# Monads and theories

#### John Bourke (joint work with Richard Garner)

Department of Mathematics and Statistics Masaryk University

#### CT2018

# Introduction

Two categorical approaches to classical universal algebra:

- Two categorical approaches to classical universal algebra:
  - 1. Finitary monads T on **Set**.

- Two categorical approaches to classical universal algebra:
  - 1. Finitary monads T on **Set**.
  - 2. Lawvere theories: identity on objects functors  $\mathbb{F} \to \mathcal{T}$  that preserve finite coproducts, where  $\mathbb{F}$  is a skeleton of finite sets.

- Two categorical approaches to classical universal algebra:
  - 1. Finitary monads T on **Set**.
  - 2. Lawvere theories: identity on objects functors  $\mathbb{F} \to \mathcal{T}$  that preserve finite coproducts, where  $\mathbb{F}$  is a skeleton of finite sets.
- Equivalent approaches equivalence of categories
  Mnd<sub>f</sub>(Set) ~ Law which commutes with semantics.

- Two categorical approaches to classical universal algebra:
  - 1. Finitary monads T on **Set**.
  - 2. Lawvere theories: identity on objects functors  $\mathbb{F} \to \mathcal{T}$  that preserve finite coproducts, where  $\mathbb{F}$  is a skeleton of finite sets.
- Equivalent approaches equivalence of categories
  Mnd<sub>f</sub>(Set) ~ Law which commutes with semantics.
- Many generalisations of this story other bases than Set, enrichment, other shapes of operations than finite ...

- Two categorical approaches to classical universal algebra:
  - 1. Finitary monads T on **Set**.
  - 2. Lawvere theories: identity on objects functors  $\mathbb{F} \to \mathcal{T}$  that preserve finite coproducts, where  $\mathbb{F}$  is a skeleton of finite sets.
- Equivalent approaches equivalence of categories
  Mnd<sub>f</sub>(Set) ~ Law which commutes with semantics.
- Many generalisations of this story other bases than Set, enrichment, other shapes of operations than finite ...
- Today a general class of monad-theory correspondences, that arise naturally. Joint work with Richard Garner - see "Monads and theories" (BG18).

- ► Two categorical approaches to classical universal algebra:
  - 1. Finitary monads T on **Set**.
  - 2. Lawvere theories: identity on objects functors  $\mathbb{F}\to \mathcal{T}$  that preserve finite coproducts, where  $\mathbb{F}$  is a skeleton of finite sets.
- Equivalent approaches equivalence of categories
  Mnd<sub>f</sub>(Set) ~ Law which commutes with semantics.
- Many generalisations of this story other bases than Set, enrichment, other shapes of operations than finite ...
- Today a general class of monad-theory correspondences, that arise naturally. Joint work with Richard Garner - see "Monads and theories" (BG18).
- Closely related to, and inspired by, the notions of monad and theories with arities of Berger, Mellies and Weber (BMW12) – but has advantages.

# The basic context

➤ V a locally presentable symmetric monoidal closed category. Eg. Set!

# The basic context

- ➤ V a locally presentable symmetric monoidal closed category. Eg. Set!
- $\blacktriangleright~\mathcal{E}$  a locally presentable  $\mathcal{V}\text{-}\mathsf{category}$  and

 $K:\mathcal{A}\hookrightarrow\mathcal{E}$ 

a small dense full subcategory of arities .

# The basic context

- V a locally presentable symmetric monoidal closed category.
  Eg. Set!
- $\blacktriangleright~\mathcal{E}$  a locally presentable  $\mathcal{V}\text{-}\mathsf{category}$  and

 $K:\mathcal{A}\hookrightarrow\mathcal{E}$ 

a small dense full subcategory of arities .

• Main examples I will talk about are when  $\mathcal{V} = \mathbf{Set}$ .

# The basic context

- V a locally presentable symmetric monoidal closed category.
  Eg. Set!
- $\blacktriangleright~\mathcal{E}$  a locally presentable  $\mathcal{V}\text{-}\mathsf{category}$  and

$$K:\mathcal{A}\hookrightarrow\mathcal{E}$$

a small dense full subcategory of arities .

- Main examples I will talk about are when  $\mathcal{V} = \mathbf{Set}$ .
- ▶ The *K*-nerve functor  $N_K = \mathcal{E}(K-, 1) : \mathcal{E} \to [\mathcal{A}^{op}, \mathcal{V}]$  is fully faithful.

# The basic context

- V a locally presentable symmetric monoidal closed category.
  Eg. Set!
- $\blacktriangleright~\mathcal{E}$  a locally presentable  $\mathcal{V}\text{-}\mathsf{category}$  and

$$K:\mathcal{A}\hookrightarrow\mathcal{E}$$

a small dense full subcategory of arities .

- Main examples I will talk about are when  $\mathcal{V} = \mathbf{Set}$ .
- ▶ The *K*-nerve functor  $N_K = \mathcal{E}(K-, 1) : \mathcal{E} \to [\mathcal{A}^{op}, \mathcal{V}]$  is fully faithful.
- If X : A<sup>op</sup> → V is isomorphic to N<sub>K</sub>A we say that X is a K-nerve.

## Examples of the basic context

•  $\mathcal{E} = \mathbf{Set}$  and  $\mathcal{A} = \mathbb{F}$  the full subcategory of finite cardinals.

- $\mathcal{E} = \mathbf{Set}$  and  $\mathcal{A} = \mathbb{F}$  the full subcategory of finite cardinals.
- *K*-nerves  $\mathbb{F}^{op} \to \mathbf{Set} \equiv \text{finite product preserving functors.}$

- $\mathcal{E} = \mathbf{Set}$  and  $\mathcal{A} = \mathbb{F}$  the full subcategory of finite cardinals.
- *K*-nerves  $\mathbb{F}^{op} \to \mathbf{Set} \equiv \text{finite product preserving functors.}$
- ➤ *E* a locally finitely presentable category and *K* : *E<sub>f</sub>* → *E* the inclusion of the skeletal full subcategory of finitely presentable objects.

- $\mathcal{E} = \mathbf{Set}$  and  $\mathcal{A} = \mathbb{F}$  the full subcategory of finite cardinals.
- *K*-nerves  $\mathbb{F}^{op} \to \mathbf{Set} \equiv \text{finite product preserving functors.}$
- ➤ *E* a locally finitely presentable category and *K* : *E<sub>f</sub>* → *E* the inclusion of the skeletal full subcategory of finitely presentable objects.
- *K*-nerves  $\mathcal{E}_f^{op} \to \mathbf{Set} \equiv \text{finite limit preserving functors.}$

- $\mathcal{E} = \mathbf{Set}$  and  $\mathcal{A} = \mathbb{F}$  the full subcategory of finite cardinals.
- *K*-nerves  $\mathbb{F}^{op} \to \mathbf{Set} \equiv \text{finite product preserving functors.}$
- ➤ *E* a locally finitely presentable category and *K* : *E<sub>f</sub>* → *E* the inclusion of the skeletal full subcategory of finitely presentable objects.
- *K*-nerves  $\mathcal{E}_f^{op} \to \mathbf{Set} \equiv \text{finite limit preserving functors.}$
- Standard kinds of examples E the free cocompletion of A under some class of colimit.

- $\mathcal{E} = \mathbf{Set}$  and  $\mathcal{A} = \mathbb{F}$  the full subcategory of finite cardinals.
- *K*-nerves  $\mathbb{F}^{op} \to \mathbf{Set} \equiv \text{finite product preserving functors.}$
- ➤ *E* a locally finitely presentable category and *K* : *E<sub>f</sub>* → *E* the inclusion of the skeletal full subcategory of finitely presentable objects.
- *K*-nerves  $\mathcal{E}_f^{op} \to \mathbf{Set} \equiv \text{finite limit preserving functors.}$
- Standard kinds of examples E the free cocompletion of A under some class of colimit.

## Examples of the basic context II

•  $\mathcal{E} = \mathbf{Grph}$  and  $\mathcal{A} = \Delta_0$ . Contains graphs

$$[n] := 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow n \qquad \text{for } n > 0.$$

# Examples of the basic context II

•  $\mathcal{E} = \mathbf{Grph}$  and  $\mathcal{A} = \Delta_0$ . Contains graphs

 $[n] := 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow n \quad \text{for } n > 0.$ 

• *K*-nerves  $\Delta_0^{op} \rightarrow \mathbf{Set} \equiv$ functors sending the wide pushouts

 $[n] \cong [1] +_{[0]} [1] +_{[0]} \dots +_{[0]} [1]$ 

to wide pullbacks (Segal condition).

# Examples of the basic context II

•  $\mathcal{E} = \mathbf{Grph}$  and  $\mathcal{A} = \Delta_0$ . Contains graphs

 $[n] := 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow n \quad \text{for } n > 0.$ 

• K-nerves  $\Delta_0^{op} \rightarrow \mathbf{Set} \equiv \text{functors sending the wide pushouts}$ 

$$[n] \cong [1] +_{[0]} [1] +_{[0]} \dots +_{[0]} [1]$$

to wide pullbacks (Segal condition).

E = [G<sup>op</sup>, Set] the category of globular sets, and A = Θ<sub>0</sub> the full subcategory of globular cardinals.

# Examples of the basic context II

•  $\mathcal{E} = \mathbf{Grph}$  and  $\mathcal{A} = \Delta_0$ . Contains graphs

 $[n] := 0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow n \quad \text{for } n > 0.$ 

• K-nerves  $\Delta_0^{op} \rightarrow \mathbf{Set} \equiv$  functors sending the wide pushouts

$$[n] \cong [1] +_{[0]} [1] +_{[0]} \dots +_{[0]} [1]$$

to wide pullbacks (Segal condition).

► *E* = [G<sup>op</sup>, Set] the category of globular sets, and *A* = Θ<sub>0</sub> the full subcategory of globular cardinals.

$$\bullet \longrightarrow \bullet \qquad \bullet \longrightarrow \bullet \xrightarrow{\psi} \bullet$$

Globular sets indexing operations in higher categories.

## Pretheories and their models

▶ An A-pretheory  $J : A \to T$  is an identity on objects functor.

## Pretheories and their models

- An A-pretheory  $J : A \to T$  is an identity on objects functor.
- Category of concrete models is the pullback

$$\begin{array}{c} \mathsf{Mod}_{c}(\mathcal{T}) \xrightarrow{P_{\mathcal{T}}} [\mathcal{T}^{\mathrm{op}}, \mathcal{V}] \\ \downarrow & \downarrow \\ \mathcal{U}_{\mathcal{T}} \\ \downarrow & \downarrow \\ \mathcal{E} \xrightarrow{N_{K}} [\mathcal{A}^{\mathrm{op}}, \mathcal{V}] \end{array}$$

Object: a pair  $(X \in \mathcal{E}, F : \mathcal{T}^{op} \to \mathcal{V})$  with  $N_K X = F \circ J^{op} : \mathcal{A}^{op} \to \mathcal{T}^{op} \to \mathcal{V}$ . (See also Tom Avery's prototheories.)

## Pretheories and their models

- ▶ An A-pretheory  $J : A \to T$  is an identity on objects functor.
- Category of concrete models is the pullback

$$\begin{array}{c} \mathsf{Mod}_{c}(\mathcal{T}) \xrightarrow{\mathcal{P}_{\mathcal{T}}} [\mathcal{T}^{\mathrm{op}}, \mathcal{V}] \\ \downarrow & \downarrow \\ \mathcal{U}_{\mathcal{T}} \\ \downarrow & \downarrow \\ \mathcal{E} \xrightarrow{N_{\mathcal{K}}} [\mathcal{A}^{\mathrm{op}}, \mathcal{V}] \end{array}$$

Object: a pair  $(X \in \mathcal{E}, F : \mathcal{T}^{op} \to \mathcal{V})$  with  $N_K X = F \circ J^{op} : \mathcal{A}^{op} \to \mathcal{T}^{op} \to \mathcal{V}$ . (See also Tom Avery's prototheories.)

 Also ordinary model – a functor F : T<sup>op</sup> → V with F ∘ J<sup>op</sup> : A<sup>op</sup> → T<sup>op</sup> → V a K-nerve.

# Pretheories and their models

- ▶ An A-pretheory  $J : A \to T$  is an identity on objects functor.
- Category of concrete models is the pullback

$$\begin{array}{c} \mathsf{Mod}_{c}(\mathcal{T}) \xrightarrow{\mathcal{P}_{\mathcal{T}}} [\mathcal{T}^{\mathrm{op}}, \mathcal{V}] \\ \downarrow & \downarrow \\ \mathcal{U}_{\mathcal{T}} \downarrow & \downarrow [\mathcal{J}^{\mathrm{op}}, 1] \\ \mathcal{E} \xrightarrow{\mathcal{N}_{\mathcal{K}}} [\mathcal{A}^{\mathrm{op}}, \mathcal{V}] \end{array}$$

Object: a pair  $(X \in \mathcal{E}, F : \mathcal{T}^{op} \to \mathcal{V})$  with  $N_K X = F \circ J^{op} : \mathcal{A}^{op} \to \mathcal{T}^{op} \to \mathcal{V}$ . (See also Tom Avery's prototheories.)

- Also ordinary model a functor F : T<sup>op</sup> → V with F ∘ J<sup>op</sup> : A<sup>op</sup> → T<sup>op</sup> → V a K-nerve.
- ► The functor Mod<sub>c</sub>(T) → Mod(T) from concrete to non-concrete models is an equivalence.

# From a monad to a pretheory

► Category of pretheories Preth<sub>A</sub>(E) → A/V-Cat is full subcategory consisting of A-pretheories.

## From a monad to a pretheory

- ► Category of pretheories Preth<sub>A</sub>(E) → A/V-Cat is full subcategory consisting of A-pretheories.
- ► Given a monad T on E form A-pretheory J<sub>T</sub> : A → A<sub>T</sub> by taking (identity on objects/fully faithful)-factorisation:



## From a monad to a pretheory

- ► Category of pretheories **Preth**<sub>A</sub>(E) → A/V-**Cat** is full subcategory consisting of A-pretheories.
- ► Given a monad T on E form A-pretheory J<sub>T</sub> : A → A<sub>T</sub> by taking (identity on objects/fully faithful)-factorisation:



• So  $ob(\mathcal{A}_{\mathsf{T}}) = ob(\mathcal{A})$  and  $\mathcal{A}_{\mathsf{T}}(X, Y) = \mathcal{E}^{\mathsf{T}}(F^{\mathsf{T}}KX, F^{\mathsf{T}}KY)$ .

# From a monad to a pretheory

- ► Category of pretheories Preth<sub>A</sub>(E) → A/V-Cat is full subcategory consisting of A-pretheories.
- ► Given a monad T on E form A-pretheory J<sub>T</sub> : A → A<sub>T</sub> by taking (identity on objects/fully faithful)-factorisation:



- So  $ob(\mathcal{A}_{\mathsf{T}}) = ob(\mathcal{A})$  and  $\mathcal{A}_{\mathsf{T}}(X, Y) = \mathcal{E}^{\mathsf{T}}(\mathcal{F}^{\mathsf{T}}\mathcal{K}X, \mathcal{F}^{\mathsf{T}}\mathcal{K}Y).$
- Gives a functor

$$R: \mathbf{Mnd}(\mathcal{E}) \to \mathbf{Preth}_{\mathcal{A}}(\mathcal{E}): \mathsf{T} \mapsto J_{\mathcal{T}}: \mathcal{A} \to \mathcal{A}_{\mathsf{T}}$$

from monads on  ${\mathcal E}$  to  ${\mathcal A}$ -pretheories.

## From a pretheory to a monad

• Given pretheory  $J : A \to T$  recall the category of models.

$$\begin{array}{c} \mathsf{Mod}_{c}(\mathcal{T}) \xrightarrow{P_{\mathcal{T}}} [\mathcal{T}^{\mathrm{op}}, \mathcal{V}] \\ \downarrow \\ \mathcal{U}_{\mathcal{T}} \\ \downarrow \\ \mathcal{E} \xrightarrow{N_{\mathcal{K}}} [\mathcal{A}^{\mathrm{op}}, \mathcal{V}] \end{array}$$

Forgetful functor U<sub>T</sub> : Mod<sub>c</sub>(T) → E is strictly monadic, inducing a monad LT on E.

## From a pretheory to a monad

• Given pretheory  $J : A \to T$  recall the category of models.

$$\begin{array}{c} \mathsf{Mod}_{c}(\mathcal{T}) \xrightarrow{P_{\mathcal{T}}} [\mathcal{T}^{\mathrm{op}}, \mathcal{V}] \\ \downarrow & \downarrow \\ \mathcal{U}_{\mathcal{T}} \downarrow & \downarrow \\ \mathcal{E} \xrightarrow{N_{\mathcal{K}}} [\mathcal{A}^{\mathrm{op}}, \mathcal{V}] \end{array}$$

- Forgetful functor U<sub>T</sub> : Mod<sub>c</sub>(T) → E is strictly monadic, inducing a monad LT on E.
- Gives a functor L: **Preth**<sub> $\mathcal{A}$ </sub>( $\mathcal{E}$ )  $\rightarrow$  **Mnd**( $\mathcal{E}$ ).

## The adjunction between monads and pretheories

#### ► Theorem (BG18)

The two constructions form an adjoint pair

$$\mathsf{Mnd}(\mathcal{E}) \xrightarrow[R]{\underline{\ }} \mathsf{Preth}_{\mathcal{A}}(\mathcal{E})$$

.

## The adjunction between monads and pretheories

#### ► Theorem (BG18)

The two constructions form an adjoint pair

$$\mathsf{Mnd}(\mathcal{E}) \xrightarrow[R]{\underline{\ }} \mathsf{Preth}_{\mathcal{A}}(\mathcal{E})$$

Any adjunction restrict to an equivalence between its fixpoints:
 i.e. objects at which the unit and counit are invertible.

## The adjunction between monads and pretheories

#### ► Theorem (BG18)

The two constructions form an adjoint pair

$$\mathsf{Mnd}(\mathcal{E}) \xrightarrow[R]{\underline{\ }} \mathsf{Preth}_{\mathcal{A}}(\mathcal{E})$$

- Any adjunction restrict to an equivalence between its fixpoints:
  i.e. objects at which the unit and counit are invertible.
- What are the fixpoints?

# Fixpoints 1 - $\mathcal{A}$ -nervous monads

#### Recall

$$\mathcal{A} \xrightarrow{J_T} \mathcal{A}_T \xrightarrow{K_T} \mathcal{E}^T = \mathcal{A} \xrightarrow{K} \mathcal{E} \xrightarrow{F^T} \mathcal{E}^T$$

# Theorem (Weber's nerve theorem) If the monad T has arities A then

- 1.  $K_T : A_T \to \mathcal{E}^T$  is dense (i.e.  $N_{K_T} : \mathcal{E}^T \to [\mathcal{A}_T^{op}, \mathcal{V}]$  is fully faithful) and
- 2.  $X : \mathcal{A}_T^{op} \to \mathcal{V}$  is a  $K_T$ -nerve iff  $X \circ J_T^{op} : \mathcal{A}^{op} \to \mathcal{A}_T^{op} \to \mathcal{V}$  is a *K*-nerve.

# Fixpoints 1 - $\mathcal{A}$ -nervous monads

#### Recall

$$\mathcal{A} \xrightarrow{J_T} \mathcal{A}_T \xrightarrow{K_T} \mathcal{E}^T = \mathcal{A} \xrightarrow{K} \mathcal{E} \xrightarrow{F^T} \mathcal{E}^T$$

Theorem (Weber's nerve theorem)
 If the monad T has arities A then

- 1.  $K_T : A_T \to \mathcal{E}^T$  is dense (i.e.  $N_{K_T} : \mathcal{E}^T \to [\mathcal{A}_T^{op}, \mathcal{V}]$  is fully faithful) and
- 2.  $X : \mathcal{A}_T^{op} \to \mathcal{V}$  is a  $K_T$ -nerve iff  $X \circ J_T^{op} : \mathcal{A}^{op} \to \mathcal{A}_T^{op} \to \mathcal{V}$  is a *K*-nerve.

We say that a monad T is A-nervous if Properties (1) and (2) above hold.

#### Theorem (BG18)

A monad T is A-nervous if and only if  $\epsilon_T : LRT \to T$  is invertible.

# Fixpoints 2 - A-theories

A pretheory J: A → T is an A-theory if for each X ∈ T the functor T(J-, X): A<sup>op</sup> → T<sup>op</sup> → V is a K-nerve.

# Fixpoints 2 - A-theories

- A pretheory J : A → T is an A-theory if for each X ∈ T the functor T(J−, X) : A<sup>op</sup> → T<sup>op</sup> → V is a K-nerve.
- ► This just means that each representable T(-, X) : T<sup>op</sup> → V is a T-model.

# Fixpoints 2 - A-theories

- A pretheory J: A → T is an A-theory if for each X ∈ T the functor T(J−, X): A<sup>op</sup> → T<sup>op</sup> → V is a K-nerve.
- ► This just means that each representable T(-, X) : T<sup>op</sup> → V is a T-model.

#### Theorem (BG18)

A pretheory T is an A-theory if and only if  $\eta_T : T \to RLT$  is invertible.

#### Theorem (BG18)

The adjunction between monads and pretheories restricts to an adjoint equivalence

$$\mathsf{Mnd}_{\mathcal{A}}(\mathcal{E}) \xrightarrow[R]{\underbrace{\ }} \mathsf{Th}_{\mathcal{A}}(\mathcal{E})$$
(3.1)

between the categories of *A*-nervous monads and of *A*-theories.

#### Theorem (BG18)

The adjunction between monads and pretheories restricts to an adjoint equivalence

$$\mathsf{Mnd}_{\mathcal{A}}(\mathcal{E}) \xrightarrow[R]{\leq L} \mathsf{Th}_{\mathcal{A}}(\mathcal{E})$$
(3.1)

between the categories of *A*-nervous monads and of *A*-theories.

► The equivalence commutes with semantics.

#### Theorem (BG18)

The adjunction between monads and pretheories restricts to an adjoint equivalence

$$\mathsf{Mnd}_{\mathcal{A}}(\mathcal{E}) \xrightarrow[R]{\leq L} \mathsf{Th}_{\mathcal{A}}(\mathcal{E})$$
(3.1)

between the categories of *A*-nervous monads and of *A*-theories.

► The equivalence commutes with semantics.

# $\mathcal{A}$ -theories capture in practice?

In context 𝑘 → Set the 𝑘-theories are the classical Lawvere theories.

- In context 𝑘 → Set the 𝑘-theories are the classical Lawvere theories.
- *E<sub>f</sub>*-theories are i.o.o. finite colimit preserving functors
  *E<sub>f</sub>* → *T*. I.e. Lawvere *E*-theories Nishizawa/Power (09).

- ▶ In context  $\mathbb{F} \hookrightarrow \textbf{Set}$  the  $\mathbb{F}$ -theories are the classical Lawvere theories.
- *E<sub>f</sub>*-theories are i.o.o. finite colimit preserving functors
  *E<sub>f</sub>* → *T*. I.e. Lawvere *E*-theories Nishizawa/Power (09).
- ▲<sub>0</sub>-theories Δ<sub>0</sub> → T are those functors preserving the wide pushouts [n] ≃ [1] +<sub>[0]</sub> [1] +<sub>[0]</sub> ... +<sub>[0]</sub> [1].

- In context 𝑘 → Set the 𝑘-theories are the classical Lawvere theories.
- *E<sub>f</sub>*-theories are i.o.o. finite colimit preserving functors
  *E<sub>f</sub>* → *T*. I.e. Lawvere *E*-theories Nishizawa/Power (09).
- ∆<sub>0</sub>-theories ∆<sub>0</sub> → T are those functors preserving the wide pushouts [n] ≃ [1] +<sub>[0]</sub> [1] +<sub>[0]</sub> ... +<sub>[0]</sub> [1]. Capture structures like small categories, groupoids.

- ▶ In context  $\mathbb{F} \hookrightarrow \textbf{Set}$  the  $\mathbb{F}$ -theories are the classical Lawvere theories.
- *E<sub>f</sub>*-theories are i.o.o. finite colimit preserving functors
  *E<sub>f</sub>* → *T*. I.e. Lawvere *E*-theories Nishizawa/Power (09).
- ► Δ<sub>0</sub>-theories Δ<sub>0</sub> → T are those functors preserving the wide pushouts [n] ≃ [1] +<sub>[0]</sub> [1] +<sub>[0]</sub> ... +<sub>[0]</sub> [1]. Capture structures like small categories, groupoids. The Δ<sub>0</sub>-theory for groupoids is not a theory with arities Δ<sub>0</sub> in the sense of (BMW12).

- In context 𝑘 → Set the 𝑘-theories are the classical Lawvere theories.
- *E<sub>f</sub>*-theories are i.o.o. finite colimit preserving functors
  *E<sub>f</sub>* → *T*. I.e. Lawvere *E*-theories Nishizawa/Power (09).
- ► Δ<sub>0</sub>-theories Δ<sub>0</sub> → T are those functors preserving the wide pushouts [n] ≃ [1] +<sub>[0]</sub> [1] +<sub>[0]</sub> ... +<sub>[0]</sub> [1]. Capture structures like small categories, groupoids. The Δ<sub>0</sub>-theory for groupoids is not a theory with arities Δ<sub>0</sub> in the sense of (BMW12).
- $\Theta_0$ -theories are precisely the globular theories of Berger.

- ▶ In context  $\mathbb{F} \hookrightarrow \textbf{Set}$  the  $\mathbb{F}$ -theories are the classical Lawvere theories.
- ▶  $\mathcal{E}_{f}$ -theories are i.o.o. finite colimit preserving functors  $\mathcal{E}_{f} \rightarrow \mathcal{T}$ . I.e. Lawvere  $\mathcal{E}$ -theories Nishizawa/Power (09).
- ► Δ<sub>0</sub>-theories Δ<sub>0</sub> → T are those functors preserving the wide pushouts [n] ≃ [1] +<sub>[0]</sub> [1] +<sub>[0]</sub> ... +<sub>[0]</sub> [1]. Capture structures like small categories, groupoids. The Δ<sub>0</sub>-theory for groupoids is not a theory with arities Δ<sub>0</sub> in the sense of (BMW12).
- Θ<sub>0</sub>-theories are precisely the globular theories of Berger. They capture Batanin higher dimensional categories (Berger02). The Grothendieck weak ω-groupoids introduced by Maltsiniotis in 2010 are defined as models of certain globular theories so we capture these.

# Pinning down nervous monads via their good properties

► Mnd<sub>A</sub>(E) is locally presentable, though Mnd(E) isn't cocomplete.

- ► Mnd<sub>A</sub>(E) is locally presentable, though Mnd(E) isn't cocomplete.
- Colimits of nervous monads are algebraic: sent to limits by Alg : Mnd<sub>A</sub>(E)<sup>op</sup> → Cat/E.

- ► Mnd<sub>A</sub>(E) is locally presentable, though Mnd(E) isn't cocomplete.
- Colimits of nervous monads are algebraic: sent to limits by Alg : Mnd<sub>A</sub>(E)<sup>op</sup> → Cat/E.
- $\mathbf{Sig}_{\mathcal{A}}(\mathcal{E}) = [obA, \mathcal{E}]$  the category of  $\mathcal{A}$ -signatures.

- ► Mnd<sub>A</sub>(E) is locally presentable, though Mnd(E) isn't cocomplete.
- Colimits of nervous monads are algebraic: sent to limits by Alg : Mnd<sub>A</sub>(E)<sup>op</sup> → Cat/E.
- ► Sig<sub>A</sub>(E) = [obA, E] the category of A-signatures. E.g. in the classical case we get usual finitary signatures [obF, Set].

- ► Mnd<sub>A</sub>(E) is locally presentable, though Mnd(E) isn't cocomplete.
- Colimits of nervous monads are algebraic: sent to limits by Alg : Mnd<sub>A</sub>(E)<sup>op</sup> → Cat/E.
- ► Sig<sub>A</sub>(E) = [obA, E] the category of A-signatures. E.g. in the classical case we get usual finitary signatures [obF, Set].
- Forgetful functor U : Mnd(E) → Sig<sub>A</sub>(E) has a left adjoint F : Sig<sub>A</sub>(E) → Mnd(E) and each free monad on a signature is A-nervous.

# Pinning down nervous monads via their good properties

- ► Mnd<sub>A</sub>(E) is locally presentable, though Mnd(E) isn't cocomplete.
- Colimits of nervous monads are algebraic: sent to limits by Alg : Mnd<sub>A</sub>(E)<sup>op</sup> → Cat/E.
- ► Sig<sub>A</sub>(E) = [obA, E] the category of A-signatures. E.g. in the classical case we get usual finitary signatures [obF, Set].
- Forgetful functor U : Mnd(E) → Sig<sub>A</sub>(E) has a left adjoint F : Sig<sub>A</sub>(E) → Mnd(E) and each free monad on a signature is A-nervous.
- Theorem (BG18)

The monad T = UF on  $Sig_{\mathcal{A}}(\mathcal{E})$  has  $Mnd_{\mathcal{A}}(\mathcal{E})$  as its category of algebras.

# Pinning down nervous monads via their good properties

- ► Mnd<sub>A</sub>(E) is locally presentable, though Mnd(E) isn't cocomplete.
- Colimits of nervous monads are algebraic: sent to limits by Alg : Mnd<sub>A</sub>(E)<sup>op</sup> → Cat/E.
- ► Sig<sub>A</sub>(E) = [obA, E] the category of A-signatures. E.g. in the classical case we get usual finitary signatures [obF, Set].
- Forgetful functor U : Mnd(E) → Sig<sub>A</sub>(E) has a left adjoint F : Sig<sub>A</sub>(E) → Mnd(E) and each free monad on a signature is A-nervous.
- ► Theorem (BG18)

The monad T = UF on  $Sig_{\mathcal{A}}(\mathcal{E})$  has  $Mnd_{\mathcal{A}}(\mathcal{E})$  as its category of algebras. In particular, the nervous monads are the colimit closure in  $Mnd(\mathcal{E})$  of the free monads on  $\mathcal{A}$ -signatures.

# Recapturing the classical case

► The context K : A → E is said to be saturated if the class of endofunctors E → E that are left Kan extensions along K are closed under composition.

# Recapturing the classical case

- ► The context K : A → E is said to be saturated if the class of endofunctors E → E that are left Kan extensions along K are closed under composition.
- ► I.e. if *E* is free cocompletion of *A* under some class of colimit-shape.

# Recapturing the classical case

- ► The context K : A → E is said to be saturated if the class of endofunctors E → E that are left Kan extensions along K are closed under composition.
- ► I.e. if *E* is free cocompletion of *A* under some class of colimit-shape.
- ► Theorem (BG18)

If  $\mathcal{A}$  is saturated then  $T : \mathcal{E} \to \mathcal{E}$  is nervous iff it is the left Kan extension of its restriction along  $K : \mathcal{A} \to \mathcal{E}$ .

# Recapturing the classical case

- ► The context K : A → E is said to be saturated if the class of endofunctors E → E that are left Kan extensions along K are closed under composition.
- ► I.e. if *E* is free cocompletion of *A* under some class of colimit-shape.
- ► Theorem (BG18)

If  $\mathcal{A}$  is saturated then  $T : \mathcal{E} \to \mathcal{E}$  is nervous iff it is the left Kan extension of its restriction along  $K : \mathcal{A} \to \mathcal{E}$ .

► Hence F-nervous monads are the filtered colimit preserving ones, etc.

# Recapturing the classical case

- ► The context K : A → E is said to be saturated if the class of endofunctors E → E that are left Kan extensions along K are closed under composition.
- ► I.e. if *E* is free cocompletion of *A* under some class of colimit-shape.
- ► Theorem (BG18)

If  $\mathcal{A}$  is saturated then  $T : \mathcal{E} \to \mathcal{E}$  is nervous iff it is the left Kan extension of its restriction along  $K : \mathcal{A} \to \mathcal{E}$ .

- ► Hence F-nervous monads are the filtered colimit preserving ones, etc.
- But ∆<sub>0</sub> and Θ<sub>0</sub> are not saturated here we go beyond the classical setting.