

Equivariant fundamental groupoids as categorical constructions

Laura Scull joint with Dorette Pronk

Equivariant Fundamental Groupoid $\Pi_1(G, X)$

X is a G-space Define a category (not a groupoid) $\Pi_1(G, X)$ with:

Objects (G/H, x) with $H \le G$ and $x \in X^H$ Arrows: (α, γ) where γ is a path from x to αy in X^H This is considered a path from x to y

・ロン ・四 と ・ ヨ と ・ ヨ と

Composition

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Composition

$$(lpha,\gamma)\circ(eta,\zeta)=(lphaeta,\gamma*lpha\zeta)$$

where * is contatenation

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ○

Example: S^1 as $\mathbb{Z}/2$ space

ヘロト 人間 とくほとくほとう

2

Example: S^1 as $\mathbb{Z}/2$ space

W appears as two different objects:

 $W \in X^e$ gives (G/e, W) $W \in X^G$ gives (G/G, W)

Every point comes tagged with specific fixed set; I will often abuse notation and suppress the G/H

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example: S^1 as $\mathbb{Z}/2$ space

Two paths from *x* to *y*:

Example: S¹

There is a constant path from *x* to *gx*:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example: D₃

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example: D_3

A path from (G/e, x) to (G/e, y)

ヘロト 人間 とくほとう ほとう

æ

Example: D₃

A path from (G/H, x) to (G/K, y)Here the path must stay in X^H

・ロット (雪) ・ (日) ・ (日)

э

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A path from *x* to *y*:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

A loop from *x* to *x*:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Jumping Between Fixed Sets

If x ∈ X^K, then there is constant path (G/H, x) → (G/K, x) for H ≤ K

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- If $\alpha y \in X^H$ then $y \in X^{\alpha H \alpha^{-1}}$
- There exists a path $x \rightarrow y$ when

```
 \begin{array}{l} x \in X^{H} \\ y \in X^{K} \\ H \leq \alpha K \alpha^{-1} \\ \text{there is a path in } X^{H} \text{ from } x \text{ to } \alpha y \end{array}
```

Making this Categorical: Grothendieck Construction

Let $\mathcal{F} : C^{op} \to Cat$ be a contravariant functor. The Grothendieck category

$$\int_{C}$$

is defined by:

- An object is a pair (C, x) with $C \in C_0$ and $x \in \mathcal{F}(C)_0$.
- An arrow (g,ψ) : $(C,x) \to (C',x')$ is a pair with $g: C \to C'$ in C_1 and $\psi: x \to \mathcal{F}(g)(x')$ in $\mathcal{F}(C)_1$.
- Composition is defined by

$$\left((C,x)\xrightarrow{(g,\psi)}(C',x')\xrightarrow{(g',\psi')}(C'',x'')\right)$$

$$= (C, x) \xrightarrow{(g'g, \mathcal{F}(g)(\psi') \circ \psi)} (C'', x'')$$

Functor from What? Orbit Category

 O_G has

- objects: *G*/*H* for closed subgroups of *G*
- arrows: G-maps $G/H \to G/K$ defined by $H \to \alpha K$ for $\alpha \in G$ such that $H \le \alpha K \alpha^{-1}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\alpha, \beta \in G$ define the same map when $\alpha K = \beta K$
- Thus maps $G/H \to G/K$ are defined by elements $\alpha \in (G/K)^{H}$.

Orbit Category

O_G organizes fixed sets:

- A *G*-map $G/H \xrightarrow{x} X$ is defined by $H \to x$ for $x \in X^H$; then $gH \to gx$.
- X defines a contravariant functor $\Phi : O_G \to$ Spaces: $G/H \to X^H$
- if $\alpha : G/H \to G/K$, and $G/K \xrightarrow{x} X$ we can compose $G/H \xrightarrow{\alpha} G/K \xrightarrow{x} X$. This is defined by $H \to \alpha K \to \alpha x$, so $x \circ \alpha$ is just αx .

Interpret Fundamental Category as a Grothendieck Construction

Let $\underline{\Pi}_{X}(G/H) = \Pi(X^{H})$ the fundamental groupoid of X^{H} : $\underline{\Pi}_{X}(G/H)$ has

- objects given by points $x \in X^H$
- arrows given by homotopy classes of paths in X^H

For $\alpha \colon G/H \to G/K$, define a functor $\Pi(X^K) \to \Pi(X^H)$:

- $x \in X^K$ goes to $\alpha x \in X^H$
- γ in X^K goes to $\alpha \gamma$ in X^H .

Then

$$\Pi_1(G,X)=\int_{O_G}\underline{\Pi}_X.$$

- objects are pairs (G/H, x) with $x \in X^H$
- arrows are pairs

$$(\alpha, \gamma)$$
: $(G/H, x) \rightarrow (G/K, y)$,

where $\alpha: G/H \to G/K$ and γ is a path from x to αy in X^H

Discrete $\Pi_1^d(G, X)$

- Objects of $\pi_1^d(G, X)$ are $x \in X^H$
- arrows are equivalence classes of maps $\gamma : x \rightarrow \alpha y$
- $(\alpha, \gamma) \simeq (\beta, \zeta)$ when there exists

$$\sigma: G/H \times I \to G/K$$

from α to β and $\Lambda : I \times I \to X^H$ such that

$$\Lambda(0, t) = x$$

$$\Lambda(1, t) = \sigma(t)y$$

$$\Lambda(s, 0) = \gamma(s)$$

$$\Lambda(s, 1) = \zeta(s)$$

We have a 2-cell $s : g \to h$ from (g, γ) to (h, γ')

 $\gamma * sy \simeq \gamma'$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Making this Categorical: Grothendieck 2 Category

[Bakovic, Buckley]

- C a 2-category,
- $\mathcal{F}: C^{op} \to Cat \ a \ contravariant \ 2-functor$

 $\int_{C} \mathcal{F}$ is a 2-category defined by:

- An object is a pair (C, x) with $C \in C_0$ and $x \in \mathcal{F}(C)_0$
- An arrow $(g, \psi) \colon (C, x) \to (C', x')$ is a pair with $g \colon C \to C'$ in C_1 and $\psi \colon x \to \mathcal{F}(g)(x')$ in $\mathcal{F}(C)_1$
- A 2-cell α : $(g, \psi) \Rightarrow (g', \psi')$: $(C, x) \Rightarrow (C', x')$ is a 2-cell α : $g \Rightarrow g'$ in *C* such that the diagram commutes in $\mathcal{F}(C)$:

$$\begin{array}{c} x \xrightarrow{\psi} \mathcal{F}(g)(x') \\ \| & & \downarrow^{\mathcal{F}(\alpha)_{x'}} \\ x \xrightarrow{\psi'} \mathcal{F}(g')(x') \end{array}$$

Creating $\Pi^{d}(G, X)$ as a Grothendieck 2-category

We saw earlier that we have a functor

- $\Pi_{\chi}(G/H)$ is a category (a groupoid)
- $\alpha: G/H \to G/K$ defines a functor $\Pi(X^K) \to \Pi(X^H)$ (acting by α)
- If $\sigma : \alpha \longrightarrow \alpha'$ is a path in $O_G(G/H, G/K)$ define a natural transformation with components given by arrows σx for $x \in X^K$.

Create 2-category

$$\Pi_1(G,X)=\int_{O_G}\underline{\Pi}_X.$$

2-cells are exactly what tom Dieck mods out:

Composing 2-cells:

Category theory says:

Let
$$\alpha : (g, \psi) \Rightarrow (g', \psi') : (C, x) \Rightarrow (C', x')$$
 and
 $\beta : (h, \theta) \Rightarrow (h', \theta') : (C', x') \Rightarrow (C'', x'')$ be 2-cells in $\int_C \mathcal{F}$:

$$\begin{array}{cccc} x \xrightarrow{\psi} \mathcal{F}(g)(x') & \text{in } \mathcal{F}(C), \text{ and } & x' \xrightarrow{\varphi} \mathcal{F}(h)(x'') & \text{in } \mathcal{F}(C'). \\ \\ \| & & & & \\ & & \downarrow^{\mathcal{F}(\alpha)_{x'}} & & \\ & x \xrightarrow{\psi'} \mathcal{F}(g')(x') & & x' \xrightarrow{\varphi'} \mathcal{F}(h')(x'') \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Composing 2-cells:

・ロト ・聞 ト ・ ヨト ・ ヨト

э

to get $\mathcal{F}(\beta \circ \alpha)$.

Composing 2-cells

 $\gamma : x \to \alpha y$ and $\gamma' : x \to \alpha' y$ with a 2-cell $s : \alpha \to \alpha'$ and

 $\zeta : y \to \beta z$ and $\zeta' : x \to \beta' z$ with a 2-cell $t : \beta \to \beta'$:

Composing 2-cells

We want to get a 2-cell from $\gamma * \alpha \zeta$ to $\gamma' * \alpha' \zeta'$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Composing 2-cells

Fill in $s\beta z : \alpha\beta z \to \alpha'\beta z$ and $s\beta' z : \alpha\beta' z \to \alpha'\beta' z$

Then $\alpha tz * s\beta' z \simeq s\beta z * \alpha' tz$ and this gives the required 2-cell.

Functoriality

Suppose X_1 is a G_1 -space, and X_2 is a G_2 -space. A morphism is given by a group homomorphism $\varphi : G_1 \to G_2$ and an equivariant map $f : X_1 \to X_2$ such that $f(gx) = \varphi(g)f(x)$. Then we get $\Pi(\varphi, f) : \Pi_{G_1}(X_1) \to \Pi_{G_2}(X_2)$

- Objects: $F(G_1/H, x) = (G_2/\varphi(H), f(x))$. If $x \in X_1^H$, then $f(x) \in X_2^{\varphi(H)}$.
- Arrows: If $\gamma : x \to \alpha y$ in X^H , define $F(\gamma) = f(\gamma) : f(x) \longrightarrow f(\alpha y) = \varphi(\alpha)f(y).$

Functoriality

2-cells:

Natural transformations between equivariant maps:

$$r: X_1 \rightarrow G_2$$

denote $r(x) = r_x$, such that

$$r_x f_1(x) = f_2(x)$$

Naturality:

So

$$r_{gx}\varphi_1(g)=\varphi_2(x)r_x$$

・ロト・西ト・西ト・西ト・日・ つんぐ

Make Π into a 2-functor: Suppose *r* is a natural transformation from (φ_1, f_1) to (φ_2, f_2) . Given (G/H, x) with $x \in X^H$, assign the constant path $c_{f_1(x)}$ from $f_1(x) = r_x^{-1} f_2(x)$ to $f_2(x)$

(日) (日) (日) (日) (日) (日) (日)

Is this natural? let $\gamma : x \to y$ be an arrow of $\prod_{G_1}(X_1)$ given by a path $\gamma : x \to \alpha y$. Consider naturality square of arrows $f_1(x) \to f_2(y)$:

Compare compositions:

$$C_{f_1(\chi)} * r_{\chi}^{-1} f_2(\gamma) \simeq r_{\chi}^{-1} f_2(\gamma)$$

and

$$f_1(\gamma) \ast C_{f_1(\alpha y)} \simeq f_1(\gamma)$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Compare compositions:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

These are not the same.

Pseudo Natural Transformation

For every morphism $\gamma : x \to \alpha y$, we assign a 2-cell to fill in the diagram (and satisfy required coherence.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Psuedo Natural Transformations

Use equviariance and naturality to rewrite the ends of this:

$$f_1(\alpha y) = \varphi_1(\alpha) f_1(y) = \varphi_1(\alpha) r_y^{-1} f_2(y) = r_{\alpha y}^{-1} \varphi_2(\alpha) f_2(y)$$

and

$$r_x^{-1}f_2(\alpha y) = r_x^{-1}\varphi_2(\alpha)f_2(y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Psuedo Natural Transformations

Use equviariance and naturality to rewrite the ends of this:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Remember that $\gamma : x \longrightarrow \alpha y$.

Pseudo Natural Transformation

Define

$$s(\gamma)(t) = s(t) = r_{\gamma(t-1)}^{-1} \varphi_2(\alpha).$$

so that

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Where is this going?

Many orbifolds are represented by compact Lie group actions

This representation is not unique - Morita equivalence

All Morita equivalences are given by equivariant maps of two very specific types

Goal: show that the discrete fundamental group category is an orbifold invariant

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Igor Bakovic, Fibrations of bicategories, http://www.irb.hr/korisnici/ibakovic/groth2fib.pdf

- Mitchell Buckley, Fibred 2-categories and bicategories, Journal of Pure and Applied Algebra 218 (2014), pp. 1034–1074.
- T. tom Dieck, *Transformation Groups*, Walter de Gruyter (1987).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@