit preserving
ones, etc.

I But ∆0 and Θ0 are not saturated – here we go beyond the
classical setting.
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