Lurdes Sousa

IPV / CMUC

July 10, 2018

Category Theory 2018, Azores, 8-14 July

[A. Kock, Monads for which structures are adjoints to units, 1995]: KZ-monads (lax idempotent monads) in 2-cats Kock-Zöberlein [A. Kock, Monads for which structures are adjoints to units, 1995]: KZ-monads (lax idempotent monads) in 2-cats Kock-Zöberlein

[M. Escardó, Properly injective spaces and function spaces, 1998]: Often, in order-enriched categories, injective objects = Eilenberg-Moore algebras of a KZ-monad = Kan-injective objects [A. Kock, Monads for which structures are adjoints to units, 1995]: KZ-monads (lax idempotent monads) in 2-cats Kock-Zöberlein

[M. Escardó, Properly injective spaces and function spaces, 1998]: Often, in order-enriched categories, injective objects = Eilenberg-Moore algebras of a KZ-monad = Kan-injective objects

[M. Carvalho, L.S., 2011] :

Kan-injectivity/KZ-monads enjoys many features resembling Orthogonality/Idempotent monads

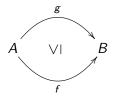
- M. Carvalho, L. S., Order-preserving reflectors and injectivity, TA, 2011
- J. Adámek, L. S., J. Velebil, Kan injectivity in order-enr. cats., MSCS, 2015
- M. Carvalho, L. S., On Kan-injectivity of locales and spaces, ACS, 2017
- L. S., A calculus of lax fractions, JPAA, 2017
- J. Adámek, L. S., KZ-monadic categories and their logic, TAC, 2017
- D. Hofmann, L. S., Aspects of algebraic algebras, LMCS, 2017

- M. Carvalho, L. S., Order-preserving reflectors and injectivity, TA, 2011
- J. Adámek, L. S., J. Velebil, Kan injectivity in order-enr. cats., MSCS, 2015
- M. Carvalho, L. S., On Kan-injectivity of locales and spaces, ACS, 2017
- L. S., A calculus of lax fractions, JPAA, 2017
- J. Adámek, L. S., KZ-monadic categories and their logic, TAC, 2017
- D. Hofmann, L. S., Aspects of algebraic algebras, LMCS, 2017
- M. M. Clementino, F. Lucatelli, J. Picado: joint work in progress

- 1. Kan-injectivity and KZ-monads
- 2. In locales and topological spaces
- 3. Lax fractions
- 4. Kan-injective subcategory problem

Most of the time, the setting is

order-enriched categories



Monad $\mathbb{T} = (T, \eta, \mu)$ of Kock-Zöberlein type: $T\eta \leq \eta T$ (\iff every *T*-algebra (X, α) has $\alpha \vdash \eta_X$)

Monad
$$\mathbb{T} = (T, \eta, \mu)$$
 of Kock-Zöberlein type: $T\eta \leq \eta T$
(\iff every *T*-algebra (*X*, α) has $\alpha \vdash \eta_X$)

KZ-monadic subcategory of $\mathcal{X}{=}$ Eilenberg-Moore category of a KZ-monad over \mathcal{X}

Monad
$$\mathbb{T} = (T, \eta, \mu)$$
 of Kock-Zöberlein type: $T\eta \leq \eta T$
(\iff every *T*-algebra (*X*, α) has $\alpha \vdash \eta_X$)

KZ-monadic subcategory of $\mathcal{X}{=}$ Eilenberg-Moore category of a KZ-monad over $\mathcal X$

Full reflective subcategory of $\mathcal{X} = \text{Eilenberg-Moore category of an}$ idempotent monad over $\mathcal{X} (T\eta = \eta T)$

g is a right adjoint retraction if there is an adjunction $(id, \beta) : f \dashv g$ In order enriched categories:

$$\mathit{gf} = \mathit{id}$$
 and $\mathit{fg} \leq \mathit{id}$

A is (left) Kan-injective wrt $h: X \to Y$ if

 $\mathcal{X}(Y,A) \xrightarrow{\mathcal{X}(h,A)} \mathcal{X}(X,A)$ is a right adjoint retraction.

A is (left) Kan-injective wrt $h: X \to Y$ if

 $\mathcal{X}(Y,A) \xrightarrow{\mathcal{X}(h,A)} \mathcal{X}(X,A)$ is a right adjoint retraction. Equivalently: for all $f : X \to A$, there exists a left Kan extension of f along h of the form $\operatorname{Lan}_h(f) = (f/h, id)$.

$$\begin{array}{c|c} X \xrightarrow{h} Y \\ f \\ f \\ A \end{array} \xrightarrow{f/h=(\mathcal{X}(h,A))^*(f)} \end{array}$$

A is (left) Kan-injective wrt $h: X \to Y$ if

 $\mathcal{X}(Y,A) \xrightarrow{\mathcal{X}(h,A)} \mathcal{X}(X,A)$ is a right adjoint retraction. Equivalently: for all $f: X \to A$, there exists a left Kan extension of f along h of the form $\operatorname{Lan}_h(f) = (f/h, id)$.

$$\begin{array}{c} X \xrightarrow{h} Y \\ f \\ f \\ A \end{array} \xrightarrow{f/h=(\mathcal{X}(h,A))^*(f)} \end{array}$$

 $k : A \to B$ is (left) Kan-injective wrt $h : X \to Y$, if A and B are so, and k preserves the left Kan extension of every $f : X \to A$ along k.

A is (left) Kan-injective wrt $h: X \to Y$ if

 $\mathcal{X}(Y,A) \xrightarrow{\mathcal{X}(h,A)} \mathcal{X}(X,A)$ is a right adjoint retraction. Equivalently: for all $f: X \to A$, there exists a left Kan extension of f along h of the form $\operatorname{Lan}_h(f) = (f/h, id)$.

$$\begin{array}{c|c} X \xrightarrow{h} Y \\ f \\ f \\ A \end{array} \xrightarrow{f/h=(\mathcal{X}(h,A))^*(f)} \end{array}$$

 $k : A \to B$ is (left) Kan-injective wrt $h : X \to Y$, if A and B are so, and k preserves the left Kan extension of every $f : X \to A$ along k. Equivalently:

$$\begin{array}{ccc} \mathcal{X}(Y,A) \xleftarrow{(\mathcal{X}(h,A))^{*}} \mathcal{X}(X,A) & A \\ \mathcal{X}(Y,k) & & & \downarrow \\ \mathcal{X}(Y,B) \xleftarrow{(\mathcal{X}(h,B))^{*}} \mathcal{X}(X,B) & B \end{array}$$

Category Theory 2018, Azores, 8-14 July

For $\mathcal{H} \subseteq Mor(\mathcal{X})$, $\underbrace{\mathsf{Klnj}(\mathcal{H})}_{\mathsf{Kan-injective wrt all}} \in \mathcal{H}$

(Left) Kan-injective subcategory

For $\mathcal{H} \subseteq Mor(\mathcal{X})$, $\underbrace{\mathsf{Klnj}(\mathcal{H})}_{\mathsf{Kan-injective wrt all } h \in \mathcal{H}}$

(Left) Kan-injective subcategory

For
$$\mathbb{T} = (T, \eta, \mu)$$
 a KZ-monad over \mathcal{X} order-enriched,
 $\mathcal{X}^{\mathbb{T}} = \mathsf{KInj}(\{\eta_X | X \in \mathcal{X}\}).$

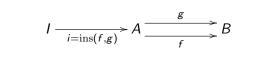
 ${\mathcal A}$ a (locally full) subcategory of ${\mathcal X}$

 $\ensuremath{\mathcal{A}}$ is closed under left adjoint retractions, if, for every commutative diagram

with q and q' left adjoint retractions, whenever $f \in A$, then $g \in A$.

 ${\mathcal A}$ a (locally full) subcategory of ${\mathcal X}$

 ${\mathcal A}$ is an inserter-ideal, provided that, for every inserter diagram



Theorem ([CS, 2011], [ASV, 2015])

Given $\mathcal{H} \subseteq Mor(\mathcal{X})$, $Klnj(\mathcal{H})$ is:

- Closed under weighted limits, i.e., the inclusion functor Klnj(H) → X creates weighted limits;
- An inserter-ideal;
- 3 Closed under left adjoint retractions.

Theorem ([CS, 2011], [ASV, 2015])

Given $\mathcal{H} \subseteq Mor(\mathcal{X})$, $Klnj(\mathcal{H})$ is:

- Closed under weighted limits, i.e., the inclusion functor Klnj(H) → X creates weighted limits;
- An inserter-ideal;
- 3 Closed under left adjoint retractions.

Corollary

Every KZ-monadic subcategory enjoys properties 1, 2 and 3 above.

Theorem ([ASV, 2015])

Let \mathcal{X} have inserters. A reflection of \mathcal{X} in a subcategory \mathcal{A} is of Kock-Zöberlein type (i.e. it induces a KZ-monad), iff \mathcal{A} is an inserter-ideal of \mathcal{X} .

Theorem ([CS, 2011])

Let \mathcal{A} be a (locally full) subcategory of \mathcal{X} . The inclusion functor $E : \mathcal{A} \hookrightarrow \mathcal{X}$ is a right adjoint which induces a KZ-monad over \mathcal{X} , iff for every $X \in \mathcal{X}$, there is an arrow $\eta_X : X \to \overline{X}$ with $\overline{X} \in \mathcal{A}$ such that:

(i)
$$A \subseteq \text{KInj}(\{\eta_X \mid X \in \mathcal{X}\})$$
 and, for every $f : X \to A$ with A in $A f/\eta_X \in A$.

(ii)
$$\eta_X$$
 is dense, i.e., $\eta_X/\eta_X = id_{\overline{X}}, X \in \mathcal{X}$.

Theorem ([CS, 2011])

Let \mathcal{A} be a (locally full) subcategory of \mathcal{X} . The inclusion functor $E : \mathcal{A} \hookrightarrow \mathcal{X}$ is a right adjoint which induces a KZ-monad over \mathcal{X} , iff for every $X \in \mathcal{X}$, there is an arrow $\eta_X : X \to \overline{X}$ with $\overline{X} \in \mathcal{A}$ such that:

(i)
$$A \subseteq \text{KInj}(\{\eta_X \mid X \in \mathcal{X}\})$$
 and, for every $f : X \to A$ with A in $A f/\eta_X \in A$.

(ii)
$$\eta_X$$
 is dense, i.e., $\eta_X/\eta_X = id_{\overline{X}}, X \in \mathcal{X}$.

In the setting of 2-categories:

 $[\mathsf{F}.$ Marmolejo, R. Wood, Kan extensions and lax idempotent pseudomonads, TAC, 2012]

Theorem ([CS, 2011])

Let \mathcal{A} be a (locally full) subcategory of \mathcal{X} . The inclusion functor $E : \mathcal{A} \hookrightarrow \mathcal{X}$ is a right adjoint which induces a KZ-monad over \mathcal{X} , iff for every $X \in \mathcal{X}$, there is an arrow $\eta_X : X \to \overline{X}$ with $\overline{X} \in \mathcal{A}$ such that:

(i)
$$A \subseteq \text{KInj}(\{\eta_X \mid X \in \mathcal{X}\})$$
 and, for every $f : X \to A$ with A in $A f/\eta_X \in A$.

(ii)
$$\eta_X$$
 is dense, i.e., $\eta_X/\eta_X = id_{\overline{X}}, X \in \mathcal{X}$.

Furthermore, under the above conditions, A is a KZ-monadic subcategory of X iff it is closed under left adjoint retractions.

Eilenberg-Moore category = closure under left adjoint retractions of the Kleisli category

 $\mathbb{T} = filter monad on Top_0$

[HS, 2017]

 \mathcal{A} subcategory of \mathcal{X} $\mathcal{A}^{\mathsf{KInj}} := \{h \in \mathsf{Mor}(\mathcal{X}) \, | \, \mathcal{A} \text{ Kan-injective wrt } h\}$

Galois connection:

 \mathcal{A} subcategory of \mathcal{X} $\mathcal{A}^{\mathsf{KInj}} := \{h \in \mathsf{Mor}(\mathcal{X}) \, | \, \mathcal{A} \text{ Kan-injective wrt } h\}$

Galois connection:

In case $\mathcal A$ is an Eilenberg-Moore category of a KZ-monad $\mathcal T$

$$\mathcal{A}^{\mathsf{KInj}} = \{ f \mid f \text{ is a } \underbrace{T\text{-embedding}}_{Tf \text{ is a left adjoint section}} \}$$

2. In Loc and Top₀

```
[D. Scott, LN, 1972]:
In Top<sub>0</sub>, continuous lattices = spaces injective wrt embeddings
```

```
[P. Johnstone, JPAA, 1981]:
In Loc,
stably locally compact locales = retracts of coherent locales
= locales injective wrt flat embeddings
```

```
M. Escardó, in 1990's:
Several examples of
injective objs. = EM-algebras of a KZ-monad
```

Loc = Frm^{op} Locale = frame = complete lattice *L* with $(\bigvee A) \land b = \bigvee_{a \in A} (a \land b)$

Localic map = infima-preserving map $f : L \rightarrow M$ with $f^* : M \rightarrow L$ preserving finite meets Loc = Frm^{op} Locale = frame = complete lattice *L* with $(\bigvee A) \land b = \bigvee_{a \in A} (a \land b)$

Localic map = infima-preserving map $f : L \rightarrow M$ with $f^* : M \rightarrow L$ preserving finite meets

Embeddings = one-to-one localic maps

Loc = Frm^{op} Locale = frame = complete lattice *L* with $(\bigvee A) \land b = \bigvee_{a \in A} (a \land b)$

Localic map = infima-preserving map $f : L \rightarrow M$ with $f^* : M \rightarrow L$ preserving finite meets

Embeddings = one-to-one localic maps

$$f: L \to M$$
 is *n*-flat, if $f(\bigvee_{i \in I} x_i) = \bigvee_{i \in I} f(x_i)$, for $|I| \le n$.

Loc = Frm^{op} Locale = frame = complete lattice *L* with $(\bigvee A) \land b = \bigvee_{a \in A} (a \land b)$

Localic map = infima-preserving map $f : L \rightarrow M$ with $f^* : M \rightarrow L$ preserving finite meets

Embeddings = one-to-one localic maps

$$f: L \to M$$
 is *n*-flat, if $f(\bigvee_{i \in I} x_i) = \bigvee_{i \in I} f(x_i)$, for $|I| \le n$.

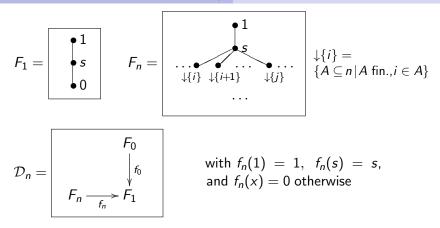
(0-flat =) 1-flat = dense
$$(f(0) = 0)$$

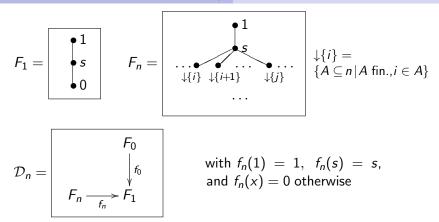
2-flat = flat

For every cardinal n,

 F_n = free frame generated by the set n

$$F_n = (\{ \text{downsets of } (\{ \text{finite subsets of } X\}, \supseteq), \subseteq)$$





Theorem ([CS, 2017])

• Embeddings = F_1^{KInj}

• *n-flat embeddings* =
$$\mathcal{D}_n^{\mathsf{KIn}}$$

 $\mathcal{D} = \bigcup_{n \in \mathsf{Card}} \mathcal{D}_n$ is a subcategory of Loc made of spatial locales.

Corollary

Loc is the Kan-injective hull of a subcategory made of spatial locales:

$$_{-}\mathsf{oc} = \mathsf{KInj}\left(\mathcal{D}^{\mathsf{KInj}}
ight)$$

 $\mathcal{D} = \bigcup_{n \in \mathsf{Card}} \mathcal{D}_n$ is a subcategory of Loc made of spatial locales.

Corollary

Loc is the Kan-injective hull of a subcategory made of spatial locales:

$$_\mathsf{oc} = \mathsf{KInj}\left(\mathcal{D}^{\mathsf{KInj}}
ight)$$

Proof.

$$\mathcal{D}^{\mathsf{KInj}} = \bigcap_{n \in \mathsf{Card}} \mathcal{D}_n^{\mathsf{KInj}}$$
$$= \{ \{ f \in \mathsf{Loc} \mid f_* \in \mathsf{Loc} \text{ and } f_*f = \mathsf{id} \}$$
$$= \underbrace{\{ f \in \mathsf{Loc} \mid f \text{ is a left adjoint section in } \mathsf{Loc} \}}_{\mathcal{H}}$$

Thus,
$$KInj(\mathcal{H}) = Loc.$$

Category Theory 2018, Azores, 8-14 July

 $L\in\mathsf{Loc}$

Given n,

 $G_nL := \{ U \subseteq L \mid U = \downarrow U, U \text{ closed under } \bigvee_{I}, |I| \le n \} \text{ with } \subseteq$ $G_n : \mathsf{Loc} \to \mathsf{Loc}$

gives rise to the functor part of a KZ-monad.

 $L\in\mathsf{Loc}$

Given n,

 $G_nL := \{ U \subseteq L \mid U = \downarrow U, U \text{ closed under } \bigvee_{I}, |I| \le n \} \text{ with } \subseteq$ $G_n : \text{Loc} \to \text{Loc}$

gives rise to the functor part of a KZ-monad.

$$a \ll_n b$$
, if, $\forall U \in G_n L$,
 $b \leq \bigvee U \Rightarrow a \in U$

 $L\in\mathsf{Loc}$

Given n,

 $G_n L := \{ U \subseteq L \mid U = \downarrow U, U \text{ closed under } \bigvee_{I}, |I| \le n \} \text{ with } \subseteq$ $G_n : \text{Loc} \to \text{Loc}$

gives rise to the functor part of a KZ-monad.

$$a \ll_n b$$
, if, $\forall U \in G_n L$,
 $b \leq \bigvee U \Rightarrow a \in U$

L is stably locally n-compact if

•
$$\forall a \in L, \ a = \bigvee_{x \ll_n a} x$$

•
$$\forall x, a, b, (x \ll_n a, x \ll_n b) \Rightarrow x \ll_n a \land b$$

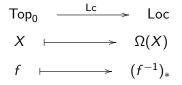
1≪_n1

 $SLComp_n =$ category of stably locally *n*-compact locales and localic maps *f* such that f^* preserves \ll_n

Theorem ([CS, 2017])

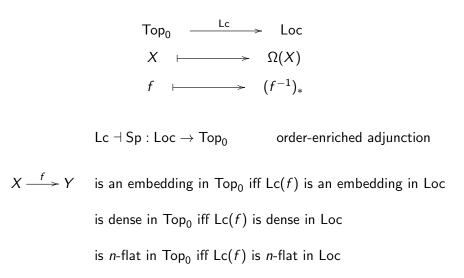
For every n, SLComp_n is a KZ-monadic subcategory, and it is the Kan-injective hull of D_n , i.e.,

$$\mathsf{SLComp}_n = \mathsf{KInj}\left(\mathcal{D}_n^{\mathsf{KInj}}\right).$$



 $\mathsf{Lc} \dashv \mathsf{Sp} : \mathsf{Loc} \to \mathsf{Top}_0$

order-enriched adjunction



Lemma

Let $F \dashv G : A \rightarrow X$ be an order-enriched adjunction.

Then, given h in \mathcal{X} and an object A (resp., a morphism f) in \mathcal{A} ,

Proof. Immediate from the natural isomorphism

 $\mathcal{A}(FX, A) \cong \mathcal{X}(X, GA).$

Corollary ([CS, 2017])

In Top₀:

- Embeddings are precisely the morphisms wrt which the Sierpiński space is Kan-injective.
- n-flat embeddings are precisely the morphisms wrt which Sp[D_n] is Kan-injective.

In Top₀:

A	\mathcal{A}^{KInj}	KInj ($\mathcal{A}^{KInj})$ (KZ-monadic)
2 = Sierpiński	embeddings	continuous lattices & maps pres. all \bigwedge and \bigvee^\uparrow
1> 2	dense embeddings	Scott conts. lats. & maps pres. $\bigwedge (\neq \emptyset)$ and \bigvee^{\uparrow}
	flat embeddings	stably locally compact spaces & convenient maps

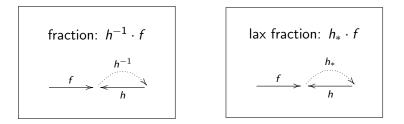
We need Kan-injectivity w.r.t. squares

full reflective subcategory: the Kleisli category of the idemp. monad T is a category of fractions of $\underbrace{\{h \mid Th \text{ is an iso}\}}_{= \mathcal{A}^{\text{Orth}}}$ full reflective subcategory: the Kleisli category of the idemp. monad T is a category of fractions of $\underbrace{\{h \mid Th \text{ is an iso}\}}_{= \mathcal{A}^{\text{Orth}}}$

KZ-monadic subcategory: $\mathcal{A}^{KInj} = \{h \mid Th \text{ is a left adjoint section}\}$

full reflective subcategory: the Kleisli category of the idemp. monad T is a category of fractions of $\{ h \mid Th \text{ is an iso} \}$ $- \Lambda^{\text{Orth}}$

KZ-monadic subcategory: $\mathcal{A}^{KInj} = \{h \mid Th \text{ is a left adjoint section}\}$



$\mathcal{A}^{\mathsf{Orth}}$ closed under colimits in $\mathcal{X}^{\rightarrow}$

$\mathcal{A}^{\mathsf{Orth}}$ closed under colimits in $\mathcal{X}^{\rightarrow}$

Applications:

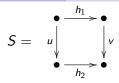
- *A*^{Orth} admits a calculus of fractions
- an affirmative answer to the Orthog. Subcat. Problem [Gabriel, Ulmer, 1971] [Kelly, 1980]

$\mathcal{A}^{\mathsf{Orth}}$ closed under colimits in $\mathcal{X}^{\rightarrow}$

Applications:

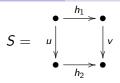
- $\mathcal{A}^{\text{Orth}}$ admits a calculus of fractions
- an affirmative answer to the Orthog. Subcat. Problem [Gabriel, Ulmer, 1971] [Kelly, 1980]

What about $\mathcal{A}^{\mathsf{KInj}}$?



is a square in \mathcal{X} . It represents the morphism

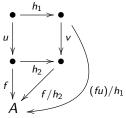
 $(u,v): h_1 \rightarrow h_2$ in $\mathcal{X}^{\rightarrow}$.

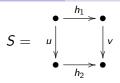


is a square in \mathcal{X} . It represents the morphism

$$(u, v): h_1 \rightarrow h_2$$
 in $\mathcal{X}^{\rightarrow}$.

A is Kan-injective wrt S if it is Kan-injective wrt h_1 and h_2 and, for every f, $(fu)/h_1 = (f/h_2)v$:

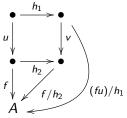




is a square in \mathcal{X} . It represents the morphism

$$(u, v): h_1 \rightarrow h_2$$
 in $\mathcal{X}^{\rightarrow}$.

A is Kan-injective wrt S if it is Kan-injective wrt h_1 and h_2 and, for every f, $(fu)/h_1 = (f/h_2)v$:



 $k : A \rightarrow B$ is Kan-injective wrt S if it is Kan-injective wrt h_1 and h_2 .

Category Theory 2018, Azores, 8-14 July

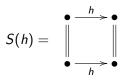
$\mathcal{A}^{\underline{\mathsf{KInj}}} = \text{ subcategory of } \mathcal{X}^{\rightarrow} \text{ of morphisms and squares} \\ \text{ wrt which } \mathcal{A} \text{ is Kan-injective}$

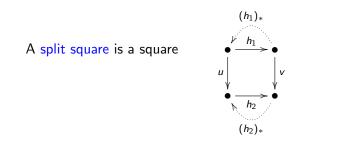
$\mathcal{A}^{\underline{\mathsf{KInj}}} = \text{ subcategory of } \mathcal{X}^{\rightarrow} \text{ of morphisms and squares} \\ \text{ wrt which } \mathcal{A} \text{ is Kan-injective}$

Theorem

Let \mathcal{X} have weighted colimits. $\mathcal{A}^{\underline{\mathsf{KInj}}}$ is closed under weighted colimits in $\mathcal{X}^{\rightarrow}$. And it is a coinserter-ideal.

A morphism *h* as a square:





with h_1 and h_2 left adjoint sections and $(h_2)_*v = u(h_1)_*$.

A square S is a split square iff $KInj(S) = \mathcal{X}$.

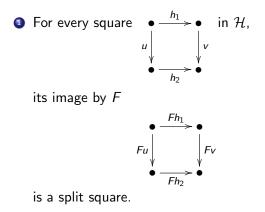
Category Theory 2018, Azores, 8-14 July

Let \mathcal{H} be a class of squares of \mathcal{X} .

A category of lax fractions for \mathcal{H} is a functor $F : \mathcal{X} \to \mathcal{X}[\mathcal{H}_*]$ such that:

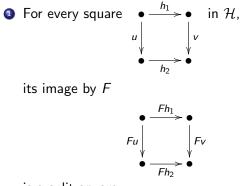
Let \mathcal{H} be a class of squares of \mathcal{X} .

A category of lax fractions for \mathcal{H} is a functor $F : \mathcal{X} \to \mathcal{X}[\mathcal{H}_*]$ such that:



Let \mathcal{H} be a class of squares of \mathcal{X} .

A category of lax fractions for \mathcal{H} is a functor $F : \mathcal{X} \to \mathcal{X}[\mathcal{H}_*]$ such that:



is a split square.

If G : X → C is another functor under the above condition, then there is a unique functor H : X[H_{*}] → C such that HF = G.

Theorem ([S, 2017])

Let \mathcal{A} be a KZ-monadic subcategory of \mathcal{X} . Then the corresponding Kleisli category is a category of lax fractions for $\mathcal{H} = \mathcal{A}^{\underline{\mathsf{KInj}}}$.

3. Lax fractions

Theorem ([S, 2017])

Let \mathcal{A} be a KZ-monadic subcategory of \mathcal{X} . Then the corresponding Kleisli category is a category of lax fractions for $\mathcal{H} = \mathcal{A}^{\underline{\mathsf{Klnj}}}$.

Also in [S., 2017]: a calculus of lax fractions, via a calculus of squares

In locally bounded categories, $Orth(\mathcal{H})$ is reflective (for each set \mathcal{H}). Each reflection of X in $Orth(\mathcal{H})$ is given by a convenient chain

$$X = X_0 \longrightarrow X_1 \longrightarrow \ldots \longrightarrow X_i \longrightarrow \ldots \longrightarrow X_{\lambda}$$

[M. Kelly, 1980]

In locally bounded categories, $Orth(\mathcal{H})$ is reflective (for each set \mathcal{H}). Each reflection of X in $Orth(\mathcal{H})$ is given by a convenient chain

$$X = X_0 \longrightarrow X_1 \longrightarrow \ldots \longrightarrow X_i \longrightarrow \ldots \longrightarrow X_\lambda$$

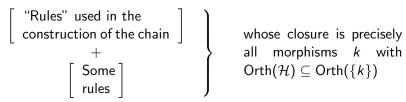
[M. Kelly, 1980]

"Rules" used in the construction of the chain $\left. \right| + \left[\begin{array}{c} \text{Some} \\ \text{rules} \end{array} \right] \right\}$ whose closure is precisely all morphisms k with $\text{Orth}(\mathcal{H}) \subseteq \text{Orth}(\{k\})$

In locally bounded categories, $Orth(\mathcal{H})$ is reflective (for each set \mathcal{H}). Each reflection of X in $Orth(\mathcal{H})$ is given by a convenient chain

$$X = X_0 \longrightarrow X_1 \longrightarrow \ldots \longrightarrow X_i \longrightarrow \ldots \longrightarrow X_\lambda$$

[M. Kelly, 1980]



Logic for Orthogonality

[J. Adámek, M. Hébert, L.S., The orthog. subcat. probl. ..., 2009]

[J. Adámek, M. Sobral, L.S., A logic of implications ..., 2009]

Analogously, two related problems:

- Kan-Injective Subcategory Problem
- A Logic for Kan-injectivity

Theorem ([ASV, 2015])

In a locally bounded order-enriched category, Klnj(H) is KZ-monadic, for every set H of morphisms.

Theorem ([ASV, 2015], [AS, 2017])

In a locally bounded order-enriched category, Klnj(H) is KZ-monadic, for every set H of squares.

To obtain a complete logic for Kan-injectivity, we need squares.

 ${\mathcal X}$ is locally bounded, that is:

- it has weighted colimits;
- it has a proper f. s. (E, M), i.e., E ⊆ Epi, M ⊆ OrderMono; (mf ≤ mg ⇒ f ≤ g)
- it is *E*-cowellpowered;
- every object X has bound, i.e.,
 X(X, -) preserves λ-direced M-unions, for some λ.

The reflection chain

Given a set \mathcal{H} of squares, for every X, the chain

$$X = X_0 - \operatorname{Pr} X_1 - \operatorname{Pr} X_2 - \operatorname{Pr} \dots - \operatorname{Pr} X_i - \operatorname{Pr} \dots \quad (i \in \operatorname{Ord})$$

is constructed as follows:

Category Theory 2018, Azores, 8-14 July

.

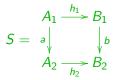
 $\underline{\text{Limit step } i}. \quad X_i = \operatornamewithlimits{colim}_{j < i} X_j$

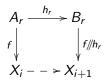
 $\underline{\text{Limit step } i}. \quad X_i = \operatornamewithlimits{colim}_{j < i} X_j$

Isolated step $i \mapsto i + 1$ (*i* even).

 $\underline{\text{Limit step } i}. \quad X_i = \underset{j < i}{\operatorname{colim}} X_j$

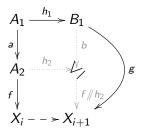
Isolated step $i \mapsto i + 1$ (*i* even).





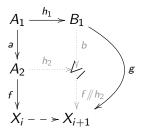
Wide pushout of all pushouts of f's along h_r 's (r = 1, 2) of $S \in \mathcal{H}$

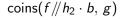
Isolated step $i + 1 \mapsto i + 2$.

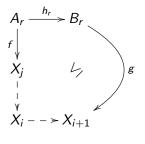


 $coins(f//h_2 \cdot b, g)$

Isolated step $i + 1 \mapsto i + 2$.

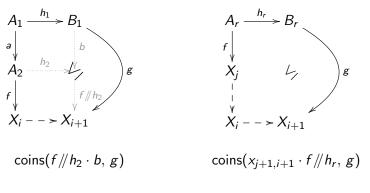






 $coins(x_{j+1,i+1} \cdot f // h_r, g)$

Isolated step $i + 1 \mapsto i + 2$.



 $X_{i+1} - \rightarrow X_{i+2}$ is the wide pushout of all these coinserters for $S \in \mathcal{H}$, and possible f's and g's. There is a cardinal λ , greater than the bounds of the objects appearing in the squares of \mathcal{H} , such that

$$X_0 - - \succ X_\lambda$$

is a KZ-reflection in $KInj(\mathcal{H})$.

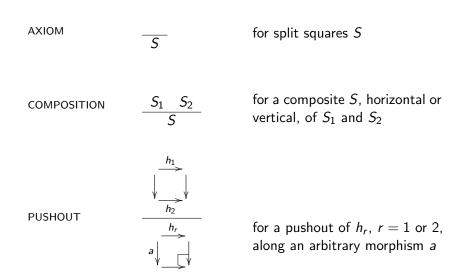
<u>Aim</u>:

System of deduction rules such that, for every set of squares \mathcal{H} and every square S,

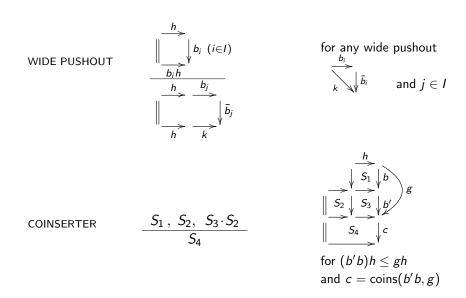
$$\mathcal{H} \vdash S$$
 iff $\mathcal{H} \models S$

where $\mathcal{H} \models S$ means that $KInj(\mathcal{H}) \subseteq KInj(\{S\})$.

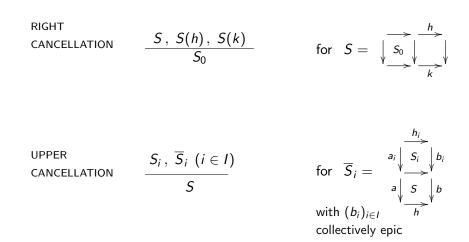
Kan-Injectivity Deduction System



Kan-Injectivity Deduction System



Kan-Injectivity Deduction System



Theorem

In any order-enriched locally bounded category, the Kan-injectivity Deduction System is sound and complete:

 $\mathcal{H} \models S \text{ iff } \mathcal{H} \vdash S$

Theorem

In any locally bounded order-enriched category, for every set of squares $\mathcal{H},$ the class

 $\{S \in Square(\mathcal{X}) \mid \mathcal{H} \models S\}$

is the smallest subcategory of $\mathcal{X}^{\rightarrow}$ containing \mathcal{H} and all split squares, and closed under horizontal composition, weighted colimits, the coinserter rule, and right and upper cancellations.

Open question

Let \mathcal{X} have weighted colimits. Do Eilenberg-Moore categories of a KZ-monad over \mathcal{X} have weighted colimits (at least under mild conditions)?