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Introduction

» Two categorical approaches to classical universal algebra:
1. Finitary monads T on Set.
2. Lawvere theories: identity on objects functors F — 7 that
preserve finite coproducts, where [ is a skeleton of finite sets.

» Equivalent approaches — equivalence of categories
Mnd¢(Set) ~ Law which commutes with semantics.

» Many generalisations of this story — other bases than Set,
enrichment, other shapes of operations than finite ...

» Today - a general class of monad—theory correspondences,
that arise naturally. Joint work with Richard Garner — see
“Monads and theories” (BG18).

» Closely related to, and inspired by, the notions of monad and
theories with arities of Berger, Mellies and Weber (BMW12) —
but has advantages.
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The basic context

>

V a locally presentable symmetric monoidal closed category.
Eg. Set!

£ a locally presentable V-category and

v

K:A—=¢&

a small dense full subcategory of arities .

» Main examples | will talk about are when V = Set.

» The K-nerve functor N = E(K—,1) : &€ — [A%, V] is fully
faithful.

> If X : A% — V is isomorphic to NxA we say that X is a
K-nerve.
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Examples of the basic context Il

» £ = Grph and A = Ag. Contains graphs

[n] =0 1 n for n > 0.

» K-nerves Ag” — Set = functors sending the wide pushouts
[n] = [1] +o] [1] +o] - - - o] [1]

to wide pullbacks (Segal condition).
» £ = [G°P, Set] the category of globular sets, and A = © the
full subcategory of globular cardinals.

e ———>0 [ J [ J

» Globular sets indexing operations in higher categories.
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» An A-pretheory J: A — T is an identity on objects functor.
» Category of concrete models is the pullback

Mod(T) —Z [T°P, V]

2
o |
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& K [A%PY)

Object: a pair (X € E,F : T’ — V) with
NkX = F o Jo% : A% — T — V. (See also Tom Avery's
prototheories.)

» Also ordinary model — a functor F : T°P — V with
FoJoP: A% — T — YV a K-nerve.

» The functor Mod (7)) — Mod(7) from concrete to
non-concrete models is an equivalence.
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From a monad to a pretheory

» Category of pretheories Preth 4(€) — A/V-Cat is full
subcategory consisting of A-pretheories.

» Given a monad T on £ form A-pretheory J: A — At by
taking (identity on objects/fully faithful)-factorisation:

AT Ar

Kl iKT
& *>5T
» So ob(A1) = ob(A) and AT(X,Y) = ET(FTKX, FTKY).
» Gives a functor

R:Mnd(€) — Prethy(€): T — Jr: A— At

from monads on &£ to A-pretheories.
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From a pretheory to a monad

» Given pretheory J : A — T recall the category of models.

Mod(T) 2% [T°P, V]

3
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N

£ ———[A"V]

» Forgetful functor Uy : Mod (7)) — & is strictly monadic,
inducing a monad L7 on €.

» Gives a functor L : Preth4(&) — Mnd(€&).
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Main theorems

The adjunction between monads and pretheories

» Theorem (BG18)
The two constructions form an adjoint pair

L
-
Mnd(€&) ; Preth4(&)
» Any adjunction restrict to an equivalence between its fixpoints:

i.e. objects at which the unit and counit are invertible.
» What are the fixpoints?
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Fixpoints 1 - 4-nervous monads

» Recall

ALATgST:A—KNS’iNST
» Theorem (Weber's nerve theorem)
If the monad T has arities A then
1. Kr: Ar — ET is dense (i.e. Ny, : ET — [AP, V] is fully
faithful) and
2. X: AP = Visa Kr-nerve iff X o JF¥ : A% — AP = Vs a
K-nerve.
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Fixpoints 1 - 4-nervous monads

» Recall

ALAT£>ST :ALgigT
» Theorem (Weber's nerve theorem)
If the monad T has arities A then
1. Kr: Ar — ET is dense (i.e. Ny, : ET — [AP, V] is fully
faithful) and
2. X: AP = Visa Kr-nerve iff X o JF¥ : A% — AP = Vs a
K-nerve.
We say that a monad T is A-nervous if Properties (1) and (2)
above hold.

Theorem (BG18)
A monad T is A-nervous if and only if e : LRT — T is invertible.
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A-theories capture in practice?

» In context F < Set the F-theories are the classical Lawvere
theories.

> E¢-theories are i.0.0. finite colimit preserving functors
Er — T. le. Lawvere E-theories — Nishizawa/Power (09).

» Ag-theories Ag — T are those functors preserving the wide
pushouts [n] = [1] +(o) [1] +oj - - - +o) [L]. Capture structures
like small categories, groupoids.The Ag-theory for groupoids is
not a theory with arities Ag in the sense of (BMW12).

» Og-theories are precisely the globular theories of Berger. They
capture Batanin higher dimensional categories (Berger02).
The Grothendieck weak w-groupoids introduced by
Maltsiniotis in 2010 are defined as models of certain globular
theories — so we capture these.
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cocomplete.
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Pinning down nervous monads via their good properties

» Mnd_4(€) is locally presentable, though Mnd(&) isn't
cocomplete.

» Colimits of nervous monads are algebraic: sent to limits by
Alg : Mnd 4(€)°P — Cat/E.

» Sig 4(€) = [obA, £] the category of A-signatures. E.g. in the
classical case we get usual finitary signatures [obF, Set].

» Forgetful functor U : Mnd(E) — Sig 4(€) has a left adjoint

F : Sig 4(£) — Mnd(€) and each free monad on a signature
is A-nervous.

» Theorem (BG18)

The monad T = UF on Sig 4(€) has Mnd 4(&) as its category of
algebras. In particular, the nervous monads are the colimit closure
in Mnd(&) of the free monads on A-signatures.
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endofunctors £ — & that are left Kan extensions along K are
closed under composition.
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colimit-shape.
» Theorem (BG18)

If A is saturated then T : £ — &£ is nervous iff it is the left Kan
extension of its restriction along K : A — &.
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Recapturing the classical case

» The context K : A — £ is said to be saturated if the class of
endofunctors £ — & that are left Kan extensions along K are
closed under composition.

> le. if £ is free cocompletion of A under some class of
colimit-shape.
» Theorem (BG18)

If A is saturated then T : £ — &£ is nervous iff it is the left Kan
extension of its restriction along K : A — &.

» Hence F-nervous monads are the filtered colimit preserving
ones, etc.

» But Ap and ©g are not saturated — here we go beyond the
classical setting.
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