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Outline

� Traditionally Galois theory is seen as a correspondence given by
stabilizers and fixed points, Grothendieck frames it as a monadicity
result.

� In model theory, internality implies pro-definable binding group and
Galois correspondence. I will explain this from a categorical logic
perspective as a natural consequence of a monadicity result.

� In this framework, Grothendieck’s Galois theory is internality over
finite sets and Tannakian duality can be immersed as internality
over constructible sets.
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Galois theory of fields

Fundamental theorem
Let F ≤ E be a Galois extension of fields, then the Galois group
G = Aut(E/F ) is pro-finite and there is a biyective correspondence
between intermediate fields and closed subgroups of G .

{K |F ≤ K ≤ E} {H ≤ G |H is closed}

Aut(E/K)

EH

Grothendieck’s version
Let ω : C → Setsf be a fundamental functor from a Galoisian
category, then π = Aut(ω) is a pro-finite group and ω lifts to an
equivalence between C and the category of finite continuous π-actions
Setsπf .
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Let F ≤ E be a Galois extension of fields, then the Galois group
G = Aut(E/F ) is pro-finite and there is a biyective correspondence
between intermediate fields and closed subgroups of G .

Grothendieck’s version
Let ω : C → Setsf be a fundamental functor from a Galoisian
category, then π = Aut(ω) is a pro-finite group and ω lifts to an
equivalence between C and the category of finite continuous π-actions
Setsπf .

In particular, let Cop be the category of finite étale F -algebras split by
E and take ω(X ) = X (E ) = HomF–alg.(A,E ) when X = SpecA in C,
then Aut(ω) = Aut(E/F ) and C is equivalent to SetsGf .
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Categorical logic

Given a first order theory T

� The category of T -definables
(including imaginary sorts)
T = Def(T eq) is a boolean
pre-topos.

� Models are logical functors
M : T → Sets.

� Interpretations are logical
functors ι : T0 → T .

� ι is an immersion if
ιX : SubT0(X )→ SubT (ιX ) is
an isomorphism for every X .

× µ

K

V

V

Function µ : K × V → V .

b

b

0

0

Constant 0 ∈ V

< ×

Q

Q

A binary relation < in the sort Q.
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Categorical logic

Given a first order theory T

� The category of T -definables
(including imaginary sorts)
T = Def(T eq) is a boolean
pre-topos.

� Models are logical functors
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T = Def(T eq) is a boolean
pre-topos.

� Models are logical functors
M : T → Sets.

� Interpretations are logical
functors ι : T0 → T .

� ι is an immersion if
ιX : SubT0(X )→ SubT (ιX ) is
an isomorphism for every X .

Def(T0)

Def(T )

× µ

K

V

V

Every M |= T induces a
M0 |= T0. In fact,
ι∗ : Mod(T )→ Mod(T0) is an
equivalence, if and only if, ι is an
equivalence.
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Definable closure and internal covers

� Given A ⊆M |= T , the functor
A = dcl(A) preserves limits and
co-limits, but not necessarily
images (i.e. ∃ quantifier).

� ι : T0 → T is a stable
immersion if ιA is an immersion
for every A.

� Y is T0-internal over A if for
every M |= TA,

M(Y ) = dcl(M0 ∪ A)

T T A = Def(T ,A)

Sets

A

A=dcl(A)
ΓA=Hom(1,?)

Definition
ι is an internal cover if it’s stable
and every T -definable is
T0-internal.
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Monadicity and definability of the binding group

Lemma (Kamensky)

ι : T0 → T is a stable immersion iff Ind ι : Ind T0 → Ind T is a
cartesian closed functor.

Proof.
Use that 2 = 1 + 1 is the subobject classifier.

Lemma
If A : T0 → Sets contains a basis for the internal cover ι (i.e. every Y
is T0-internal over A), then ιA is an equivalence.

Lemma
If T is a complete theory, for every A the functor
Pro A : Pro T → Pro T A is monadic.
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If A : T0 → Sets contains a basis for the internal cover ι (i.e. every Y
is T0-internal over A), then ιA is an equivalence.

Proof.
Use compactness (and co-products) to get a regular epi fa : ιX → Y ,
afterwards use stability (and effectiveness) to define
φa : ι(X/Eb)→ Y .
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Monadicity and definability of the binding group

Lemma (Kamensky)

ι : T0 → T is a stable immersion iff Ind ι : Ind T0 → Ind T is a
cartesian closed functor.

Lemma
If A : T0 → Sets contains a basis for the internal cover ι (i.e. every Y
is T0-internal over A), then ιA is an equivalence.

Lemma
If T is a complete theory, for every A the functor
Pro A : Pro T → Pro T A is Hopf monadic.

Proof.
See [BLV11] with a caveat.
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Galois theory of neutral internal covers

Theorem
Let ι : T0 → T be an internal cover neutralized by A. (i.e. A contains
an internality basis and A0 = Γ0 = dclT0(0) ) There is a pro-group
G = ProGk in Pro T0 and an equivalence between T and T G

0 .
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Galois theory of neutral internal covers

Theorem
Let ι : T0 → T be an internal cover neutralized by A. There is a
pro-group G = ProGk in Pro T0 and an equivalence between T and
T G

0 .

Proof.
By [BLV11], augmented Hopf monads are ⊗-representable by Hopf
monoids.
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Galois theory of neutral internal covers

Theorem
Let ι : T0 → T be an internal cover neutralized by A. There is a
pro-group G = ProGk in Pro T0 and an equivalence between T and
T G

0 .

Corollary

For every M |= TA, Aut(M/M0)) 'A lim←−M0(Gk).
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Galois theory of neutral internal covers

Theorem
Let ι : T0 → T be an internal cover neutralized by A. There is a
pro-group G = ProGk in Pro T0 and an equivalence between T and
T G

0 .

Corollary

For every M |= TA, there are biyective correspondences between:

{K : T → Sets | dclT (M0) ⊆ K ⊆M} {H ≤ G |H = ProHk}

Aut(M/K)'lim←−M0(Hl )

MM0(Hk )
7 of 8



Galois theory of neutral internal covers

Proof.

{K | dclT (M0) ⊆ K ⊆M} {H ≤ G |H = ProHk}

{B | dclT (0) ⊆ B ⊆ A} {T ′−−→T ′ π−−→T A |π′ = A}

K∩A
T H

0

dcl(M0∪B)
T B

Γ′′

where the ′ are stable embeddings, therefore ′ι : T0 → T ′ is an
internal cover neutralized by A.
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