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Let E denote a Grothendieck topos. A point of E is a geometric

morphism G : Set→ E , that is, an adjoint pair

G ∗ : E � Set : G∗ G ∗ a G∗

with G ∗ left exact (finite limit preserving).
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A functor E : C → Set is flat if the extension

C

[C op,Set]

Set.

�

E

y
E ⊗C −

is left exact. The tensor is a left adjiont

E ⊗C − a Set(E ,−)

hence each such E yields a geometric morphism.
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The points of [C op,Set] correspond to flat set-valued functors

Flat(C ) ' Geom(Set, [C op,Set])

E 7→ E ⊗C −
G ∗ ◦ y ←[ G

The general version is found in

R. Diaconescu. “Change of Base for Toposes with Generators.”

Jour. Pure Appl. Alg. 6 (1975), pp. 191-218.
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Now, suppose that (C , J) is a site. A functor E : C → Set is

continuous if E ⊗C − factors through

A : [C op,Set] � Sh(C , J) : i .

The previous equivalence (roughly speaking) restricts to one

ConFlat(C , J) ' Geom(Set,Sh(C , J)).
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Let St(C , J) denote the 2-category of stacks on (C , J), that is,

pseudo-functors F : C op → CAT satisfying an amalgamation

condition.

Question/problem: What sort of correspondence exists between

continuous flat pseudo-functors E : C → CAT and points of

stacks?

One reference: §§4-5 of

R. Street, “Two-Dimensional Sheaf Theory.” Jour. Pure Appl.

Alg. 23 (1982), pp. 251-270.
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Start with pseudo-functors E : C → CAT and F : C op → CAT.

Set ∆(E ,F ) to be the category with objects triples

(C ,X ,Y ) X ∈ EC , Y ∈ FC

and arrows (C ,X ,Y )→ (D,Z ,W ) the triples (f , u, v) with

f : C → D u : f!X → Z v : Y → f ∗W .

Take E ⊗C F to denote the category of fractions

E ⊗C F := ∆(E ,F )[Σ−1]

where Σ is the set of “cartesian” morphisms.
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There results an extension

C

[C op,CAT]

CAT

'

E

y
E ⊗C −

making a natural isomorphism of categories

CAT(E ⊗C F ,X ) ∼= [C op,CAT](F ,CAT(E ,X ))

i.e. an adjunction E ⊗C − a CAT(E ,−).

Say that E : C → CAT is flat if E ⊗C − is finite limit-preserving.
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A few remarks:

The tensor E ⊗C F is a computation of the pseudo-colimit of E

weighted by F , denoted E ? F . This generalizes the well-known

computation of Grothendieck and Verdier of §6.4.0 of SGA4.

A weaker “bitensor product” is given as a coend

G ⊗w
C F := (E × F ) ? C (−,−)

making a biadjunction

CAT(E ⊗w
C F ,X ) ' [C op,CAT](F ,CAT(E ,X )).

For a study of flat pseudo-functors see

M.E. Descotte, E.J. Dubuc, M. Szyld. “Sigma limits in

2-categories and flat pseudofunctors.” arXiv:1610.09429v3.
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Define correspondences

Flat(C ) � Geom(CAT, [C op,CAT])

E 7→ E ⊗C −
G ∗ ◦ y ←[ G .

Proposition

The maps above result in a biequivalence of 2-categories

Flat(C ) ' Geom(CAT, [C op,CAT]).

Crucial part: there is an equivalence

G ∗y ⊗C F ' G ∗F .

pseudo-natural in F .
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Let (C , J) denote a site.

Say that E : C → CAT is continuous if E ⊗C − factors through

the inclusion i : St(C , J)→ [C op,CAT].

Let Fact denote the full sub-2-category of those points

G : CAT→ [C op,CAT] factoring through i .

The equivalence of the previous proposition restricts to one

ConFlat(C , J) ' Fact.

The work consists in showing that

Fact ' Geom(CAT,St(C , J)).
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Observation: if G factors through i , there is a canonical geometric

morphism that does this.

CAT [C op,CAT].

St(C , J)

G∗

G ∗

H∗H∗ Ai

Thus, have that

H∗ ' G ∗i H∗ ' AG∗.
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Can exhibit functors

Geom(CAT,St(C , J)) � Fact

taking a H on the left to iH, the pullback by inclusion and taking

G on the right to G ∗i a AG∗.

This yields the desired biequivalence:

Theorem

There is a biequivalence of 2-categories

ConFlat(C , J) ' Geom(CAT,St(C , J)).
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