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Accessible categories whose morphisms are monomorphisms.

They are the same as µ-abstract elementary classes.

Any µ-accessible category whose morphisms are monomorphisms is
a µ-AEC and any µ-AEC is λ+-accessible where λ is its LST
number (LRV + R. Grossberg and W. Boney 2016).

Accessible categories whose morphisms are monomorphisms cannot
be locally presentable.

But they can be locally multipresentable (= accessible with
connected limits = accessible with multicolimits).

A typical example of a locally multipresentable category is the
category of fields – the multiinitial object is formed by Q and by
prime fields Zp.
Theorem 1. Locally multipresentable categories whose morphisms
are monomorphisms coincide with universal µ-AECs.
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A central concept of modern model theory is the notion of
independence (introduced by Shelah) generalizing linear
independence in vector spaces and algebraic independence in fields.
Our aim is to extend this notion to accessible categories whose
morphisms are monomorphisms.

In particular, we will consider locally multipresentable categories
whose morphisms are monomorphisms.

But we could also consider locally polypresentable categories (=
accessible categories with wide pullbacks = accessible categories
with polycolimits) whose morphisms are monomorphisms. They
coincide with µ-AECs with intersections and they include
algebraically closed fields.

A polyinitial object is a set I of objects of a category K such that
for every object M in K:

1. There is a unique i ∈ I having a morphism i → M.

2. For each i ∈ I, given f , g : i → M, there is a unique
(isomorphism) h : i → i with fh = g .
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We get groups of automorphisms of members of a polyinitial
object. In the case of a multinitial objects, they are singletons. An
example of a locally polypresentable category whose morphisms are
monomorphisms are algebraically closed fields. The polyinitial
object is formed by algebraic closures of the multiinitial object in
fields.

Lemma 1. Let K be a coregular locally µ-presentable category and
Kreg be the category having the same objects as K and regular
monomorphisms as morphisms. Then Kreg is locally
µ-multipresentable.

Examples of coregular locally presentable categories: Grothendieck
toposes, Grothendieck abelian categories, Gra graphs, Gr groups,
Bool Boolean algebras, Ban Banach spaces with linear
contractions, Hilb Hilbert spaces with linear isometries, CAlg
commutative unital C ∗-algebras, etc.
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Let K be a coregular locally presentable category and

M1

M0

OO

// M2

a span in Kreg . Let
M1 // P

M0

OO

// M2

OO

a pushout in K. Then a multipushout in Kreg is formed by all
squares

M1 // Q

M0

OO

// M2

OO

where the induced morphism P → Q is an epimorphism.



The notion of independence ^ in K consists in the choice of
squares

M1 // M3

M0

OO

// M2

OO

which are declared to be independent. We say that M1 and M2 are
independent over M0 in M3.

The following properties should be satisfied

(i) invariance under isomorphisms of squares

(ii) independence on M3,

(iii) existence,

(iv) uniqueness,

(v) symmetry,

(vi) closedness under compositions of squares, and

(vii) accessibility.



The notion of independence ^ in K consists in the choice of
squares

M1 // M3

M0

OO

// M2

OO

which are declared to be independent. We say that M1 and M2 are
independent over M0 in M3.

The following properties should be satisfied

(i) invariance under isomorphisms of squares

(ii) independence on M3,

(iii) existence,

(iv) uniqueness,

(v) symmetry,

(vi) closedness under compositions of squares, and

(vii) accessibility.



(ii) means to be closed under the equivalence generated by

M ′3 // M ′′3

M1

>>

// M3

OO

M0

OO

// M2

OO

==

(iii) any span can be completed to an independent square,

(iv) any two independent squares of the same span are equivalent,

(v) and (vi) are clear,

(vii) the category whose objects are morphisms in K and whose
morphisms are independent squares is accessible.
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Theorem 2. Let K be an accessible category with chain bounds
whose morphisms are monomorphisms. Then K has at most one
notion of independence.

More generally, if K has the notion of independence ^ then any
1

^ with (i-vi) equals to ^.

Theorem 3. Let K be an accessible category whose morphisms are
monomorphism having a notion of independence. Then K is tame,
stable and does not have the order property.

Theorem 4. Let K be a coregular locally presentable category with
effective unions. Then Kreg has an independence notion (consisting
of pullback squares).
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K has effective unions if whenever we have a pullback

M1 // M3

M0

OO

// M2

OO

and a pushout
M1 // P

M0

OO

// M2

OO

the induced morphism P → M3 is a regular monomorphism.

Any Grothendieck topos and any Grothendieck abelian category
has effective unions. Hilb has effective unions. The facts that
R-Mod and Hilb have an independence notion were known.

Gra, Gr, Ban, Bool or CAlg do not have effective unions. They
do not have a notion of independence because they have the order
property.
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Let K be a coregular locally presentable category and take effective
pullback squares in Kreg as independent squares.

This satisfies all axioms of the independence up to the smallness
condition in (vii).

Corollary 1. Let K be a coregular locally presentable category with
an independence notion ^ in Kreg . Then ^ is given by effective
pullback squares.

In Gra, in an effective pullback square

M1 // M3

M0

OO

// M2

OO

M3 does not contain any cross-edge between M1 and M2. Thus we
do not have enough independent squares with M0 and M2 small.
Thus Gra does not have an independence notion.

There is another attempt of independence where we include all
cross-edges between M1 and M2. This yields ^ satisfying (i-vi). By
Theorem 2, Gra does not have an independence notion.
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The category K of graphs whose vertices have order ≤ n form a
locally finitely presentable category which does not have effective
unions. But effective pullback squares provide an independence in
Kreg . The reason is that we can add all cross-edges to M0 and M2
and keeping them finite.

Theorem 2 implies that this notion of independence is unique.

Let K be the category of locally finite graphs, i.e., graphs such any
vertex has a finite degree. This category is coregular and locally
ℵ1-multipresentable. Again, effective pullback squares form a
notion of independence in Kreg .

K does not have chain bounds but the proof of Theorem 2 still
goes through – thus this independence is unique.



The category K of graphs whose vertices have order ≤ n form a
locally finitely presentable category which does not have effective
unions. But effective pullback squares provide an independence in
Kreg . The reason is that we can add all cross-edges to M0 and M2
and keeping them finite.

Theorem 2 implies that this notion of independence is unique.

Let K be the category of locally finite graphs, i.e., graphs such any
vertex has a finite degree. This category is coregular and locally
ℵ1-multipresentable. Again, effective pullback squares form a
notion of independence in Kreg .

K does not have chain bounds but the proof of Theorem 2 still
goes through – thus this independence is unique.



The category K of graphs whose vertices have order ≤ n form a
locally finitely presentable category which does not have effective
unions. But effective pullback squares provide an independence in
Kreg . The reason is that we can add all cross-edges to M0 and M2
and keeping them finite.

Theorem 2 implies that this notion of independence is unique.

Let K be the category of locally finite graphs, i.e., graphs such any
vertex has a finite degree. This category is coregular and locally
ℵ1-multipresentable. Again, effective pullback squares form a
notion of independence in Kreg .

K does not have chain bounds but the proof of Theorem 2 still
goes through – thus this independence is unique.



The category K of graphs whose vertices have order ≤ n form a
locally finitely presentable category which does not have effective
unions. But effective pullback squares provide an independence in
Kreg . The reason is that we can add all cross-edges to M0 and M2
and keeping them finite.

Theorem 2 implies that this notion of independence is unique.

Let K be the category of locally finite graphs, i.e., graphs such any
vertex has a finite degree. This category is coregular and locally
ℵ1-multipresentable. Again, effective pullback squares form a
notion of independence in Kreg .

K does not have chain bounds but the proof of Theorem 2 still
goes through – thus this independence is unique.



Based on Malliaris and Shelah 2011, we say that a graph is stable if
it does not contain a copy of the half graph (the bipartite graph on
N× N such that E (i , j) iff i < j). The category K of stable graphs
is locally ℵ1-multipresentable and effective pullback squares do not
form an independence notion in Kreg . But we do not know whether
Kreg has an independence notion. K does not have chain bounds
and we could not adapt the proof of Theorem 2 to this case.

Let K be a locally polypresentable category whose morphisms are
monomorphisms having a stable independence notion. Then, for
each span, exactly one instance of a polypushout is independent.
Moreover, a morphism of spans

(idM0 , h1, h2) : (M0,M1,M2)→ (M0,M ′1,M
′
2)

induces a morphism of independent instances of polypushouts.
Thus the independence yields a coherent choice of polypushouts.

The same holds for weak polypushouts (where 2. is omitted).

Moreover, if K has the amalgamation property then a coherent
choice of weak polypushouts yields ^ satisfying (i-vi).
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Corollary 2. Let K be a locally polypresentable category with the
amalgamation property, chain bounds and whose morphisms are
monomorphisms. If K has two distinct coherent choices of
polypushouts then it does not have a notion of independence.

Theorem 5. Let K be a coregular locally presentable category
where regular monomorphisms are closed under directed colimits.
Then Kreg has a stable independence notion iff regular
monomorphisms are cofibrantly generated.

Consequently, Gr, Ban, Bool and CAlg do not have a notion of
independence. Gr do not have enough regular injectives and thus
regular monomorphisms cannot be cofibrantly generated. In all
other cases, regular injectives do not form an accessible category
and thus regular monomorphisms cannot be cofibrantly generated
again.

Another consequence is that regular monomorphisms in Gra are
not cofibrantly generated. Equivalently, Gra does not have enough
regular injectives or those are not accessible.
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Theorem 6. Let K be an accessible category whose morphisms are
monomorphisms having the amalgamation property and chain
bounds. Let κ be a strongly compact cardinal. If K does not have
the order property then the full subcategory of K consisting of
κ-saturated objects has an independence notion.

Theorem 7. Let K be an accessible category whose morphisms are
monomorphisms having an independence notion. Then there exists
a regular cardinal κ such that any independent square with M0
κ-saturated is a pullback square.
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