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The general version is found in

R. Diaconescu. “Change of Base for Toposes with Generators.”
Jour. Pure Appl. Alg. 6 (1975), pp. 191-218.
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The previous equivalence (roughly speaking) restricts to one

ConFlat(%¢, J) ~ Geom(Set, Sh(%, J)).
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Let Gt(%, J) denote the 2-category of stacks on (%, J), that is,
pseudo-functors F: €°P — €T satisfying an amalgamation
condition.

Question/problem: What sort of correspondence exists between
continuous flat pseudo-functors E: ¢ — €2AT and points of
stacks?

One reference: §54-5 of

R. Street, “Two-Dimensional Sheaf Theory." Jour. Pure Appl.
Alg. 23 (1982), pp. 251-270.
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Start with pseudo-functors E: 4 — €A% and F: €°°P — CAT.

Set A(E, F) to be the category with objects triples
(C.X,Y) X€EC, YeFC
and arrows (C, X, Y) — (D, Z, W) the triples (f, u, v) with
f:C—=D u: hiX =27 v:Y — fFFW.
Take E ®¢ F to denote the category of fractions
E®¢ F = A(E, F)[Z7!]

where ¥ is the set of “cartesian” morphisms.
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There results an extension

[, CAT]

making a natural isomorphism of categories
CAT(E @y F, Z') =2 [€°P, CAT|(F, CAZ(E, X))

i.e. an adjunction E ®¢4 — - CAT(E, —).
Say that E: ¥ — €T is flat if E ®¢ — is finite limit-preserving.
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A few remarks:

The tensor E ®¢ F is a computation of the pseudo-colimit of E
weighted by F, denoted E x F. This generalizes the well-known
computation of Grothendieck and Verdier of §6.4.0 of SGA4.

A weaker “bitensor product” is given as a coend
Gy F=(ExF)x%€(—,—)
making a biadjunction
CAT(E @y F, Z') ~ [€°P, CAT|(F,CAT(E, X)).

For a study of flat pseudo-functors see

M.E. Descotte, E.J. Dubuc, M. Szyld. “Sigma limits in
2-categories and flat pseudofunctors.” arXiv:1610.09429v3.
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Define correspondences

Slat(€) = Geom(EAT, [¢°P, €AT])
E — EQ¢g-—
G'oy <+ G.

Proposition

The maps above result in a biequivalence of 2-categories

Flat(€) ~ Geom(CAT, [P, CAT]).

Crucial part: there is an equivalence
G'y®y F ~ G*F.

pseudo-natural in F.

10



11



Let (¥, J) denote a site.

11



Let (¥, J) denote a site.

Say that E: ¥ — €¥ is continuous if E ®¢ — factors through
the inclusion i: G(%, J) — [€°P, €AT].

11



Let (¥, J) denote a site.

Say that E: ¥ — €¥ is continuous if E ®¢ — factors through
the inclusion i: G(%, J) — [€°P, €AT].

Let Fact denote the full sub-2-category of those points
G: CAT — [¢°P, CAZT] factoring through i.

11



Let (¥, J) denote a site.

Say that E: ¥ — €¥ is continuous if E ®¢ — factors through
the inclusion i: G(%, J) — [€°P, €AT].

Let Fact denote the full sub-2-category of those points
G: CAT — [¢°P, CAZT] factoring through i.

The equivalence of the previous proposition restricts to one

ConFlat(€, J) ~ Fact.

11



Let (¥, J) denote a site.

Say that E: ¥ — €¥ is continuous if E ®¢ — factors through
the inclusion i: G(%, J) — [€°P, €AT].

Let Fact denote the full sub-2-category of those points
G: CAT — [¢°P, CAZT] factoring through i.

The equivalence of the previous proposition restricts to one
ConFlat(€, J) ~ Fact.
The work consists in showing that

Fact ~ Geom(CAT, St(F, J)).
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Observation: if G factors through /, there is a canonical geometric
morphism that does this.

G,
AT [€°P, €ATZ].
A
Thus, have that
H* ~ G*i H, ~ AG,.
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Can exhibit functors
Geom(CAT, Gt(%, J)) = Fact

taking a H on the left to /H, the pullback by inclusion and taking
G on the right to G*i 4 AG,.

This yields the desired biequivalence:

Theorem

There is a biequivalence of 2-categories

ConFlat(€, J) ~ Geom(CAT, &%, J)).
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