Galois theory, a logical path from Grothendieck's version to the fundamental theorem

Johan Felipe García Vargas

Departamento de Matemáticas Universidad de los Andes

July 11, 2017

Outline

- Traditionally Galois theory is seen as a correspondence given by stabilizers and fixed points, Grothendieck frames it as a monadicity result.
- In model theory, internality implies pro-definable binding group and Galois correspondence. I will explain this from a categorical logic perspective as a natural consequence of a monadicity result.
- In this framework, Grothendieck's Galois theory is internality over finite sets and Tannakian duality can be immersed as internality over constructible sets.

Outline

- Traditionally Galois theory is seen as a correspondence given by stabilizers and fixed points, Grothendieck frames it as a monadicity result.
- In model theory, internality implies pro-definable binding group and Galois correspondence. I will explain this from a categorical logic perspective as a natural consequence of a monadicity result.
- In this framework, Grothendieck's Galois theory is internality over finite sets and Tannakian duality can be immersed as internality over constructible sets.

Outline

- Traditionally Galois theory is seen as a correspondence given by stabilizers and fixed points, Grothendieck frames it as a monadicity result.
- In model theory, internality implies pro-definable binding group and Galois correspondence. I will explain this from a categorical logic perspective as a natural consequence of a monadicity result.
- In this framework, Grothendieck's Galois theory is internality over finite sets and Tannakian duality can be immersed as internality over constructible sets.

Galois theory of fields

Fundamental theorem

Let $F \leq E$ be a Galois extension of fields, then the Galois group $G = \operatorname{Aut}(E/F)$ is pro-finite and there is a biyective correspondence between intermediate fields and closed subgroups of G.

Grothendieck's version Let $\omega : \mathcal{C} \to \mathcal{S}$ ets_f be a *fundamental functor* from a *Galoisian* category, then $\pi = \operatorname{Aut}(\omega)$ is a pro-finite group and ω lifts to an equivalence between \mathcal{C} and the category of finite sectors of the sector of the

Galois theory of fields

Fundamental theorem

Let $F \leq E$ be a Galois extension of fields, then the Galois group $G = \operatorname{Aut}(E/F)$ is pro-finite and there is a biyective correspondence between intermediate fields and closed subgroups of G.

Grothendieck's version

Let $\omega : \mathcal{C} \to \mathcal{S}ets_f$ be a fundamental functor from a Galoisian category, then $\pi = Aut(\omega)$ is a pro-finite group and ω lifts to an equivalence between \mathcal{C} and the category of finite continuous π -actions $\mathcal{S}ets_f^{\pi}$.

Galois theory of fields

Fundamental theorem

Let $F \leq E$ be a Galois extension of fields, then the Galois group $G = \operatorname{Aut}(E/F)$ is pro-finite and there is a biyective correspondence between intermediate fields and closed subgroups of G.

Grothendieck's version

Let $\omega : \mathcal{C} \to \mathcal{S}ets_f$ be a fundamental functor from a Galoisian category, then $\pi = Aut(\omega)$ is a pro-finite group and ω lifts to an equivalence between \mathcal{C} and the category of finite continuous π -actions $\mathcal{S}ets_f^{\pi}$.

In particular, let \mathcal{C}^{op} be the category of finite étale *F*-algebras split by *E* and take $\omega(X) = X(E) = \operatorname{Hom}_{F-\operatorname{alg.}}(A, E)$ when $X = \operatorname{Spec} A$ in \mathcal{C} , then $\operatorname{Aut}(\omega) = \operatorname{Aut}(E/F)$ and \mathcal{C} is equivalent to $\operatorname{Sets}_{f}^{G}$.

- The category of *T*-definables (including imaginary sorts)
 T = Def(*T^{eq}*) is a *boolean* pre-topos.
- Models are *logical functors* M : T → Sets.
- Interpretations are logical functors ι : T₀ → T.
- ι is an *immersion* if $\iota_X : \operatorname{Sub}_{\mathcal{T}_0}(X) \to \operatorname{Sub}_{\mathcal{T}}(\iota X)$ is an isomorphism for every X.

A binary relation < in the sort Q.

- The category of *T*-definables (including imaginary sorts)
 T = Def(*T^{eq}*) is a *boolean pre-topos*.
- Models are *logical functors* $\mathfrak{M}: \mathcal{T} \to \mathcal{S}$ ets.
- Interpretations are logical functors ι : T₀ → T.
- ι is an *immersion* if $\iota_X : \operatorname{Sub}_{\mathcal{T}_0}(X) \to \operatorname{Sub}_{\mathcal{T}}(\iota X)$ is an isomorphism for every X.

A binary relation < in the sort Q.

- The category of *T*-definables (including imaginary sorts)
 T = Def(*T^{eq}*) is a *boolean pre-topos*.
- Models are *logical functors* $\mathfrak{M}: \mathcal{T} \to \mathcal{S}$ ets.
- Interpretations are logical functors *ι* : *T*₀ → *T*.
- ι is an *immersion* if $\iota_X : \operatorname{Sub}_{\mathcal{T}_0}(X) \to \operatorname{Sub}_{\mathcal{T}}(\iota X)$ is an isomorphism for every X.

Given a first order theory T

- The category of *T*-definables (including imaginary sorts)
 T = Def(*T^{eq}*) is a *boolean* pre-topos.
- Models are *logical functors* $\mathfrak{M}: \mathcal{T} \to \mathcal{S}$ ets.
- Interpretations are logical functors *ι* : *T*₀ → *T*.
- ι is an *immersion* if $\iota_X : \operatorname{Sub}_{\mathcal{T}_0}(X) \to \operatorname{Sub}_{\mathcal{T}}(\iota X)$ is an isomorphism for every X.

 $\mathfrak{M}_0 \models T_0.$

- The category of *T*-definables (including imaginary sorts)
 T = Def(*T^{eq}*) is a *boolean pre-topos*.
- Models are *logical functors* $\mathfrak{M}: \mathcal{T} \to \mathcal{S}$ ets.
- Interpretations are logical functors *ι* : *T*₀ → *T*.
- ι is an *immersion* if $\iota_X : \operatorname{Sub}_{\mathcal{T}_0}(X) \to \operatorname{Sub}_{\mathcal{T}}(\iota X)$ is an isomorphism for every X.

- Given A ⊆ M ⊨ T, the functor 𝔅 = dcl(A) preserves limits and co-limits, but not necessarily images (i.e. ∃ quantifier).
- $\iota : \mathcal{T}_0 \to \mathcal{T}$ is a *stable immersion* if $\iota^{\mathfrak{A}}$ is an immersion for every \mathfrak{A} .
- Y is T₀-internal over A if for every 𝔐 ⊨ T^𝔅,

 $\mathfrak{M}(Y) = \operatorname{\mathsf{dcl}}(\mathfrak{M}_0 \cup A)$

Definition

ι is an *internal cover* if it's stable and every *T*-definable is *T*₀-internal.

- Given A ⊆ M ⊨ T, the functor 𝔅 = dcl(A) preserves limits and co-limits, but not necessarily images (i.e. ∃ quantifier).
- $\iota : \mathcal{T}_0 \to \mathcal{T}$ is a *stable immersion* if $\iota^{\mathfrak{A}}$ is an immersion for every \mathfrak{A} .
- Y is T_0 -internal over A if for every $\mathfrak{M} \models T^{\mathfrak{A}}$,

 $\mathfrak{M}(Y) = \mathsf{dcl}(\mathfrak{M}_0 \cup A)$

- Given A ⊆ M ⊨ T, the functor 𝔅 = dcl(A) preserves limits and co-limits, but not necessarily images (i.e. ∃ quantifier).
- $\iota : \mathcal{T}_0 \to \mathcal{T}$ is a *stable immersion* if $\iota^{\mathfrak{A}}$ is an immersion for every \mathfrak{A} .
- Y is T_0 -internal over A if for every $\mathfrak{M} \models T^{\mathfrak{A}}$,

 $\mathfrak{M}(Y) = \mathsf{dcl}(\mathfrak{M}_0 \cup A)$

Definition ι is an *internal cover* if it's stable and every *T*-definable is T_0 -internal.

- Given A ⊆ M ⊨ T, the functor 𝔅 = dcl(A) preserves limits and co-limits, but not necessarily images (i.e. ∃ quantifier).
- $\iota : \mathcal{T}_0 \to \mathcal{T}$ is a *stable immersion* if $\iota^{\mathfrak{A}}$ is an immersion for every \mathfrak{A} .
- Y is T_0 -internal over A if for every $\mathfrak{M} \models T^{\mathfrak{A}}$,

 $\mathfrak{M}(Y) = \mathsf{dcl}(\mathfrak{M}_0 \cup A)$

Definition ι is an *internal cover* if it's stable and every *T*-definable is T_0 -internal.

- Given A ⊆ M ⊨ T, the functor 𝔅 = dcl(A) preserves limits and co-limits, but not necessarily images (i.e. ∃ quantifier).
- $\iota : \mathcal{T}_0 \to \mathcal{T}$ is a *stable immersion* if $\iota^{\mathfrak{A}}$ is an immersion for every \mathfrak{A} .
- Y is T_0 -internal over A if for every $\mathfrak{M} \models T^{\mathfrak{A}}$,

 $\mathfrak{M}(Y) = \mathsf{dcl}(\mathfrak{M}_0 \cup A)$

Definition ι is an *internal cover* if it's stable and every *T*-definable is T_0 -internal.

- Given A ⊆ M ⊨ T, the functor 𝔅 = dcl(A) preserves limits and co-limits, but not necessarily images (i.e. ∃ quantifier).
- $\iota : \mathcal{T}_0 \to \mathcal{T}$ is a *stable immersion* if $\iota^{\mathfrak{A}}$ is an immersion for every \mathfrak{A} .
- Y is T_0 -internal over A if for every $\mathfrak{M} \models T^{\mathfrak{A}}$,

 $\mathfrak{M}(Y) = \mathsf{dcl}(\mathfrak{M}_0 \cup A)$

Definition ι is an *internal cover* if it's stable and every *T*-definable is T_0 -internal.

Lemma (Kamensky)

 $\iota: \mathcal{T}_0 \to \mathcal{T}$ is a stable immersion iff $\operatorname{Ind} \iota: \operatorname{Ind} \mathcal{T}_0 \to \operatorname{Ind} \mathcal{T}$ is a cartesian closed functor.

Proof. Use that $\mathbf{2} = \mathbf{1} + \mathbf{1}$ is the subobject classifier.

Lemma If $\mathfrak{A} : T_0 \to S$ ets contains a basis for the internal cover ι (i.e. every Y is T_0 -internal over \mathfrak{A}), then $\iota^{\mathfrak{A}}$ is an equivalence.

Lemma If T is a complete theory, for every $\mathfrak A$ the functor Pro $j^{\mathfrak A}$: Pro $\mathcal{T} \to \operatorname{Pro} \mathcal{T}^{\mathfrak A}$ is monadic.

Lemma (Kamensky)

 $\iota: \mathcal{T}_0 \to \mathcal{T}$ is a stable immersion iff $\operatorname{Ind} \iota : \operatorname{Ind} \mathcal{T}_0 \to \operatorname{Ind} \mathcal{T}$ is a cartesian closed functor.

Lemma

If $\mathfrak{A} : \mathcal{T}_0 \to \mathcal{S}$ ets contains a basis for the internal cover ι (i.e. every Y is \mathcal{T}_0 -internal over \mathfrak{A}), then $\iota^{\mathfrak{A}}$ is an equivalence.

Proof.

Use compactness (and co-products) to get a regular epi $f_a : \iota X \to Y$, afterwards use stability (and effectiveness) to define $\phi_a : \iota(X/E_b) \to Y$.

Lemma

If T is a complete theory, for every \mathfrak{A} the functor $\mathsf{P}_{\mathsf{fof}}^{\mathfrak{A}^{\mathfrak{A}}}$: $\mathsf{Pro} \mathcal{T} \to \mathsf{Pro} \mathcal{T}^{\mathfrak{A}}$ is monadic.

Lemma (Kamensky)

 $\iota : \mathcal{T}_0 \to \mathcal{T}$ is a stable immersion iff $\operatorname{Ind} \iota : \operatorname{Ind} \mathcal{T}_0 \to \operatorname{Ind} \mathcal{T}$ is a cartesian closed functor.

Lemma If $\mathfrak{A} : \mathcal{T}_0 \to S$ ets contains a basis for the internal cover ι (i.e. every Y is T_0 -internal over \mathfrak{A}), then $\iota^{\mathfrak{A}}$ is an equivalence.

Lemma

If T is a complete theory, for every \mathfrak{A} the functor Pro $j^{\mathfrak{A}}$: Pro $\mathcal{T} \to \operatorname{Pro} \mathcal{T}^{\mathfrak{A}}$ is monadic.

Proof. Use Duskin variant of Beck's monadicity

Lemma (Kamensky)

 $\iota : \mathcal{T}_0 \to \mathcal{T}$ is a stable immersion iff $\mathsf{Ind}\,\iota : \mathsf{Ind}\,\mathcal{T}_0 \to \mathsf{Ind}\,\mathcal{T}$ is a cartesian closed functor.

Lemma If $\mathfrak{A} : \mathcal{T}_0 \to \mathcal{S}$ ets contains a basis for the internal cover ι (i.e. every Y is \mathcal{T}_0 -internal over \mathfrak{A}), then $\iota^{\mathfrak{A}}$ is an equivalence.

Lemma If T is a complete theory, for every \mathfrak{A} the functor $\operatorname{Pro} j^{\mathfrak{A}} : \operatorname{Pro} \mathcal{T} \to \operatorname{Pro} \mathcal{T}^{\mathfrak{A}}$ is **Hopf** monadic.

Proof. See [BLV11] with a caveat. Theorem

Let $\iota : \mathcal{T}_0 \to \mathcal{T}$ be an internal cover neutralized by \mathfrak{A} . (i.e. \mathfrak{A} contains an internality basis and $\mathfrak{A}_0 = \Gamma_0 = \operatorname{dcl}_{\mathcal{T}_0}(0)$) There is a pro-group $G = \operatorname{Pro} G_k$ in $\operatorname{Pro} \mathcal{T}_0$ and an equivalence between \mathcal{T} and \mathcal{T}_0^G .

Theorem

Let $\iota : \mathcal{T}_0 \to \mathcal{T}$ be an internal cover neutralized by \mathfrak{A} . There is a pro-group $G = \operatorname{Pro} G_k$ in $\operatorname{Pro} \mathcal{T}_0$ and an equivalence between \mathcal{T} and \mathcal{T}_0^G .

Proof.

By [BLV11], augmented Hopf monads are \otimes -representable by Hopf monoids.

Theorem

Let $\iota : \mathcal{T}_0 \to \mathcal{T}$ be an internal cover neutralized by \mathfrak{A} . There is a pro-group $G = \operatorname{Pro} G_k$ in $\operatorname{Pro} \mathcal{T}_0$ and an equivalence between \mathcal{T} and \mathcal{T}_0^G .

Corollary For every $\mathfrak{M} \models T^{\mathfrak{A}}$, $\operatorname{Aut}(\mathfrak{M}/\mathfrak{M}_0)) \simeq_{\mathfrak{A}} \varprojlim \mathfrak{M}_0(G_k)$.

Theorem

Let $\iota : \mathcal{T}_0 \to \mathcal{T}$ be an internal cover neutralized by \mathfrak{A} . There is a pro-group $G = \operatorname{Pro} G_k$ in $\operatorname{Pro} \mathcal{T}_0$ and an equivalence between \mathcal{T} and \mathcal{T}_0^G .

Corollary

For every $\mathfrak{M} \models T^{\mathfrak{A}}$, there are biyective correspondences between:

Proof.

where the j' are stable embeddings, therefore $j'\iota: \mathcal{T}_0 \to \mathcal{T}'$ is an internal cover *neutralized* by \mathfrak{A} .

References

- Alain Bruguières, Steve Lack, and Alexis Virelizier, Hopf monads on monoidal categories, Advances in Mathematics 227 (2011), no. 2, 745–800.
- Alexander Grothendieck, Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Mathematics, vol. 224, Springer, 1971.
- Moshe Kamensky, A categorical approach to internality, Models, logics, and higher-dimensional categories (Bradd Hart et al., eds.), CRM proc. & lecture notes, vol. 53, American Math. Soc., 2011, pp. 139–156.

Model theory and the tannakian formalism, Transactions of the American Math. Soc. **367** (2015), no. 2, 1095–1120.