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= Traditionally Galois theory is seen as a correspondence given by
stabilizers and fixed points, Grothendieck frames it as a monadicity
result.

® In model theory, internality implies pro-definable binding group and
Galois correspondence. | will explain this from a categorical logic
perspective as a natural consequence of a monadicity result.

® |n this framework, Grothendieck's Galois theory is internality over
finite sets and Tannakian duality can be immersed as internality
over constructible sets.




Galois theory of fields

Fundamental theorem

Let F < E be a Galois extension of fields, then the Galois group

G = Aut(E/F) is pro-finite and there is a biyective correspondence
between intermediate fields and closed subgroups of G.
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Galois theory of fields

Fundamental theorem

Let F < E be a Galois extension of fields, then the Galois group

G = Aut(E/F) is pro-finite and there is a biyective correspondence
between intermediate fields and closed subgroups of G.

Grothendieck's version

Let w : C — Setss be a fundamental functor from a Galoisian
category, then m = Aut(w) is a pro-finite group and w lifts to an
equivalence between C and the category of finite continuous m-actions
Setsy.
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Galois theory of fields

Fundamental theorem

Let F < E be a Galois extension of fields, then the Galois group

G = Aut(E/F) is pro-finite and there is a biyective correspondence
between intermediate fields and closed subgroups of G.

Grothendieck's version

Let w : C — Setsf be a fundamental functor from a Galoisian
category, then m = Aut(w) is a pro-finite group and w lifts to an
equivalence between C and the category of finite continuous m-actions
Sets?.

In particular, let C°P be the category of finite étale F-algebras split by
E and take w(X) = X(E) = Homp_ig. (A, E) when X = SpecA in C,
then Aut(w) = Aut(E/F) and C is equivalent to Sets?.
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Categorical logic

Given a first order theory T

® The category of T-definables
(including imaginary sorts)
T = Def(T®9) is a boolean
pre-topos.

Function pp: K xV = V.
Constant 0 € V'

Q
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A binary relation < in the sort Q.
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Categorical logic

Given a first order theory T

® The category of T-definables
(including imaginary sorts)
T = Def(T®9) is a boolean
pre-topos.

= Models are logical functors
M : T — Sets.
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Categorical logic

Given a first order theory T D\ef(T)

® The category of T-definables v
(including imaginary sorts)
T = Def(T®9) is a boolean

pre-topos. K !

= Models are logical functors ;MTD)
M : T — Sets. |

® Interpretations are logical Every M = T induces a
functors ¢ : To — 7. Mo = To.

B, is an immersion if
tx : Subgy (X) — Subr(eX) is
an isomorphism for every X.
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Categorical logic

Given a first order theory T

® The category of T-definables
(including imaginary sorts)
T = Def(T®9) is a boolean

pre-topos.

= Models are logical functors
M : T — Sets. ‘

® Interpretations are logical Every M = T induces a
functors ¢ : Tg — 7. Mo = To. In fact,

" ¢, is an immersion if t* : Mod(T) — Mod(To) is an
ix 1 Subz (X) = Suby(eX) is equivalence, if and only if, ¢ is an
an isomorphism for every X. equivalence.
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Definable closure and internal covers

= Given AC 9t = T, the functor
20 = dcl(A) preserves limits and

co-limits, but not necessarily T 7 s T = Def(T, A)

A=dcl(A) lrmzHom(l,?)
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Definable closure and internal covers

= Given AC 9t = T, the functor
20 = dcl(A) preserves limits and
co-limits, but not necessarily
images (i.e. 3 quantifier).

®m ,:Tg— T is a stable
immersion if /* is an immersion
for every 2.

®m Y is Tp-internal over A if for
every M = T2,

M(Y) = del(Mo U A)
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Def(T)

Xj
Def(Ty)

Definition

¢ is an internal cover if it's stable
and every T-definable is
To-internal.



Monadicity and definability of the binding group

Lemma (Kamensky)

t:To — T is a stable immersion iffInd¢ : IndTo — IndT is a
cartesian closed functor.

Proof.
Use that 2 =1 + 1 is the subobject classifier. O




Monadicity and definability of the binding group

Lemma
If A : To — Sets contains a basis for the internal cover v (i.e. every Y
is To-internal over ), then /* is an equivalence.

Proof.

Use compactness (and co-products) to get a regular epi f, : 1X — Y,
afterwards use stability (and effectiveness) to define

¢a: U(X/Ep) = Y. O

6 of 8



Monadicity and definability of the binding group

Lemma
If T is a complete theory, for every 2 the functor
Pros® : ProT — ProT® is monadic.

Proof.
Use Duskin variant of Beck’s monadicity O
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Monadicity and definability of the binding group

Lemma (Kamensky)

t:To — T is a stable immersion iffInd¢ : Ind 7o — IndT is a
cartesian closed functor.

Lemma
If A : To — Sets contains a basis for the internal cover . (i.e. every Y
is To-internal over ), then /* is an equivalence.

Lemma
If T is a complete theory, for every 2l the functor
Pros® : ProT — ProT* is Hopf monadic.

Proof.
See [BLV11] with a caveat. O
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Galois theory of neutral internal covers

Theorem

Let v: To — T be an internal cover neutralized by 2. (i.e. 2 contains
an internality basis and 2o = 'y = dcl7,(0) ) There is a pro-group

G = Pro G in ProTy and an equivalence between T and ’76G.




Galois theory of neutral internal covers

Theorem
Let v:To — T be an internal cover neutralized by 2. There is a
pro-group G = Pro Gy in ProTg and an equivalence between T and

T

Proof.
By [BLV11], augmented Hopf monads are ®-representable by Hopf
monoids. O




Galois theory of neutral internal covers

Theorem
Let v:To — T be an internal cover neutralized by 2. There is a

pro-group G = Pro Gy in ProTg and an equivalence between T and
T

Corollary
For every MM |= T, Aut(9M/Mo)) = lim Mo Gr).-




Galois theory of neutral internal covers

Theorem
Let v:To — T be an internal cover neutralized by 2. There is a
pro-group G = Pro G in Pro7y and an equivalence between T and

T
Corollary
For every 9 |= T*, there are biyective correspondences between:

Aut(im/ﬁ)zlj_m mo(H/)

/\

{&:T — Sets | del7(Mg) C & C M} {H < G|H = Pro Hy}

\_/

Mo (Hy)
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Galois theory of neutral internal covers

Proof.
{&] dclr(Mp) € & C M} {H < G|H = Pro Hy}
) ()
del(MoUB) fNA
7"3
" y -
{B| dclr(0) B C A} {(T=T T3 7y = 4%}
~_ ~—
I—IJI

where the 7 are stable embeddings, therefore j/v: To — T is an
internal cover neutralized by 2. O
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