Equivariant fundamental groupoids as categorical constructions

Laura Scull
joint with Dorette Pronk

Equivariant Fundamental Groupoid $\Pi_{1}(G, X)$

X is a G-space
Define a category (not a groupoid) $\Pi_{1}(G, X)$ with:
Objects $(G / H, x)$ with $H \leq G$ and $x \in X^{H}$
Arrows: (α, γ) where γ is a path from x to αy in X^{H}
This is considered a path from x to y

Composition

$$
(\alpha, \gamma) \circ(\beta, \zeta)
$$

- Z

Composition

$$
(\alpha, \gamma) \circ(\beta, \zeta)=(\alpha \beta, \gamma * \alpha \zeta)
$$

where $*$ is contatenation

- Z

Example: S^{1} as $\mathbb{Z} / 2$ space

Example: S^{1} as $\mathbb{Z} / 2$ space

W appears as two different objects:

$$
\begin{aligned}
& W \in X^{e} \text { gives }(G / e, W) \\
& W \in X^{G} \text { gives }(G / G, W)
\end{aligned}
$$

Every point comes tagged with specific fixed set; I will often abuse notation and suppress the G/H

Example: S^{1} as $\mathbb{Z} / 2$ space

Two paths from x to y :

Example: S^{1}

There is a constant path from x to $g x$:

Example: D_{3}

Example: D_{3}

A path from $(G / e, x)$ to $(G / e, y)$

Example: D_{3}

A path from $(G / H, x)$ to $(G / K, y)$ Here the path must stay in X^{H}

Example: T^{2}

Example: T^{2}

A path from x to y :

Example: T^{2}

A loop from x to x :

Jumping Between Fixed Sets

- If $x \in X^{K}$, then there is constant path $(G / H, x) \rightarrow(G / K, x)$ for $H \leq K$
- If $\alpha y \in X^{H}$ then $y \in X^{\alpha H \alpha^{-1}}$
- There exists a path $x \longrightarrow y$ when

$$
x \in X^{H}
$$

$y \in X^{K}$
$H \leq \alpha K \alpha^{-1}$
there is a path in X^{H} from x to αy

Making this Categorical: Grothendieck Construction

Let $\mathcal{F}: C^{\mathrm{op}} \rightarrow$ Cat be a contravariant functor.
The Grothendieck category

$$
\int_{C} \mathcal{F}
$$

is defined by:

- An object is a pair (C, x) with $C \in C_{0}$ and $x \in \mathcal{F}(C)_{0}$.
- An arrow $(g, \psi):(C, x) \rightarrow\left(C^{\prime}, x^{\prime}\right)$ is a pair with $g: C \rightarrow C^{\prime}$ in C_{1} and $\psi: x \rightarrow \mathcal{F}(g)\left(x^{\prime}\right)$ in $\mathcal{F}(C)_{1}$.
- Composition is defined by

$$
\begin{aligned}
& \left((C, x) \xrightarrow{(g, \psi)}\left(C^{\prime}, x^{\prime}\right) \xrightarrow{\left(g^{\prime}, \psi^{\prime}\right)}\left(C^{\prime \prime}, x^{\prime \prime}\right)\right) \\
& =(C, x) \xrightarrow{\left(g^{\prime} g, \mathcal{F}(g)\left(\psi^{\prime}\right) \circ \psi\right)}\left(C^{\prime \prime}, x^{\prime \prime}\right)
\end{aligned}
$$

Functor from What? Orbit Category

O_{G} has

- objects: G / H for closed subgroups of G
- arrows: G-maps $G / H \rightarrow G / K$ defined by $H \rightarrow \alpha K$ for $\alpha \in G$ such that $H \leq \alpha K \alpha^{-1}$.
- $\alpha, \beta \in G$ define the same map when $\alpha K=\beta K$
- Thus maps $G / H \rightarrow G / K$ are defined by elements $\alpha \in(G / K)^{H}$.

Orbit Category

O_{G} organizes fixed sets:

- A G-map $G / H \xrightarrow{x} X$ is defined by $H \rightarrow x$ for $x \in X^{H}$; then $g H \rightarrow g x$.
- X defines a contravariant functor $\Phi: O_{G} \rightarrow$ Spaces: $G / H \rightarrow X^{H}$
- if $\alpha: G / H \rightarrow G / K$, and $G / K \xrightarrow{X} X$ we can compose $G / H \xrightarrow{\alpha} G / K \xrightarrow{x} X$. This is defined by $H \rightarrow \alpha K \rightarrow \alpha X$, so $x \circ \alpha$ is just αx.

Interpret Fundamental Category as a Grothendieck Construction
Let $\underline{\Pi}_{X}(G / H)=\Pi\left(X^{H}\right)$ the fundamental groupoid of X^{H} :
$\underline{\Pi}_{x}(G / H)$ has

- objects given by points $x \in X^{H}$
- arrows given by homotopy classes of paths in X^{H} For $\alpha: G / H \rightarrow G / K$, define a functor $\Pi\left(X^{K}\right) \rightarrow \Pi\left(X^{H}\right)$:
- $x \in X^{K}$ goes to $\alpha x \in X^{H}$
- γ in X^{K} goes to $\alpha \gamma$ in X^{H}.

Then

$$
\Pi_{1}(G, X)=\int_{O_{G}} \underline{\Pi}_{X}
$$

- objects are pairs $(G / H, x)$ with $x \in X^{H}$
- arrows are pairs

$$
(\alpha, \gamma):(G / H, x) \rightarrow(G / K, y)
$$

where $\alpha: G / H \rightarrow G / K$ and γ is a path from x to αy in X^{H}

Discrete $\Pi_{1}^{d}(G, X)$

- Objects of $\pi_{1}^{d}(G, X)$ are $x \in X^{H}$
- arrows are equivalence classes of maps $\gamma: x \rightarrow \alpha y$
- $(\alpha, \gamma) \simeq(\beta, \zeta)$ when there exists

$$
\sigma: G / H \times I \rightarrow G / K
$$

from α to β and $\Lambda: I \times I \rightarrow X^{H}$ such that

$$
\begin{aligned}
& \Lambda(0, t)=x \\
& \Lambda(1, t)=\sigma(t) y \\
& \Lambda(s, 0)=\gamma(s) \\
& \Lambda(s, 1)=\zeta(s)
\end{aligned}
$$

Example: T^{2}

We have a 2-cell $s: g \rightarrow h$ from (g, γ) to $\left(h, \gamma^{\prime}\right)$

$$
\gamma * s y \simeq \gamma^{\prime}
$$

Making this Categorical: Grothendieck 2 Category

[Bakovic, Buckley]

- C a 2-category,
- $\mathcal{F}: C^{\mathrm{op}} \rightarrow$ Cat a contravariant 2-functor
$\int_{C} \mathcal{F}$ is a 2-category defined by:
- An object is a pair (C, x) with $C \in C_{0}$ and $x \in \mathcal{F}(C)_{0}$
- An arrow $(g, \psi):(C, x) \rightarrow\left(C^{\prime}, x^{\prime}\right)$ is a pair with $g: C \rightarrow C^{\prime}$ in C_{1} and $\psi: x \rightarrow \mathcal{F}(g)\left(x^{\prime}\right)$ in $\mathcal{F}(C)_{1}$
- A 2-cell $\alpha:(g, \psi) \Rightarrow\left(g^{\prime}, \psi^{\prime}\right):(C, x) \rightrightarrows\left(C^{\prime}, x^{\prime}\right)$ is a 2-cell $\alpha: g \Rightarrow g^{\prime}$ in C such that the diagram commutes in $\mathcal{F}(C)$:

Creating $\Pi^{d}(G, X)$ as a Grothendieck 2-category We saw earlier that we have a functor

- $\underline{\square}_{X}(G / H)$ is a category (a groupoid)
- $\alpha: G / H \rightarrow G / K$ defines a functor $\Pi\left(X^{K}\right) \rightarrow \Pi\left(X^{H}\right)$ (acting by α)
- If $\sigma: \alpha \longrightarrow \alpha^{\prime}$ is a path in $O_{G}(G / H, G / K)$ define a natural transformation with components given by arrows $\sigma \times$ for $x \in X^{K}$.
Create 2-category

$$
\Pi_{1}(G, X)=\int_{O_{G}} \underline{\Pi}_{x} .
$$

2-cells are exactly what tom Dieck mods out:

Composing 2-cells:

Category theory says:
Let $\alpha:(g, \psi) \Rightarrow\left(g^{\prime}, \psi^{\prime}\right):(C, x) \rightrightarrows\left(C^{\prime}, x^{\prime}\right)$ and $\beta:(h, \theta) \Rightarrow\left(h^{\prime}, \theta^{\prime}\right):\left(C^{\prime}, x^{\prime}\right) \rightrightarrows\left(C^{\prime \prime}, x^{\prime \prime}\right)$ be 2-cells in $\int_{\mathcal{C}} \mathcal{F}:$

$$
\begin{aligned}
& x \xrightarrow{x} \underset{x}{\longrightarrow} \mathcal{F}(g)\left(x^{\prime}\right) \quad \text { in } \mathcal{F}(C) \text {, and } \\
& \int_{\psi^{\prime}} \mathcal{F}(x)_{x^{\prime}} \\
& \\
& \mathcal{F}\left(g^{\prime}\right)\left(x^{\prime}\right)
\end{aligned}
$$

$$
x^{\prime} \xrightarrow{\varphi} \mathcal{F}(h)\left(x^{\prime \prime}\right) \quad \text { in } \mathcal{F}\left(C^{\prime}\right) .
$$

$$
\|_{x^{\prime} \xrightarrow[\varphi^{\prime}]{ } \mathcal{F}\left(h^{\prime}\right)\left(x^{\prime \prime}\right)}^{\mathscr{F}^{\prime \prime}()^{\prime \prime}}
$$

Composing 2-cells:

to get $\mathcal{F}(\beta \circ \alpha)$.

Composing 2-cells

$\gamma: x \rightarrow \alpha y$ and $\gamma^{\prime}: x \rightarrow \alpha^{\prime} y$ with a 2-cell $s: \alpha \rightarrow \alpha^{\prime}$ and
$\zeta: y \rightarrow \beta z$ and $\zeta^{\prime}: x \rightarrow \beta^{\prime} z$ with a 2-cell $t: \beta \rightarrow \beta^{\prime}:$

Composing 2-cells

We want to get a 2-cell from $\gamma * \alpha \zeta$ to $\gamma^{\prime} * \alpha^{\prime} \zeta^{\prime}$:

Composing 2-cells

Fill in $s \beta z: \alpha \beta z \rightarrow \alpha^{\prime} \beta z$ and $s \beta^{\prime} z: \alpha \beta^{\prime} z \rightarrow \alpha^{\prime} \beta^{\prime} z$

Then $\alpha t z * s \beta^{\prime} z \simeq s \beta z * \alpha^{\prime} t z$ and this gives the required 2-cell.

Functoriality

Suppose X_{1} is a G_{1}-space, and X_{2} is a G_{2}-space. A morphism is given by a group homomorphism $\varphi: G_{1} \rightarrow G_{2}$ and an equivariant map $f: X_{1} \rightarrow X_{2}$ such that $f(g x)=\varphi(g) f(x)$. Then we get $\Pi(\varphi, f): \Pi_{G_{1}}\left(X_{1}\right) \rightarrow \Pi_{G_{2}}\left(X_{2}\right)$

- Objects: $F\left(G_{1} / H, x\right)=\left(G_{2} / \varphi(H), f(x)\right)$.

If $x \in X_{1}^{H}$, then $f(x) \in X_{2}^{\varphi(H)}$.

- Arrows: If $\gamma: x \rightarrow \alpha y$ in X^{H}, define

$$
F(\gamma)=f(\gamma): f(x) \longrightarrow f(\alpha y)=\varphi(\alpha) f(y) .
$$

Functoriality

2-cells:

Natural Transformations

Natural transformations between equivariant maps:

$$
r: X_{1} \rightarrow G_{2}
$$

denote $r(x)=r_{x}$, such that

$$
r_{x} f_{1}(x)=f_{2}(x)
$$

Naturality:

$$
\begin{gathered}
\quad f_{1}(x) \longrightarrow f_{2}(x) \\
\varphi(g) \downarrow \\
\\
f_{1}(g x)=\varphi_{1}(g) f_{1}(x) \xrightarrow[r_{g x}]{\longrightarrow} f_{2}(g x)=\varphi_{2}(g) f_{2}(x) .
\end{gathered}
$$

So

$$
r_{g x} \varphi_{1}(g)=\varphi_{2}(x) r_{x}
$$

Natural Transformations

Make Π into a 2 -functor: Suppose r is a natural transformation from $\left(\varphi_{1}, f_{1}\right)$ to $\left(\varphi_{2}, f_{2}\right)$.
Given $(G / H, x)$ with $x \in X^{H}$, assign the constant path $c_{f_{1}(x)}$ from $f_{1}(x)=r_{x}^{-1} f_{2}(x)$ to $f_{2}(x)$

$$
\begin{aligned}
& \bullet \mathrm{f}_{1}(\mathrm{x}) \\
& \mathrm{r}_{\mathrm{x}}^{-1}, \mathrm{c} \\
& \text { • } \mathrm{f}_{2}(\mathrm{x})
\end{aligned}
$$

Natural Transformations

Is this natural?
let $\gamma: x \rightarrow y$ be an arrow of $\Pi_{G_{1}}\left(X_{1}\right)$
given by a path $\gamma: x \rightarrow \alpha y$.
Consider naturality square of arrows $f_{1}(x) \rightarrow f_{2}(y)$:

Natural Transformations

Compare compositions:

$$
c_{f_{1}(x)} * r_{x}^{-1} f_{2}(\gamma) \simeq r_{x}^{-1} f_{2}(\gamma)
$$

and

$$
f_{1}(\gamma) * c_{f_{1}(\alpha y)} \simeq f_{1}(\gamma)
$$

Natural Transformations

Compare compositions:

These are not the same.

Pseudo Natural Transformation

For every morphism $\gamma: x \rightarrow \alpha y$, we assign a 2-cell to fill in the diagram (and satisfy required coherence.)

Psuedo Natural Transformations

Use equviariance and naturality to rewrite the ends of this:

Psuedo Natural Transformations

Use equviariance and naturality to rewrite the ends of this:

Remember that $\gamma: x \rightarrow \alpha y$.

Pseudo Natural Transformation

Define

$$
s(\gamma)(t)=s(t)=r_{\gamma(t-1)}^{-1} \varphi_{2}(\alpha)
$$

so that

Where is this going?

Many orbifolds are represented by compact Lie group actions
This representation is not unique - Morita equivalence
All Morita equivalences are given by equivariant maps of two very specific types

Goal: show that the discrete fundamental group category is an orbifold invariant

䍰 Igor Bakovic, Fibrations of bicategories, http://www.irb.hr/korisnici/ibakovic/groth2fib.pdf
(Mitchell Buckley, Fibred 2-categories and bicategories, Journal of Pure and Applied Algebra 218 (2014), pp. 1034-1074.
T. tom Dieck, Transformation Groups, Walter de Gruyter (1987).

