Diaconescu's Theorem for Stacks

CT 2018

Michael Lambert
13 July 2018
Dalhousie University

Let \mathscr{E} denote a Grothendieck topos.

Let \mathscr{E} denote a Grothendieck topos. A point of \mathscr{E} is a geometric morphism G : Set $\rightarrow \mathscr{E}$

Let \mathscr{E} denote a Grothendieck topos. A point of \mathscr{E} is a geometric morphism G : Set $\rightarrow \mathscr{E}$, that is, an adjoint pair

$$
G^{*}: \mathscr{E} \rightleftarrows \text { Set }: G_{*} \quad G^{*} \dashv G_{*}
$$

Let \mathscr{E} denote a Grothendieck topos. A point of \mathscr{E} is a geometric morphism G : Set $\rightarrow \mathscr{E}$, that is, an adjoint pair

$$
G^{*}: \mathscr{E} \rightleftarrows \text { Set }: G_{*} \quad G^{*} \dashv G_{*}
$$

with G^{*} left exact (finite limit preserving).

A functor $E: \mathscr{C} \rightarrow$ Set is flat if the extension

is left exact.

A functor $E: \mathscr{C} \rightarrow$ Set is flat if the extension

is left exact. The tensor is a left adjiont

$$
E \otimes_{\mathscr{C}}-\dashv \operatorname{Set}(E,-)
$$

hence each such E yields a geometric morphism.

The points of $\left[\mathscr{C}^{\circ p}\right.$, Set $]$ correspond to flat set-valued functors

The points of $\left[\mathscr{C}^{\circ p}\right.$, Set $]$ correspond to flat set-valued functors
$\operatorname{Flat}(\mathscr{C}) \simeq \operatorname{Geom}\left(\right.$ Set,$\left[\mathscr{C}^{\circ P}\right.$, Set $\left.]\right)$

$$
\begin{aligned}
E & \mapsto E \otimes_{\mathscr{C}}- \\
G^{*} \circ \mathbf{y} & \leftrightarrow G
\end{aligned}
$$

The points of $\left[\mathscr{C}^{\circ p}\right.$, Set] correspond to flat set-valued functors

$$
\begin{aligned}
\operatorname{Flat}(\mathscr{C}) & \simeq \operatorname{Geom}\left(\text { Set },\left[\mathscr{C}^{o p}, \text { Set }\right]\right) \\
E & \mapsto E \otimes \mathscr{C}- \\
G^{*} \circ \mathbf{y} & \leftarrow G
\end{aligned}
$$

The general version is found in
R. Diaconescu. "Change of Base for Toposes with Generators." Jour. Pure Appl. Alg. 6 (1975), pp. 191-218.

Now, suppose that (\mathscr{C}, J) is a site.

Now, suppose that (\mathscr{C}, J) is a site. A functor $E: \mathscr{C} \rightarrow$ Set is continuous if $E \otimes_{\mathscr{C}}$ - factors through

$$
\mathbf{A}:\left[\mathscr{C}^{o p}, \text { Set }\right] \rightleftarrows \mathbf{S h}(\mathscr{C}, J): i
$$

Now, suppose that (\mathscr{C}, J) is a site. A functor $E: \mathscr{C} \rightarrow$ Set is continuous if $E \otimes_{\mathscr{C}}$ - factors through

$$
\mathbf{A}:\left[\mathscr{C}^{o p}, \text { Set }\right] \rightleftarrows \mathbf{S h}(\mathscr{C}, J): i
$$

The previous equivalence (roughly speaking) restricts to one

$$
\operatorname{ConFlat}(\mathscr{C}, J) \simeq \operatorname{Geom}(\operatorname{Set}, \operatorname{Sh}(\mathscr{C}, J)) .
$$

Let $\mathfrak{S t}(\mathscr{C}, J)$ denote the 2-category of stacks on (\mathscr{C}, J)

Let $\mathfrak{S t}(\mathscr{C}, J)$ denote the 2-category of stacks on (\mathscr{C}, J), that is, pseudo-functors $F: \mathscr{C}^{o p} \rightarrow \mathfrak{C A T}$ satisfying an amalgamation condition.

Let $\mathfrak{S t}(\mathscr{C}, J)$ denote the 2-category of stacks on (\mathscr{C}, J), that is, pseudo-functors $F: \mathscr{C}^{o p} \rightarrow \mathfrak{C A T}$ satisfying an amalgamation condition.

Question/problem:

Let $\mathfrak{S t}(\mathscr{C}, J)$ denote the 2-category of stacks on (\mathscr{C}, J), that is, pseudo-functors $F: \mathscr{C}^{\circ p} \rightarrow \mathfrak{C A T}^{\text {a }}$ satisfying an amalgamation condition.

Question/problem: What sort of correspondence exists between continuous flat pseudo-functors $E: \mathscr{C} \rightarrow \mathfrak{C A T}$ and points of stacks?

Let $\mathfrak{S t}(\mathscr{C}, J)$ denote the 2-category of stacks on (\mathscr{C}, J), that is, pseudo-functors $F: \mathscr{C}^{o p} \rightarrow \mathfrak{C A T}^{\text {atisfy }}$ satisfy an amalgamation condition.

Question/problem: What sort of correspondence exists between continuous flat pseudo-functors $E: \mathscr{C} \rightarrow \mathfrak{C A T}$ and points of stacks?

One reference: $\S \S 4-5$ of
R. Street, "Two-Dimensional Sheaf Theory." Jour. Pure Appl. Alg. 23 (1982), pp. 251-270.

Start with pseudo-functors $E: \mathscr{C} \rightarrow \mathfrak{C A T}^{2}$ and $F: \mathscr{C}{ }^{\circ p} \rightarrow \mathfrak{C A T}$.

Start with pseudo-functors $E: \mathscr{C} \rightarrow \mathfrak{C A T}^{\mathfrak{M}}$ and $F: \mathscr{C}^{o p} \rightarrow \mathfrak{C A T}$.
Set $\Delta(E, F)$ to be the category with objects triples

$$
(C, X, Y) \quad X \in E C, Y \in F C
$$

Start with pseudo-functors $E: \mathscr{C} \rightarrow \mathfrak{C A T}^{\mathfrak{M}}$ and $F: \mathscr{C}^{o p} \rightarrow \mathfrak{C A T}$.
Set $\Delta(E, F)$ to be the category with objects triples

$$
(C, X, Y) \quad X \in E C, Y \in F C
$$

and arrows $(C, X, Y) \rightarrow(D, Z, W)$ the triples (f, u, v) with

$$
f: C \rightarrow D \quad u: f_{1} X \rightarrow Z \quad v: Y \rightarrow f^{*} W
$$

Start with pseudo-functors $E: \mathscr{C} \rightarrow \mathfrak{C A T}^{\mathfrak{A}}$ and $F: \mathscr{C}^{o p} \rightarrow \mathfrak{C A T}$.
Set $\Delta(E, F)$ to be the category with objects triples

$$
(C, X, Y) \quad X \in E C, Y \in F C
$$

and arrows $(C, X, Y) \rightarrow(D, Z, W)$ the triples (f, u, v) with

$$
f: C \rightarrow D \quad u: f_{!} X \rightarrow Z \quad v: Y \rightarrow f^{*} W
$$

Take $E \otimes_{\mathscr{C}} F$ to denote the category of fractions

$$
E \otimes_{\mathscr{C}} F:=\Delta(E, F)\left[\Sigma^{-1}\right]
$$

where Σ is the set of "cartesian" morphisms.

There results an extension

There results an extension

making a natural isomorphism of categories

$$
\mathfrak{C A T}\left(E \otimes_{\mathscr{C}} F, \mathscr{X}\right) \cong\left[\mathscr{C}^{o p}, \mathfrak{C A T}\right](F, \mathfrak{C A T}(E, \mathscr{X}))
$$

There results an extension

making a natural isomorphism of categories

$$
\mathfrak{C A T}\left(E \otimes_{\mathscr{C}} F, \mathscr{X}\right) \cong\left[\mathscr{C}^{\circ p}, \mathfrak{C A T}\right](F, \mathfrak{C A T}(E, \mathscr{X}))
$$

i.e. an adjunction $E \otimes_{\mathscr{C}}-\dashv \mathfrak{C A T}(E,-)$.

There results an extension

making a natural isomorphism of categories

$$
\mathfrak{C A T}\left(E \otimes_{\mathscr{C}} F, \mathscr{X}\right) \cong\left[\mathscr{C}^{\circ p}, \mathfrak{C A T}\right](F, \mathfrak{C A T}(E, \mathscr{X}))
$$

i.e. an adjunction $E \otimes_{\mathscr{C}}-\dashv \mathfrak{C A T}(E,-)$.

Say that $E: \mathscr{C} \rightarrow \mathfrak{C A T}$ is flat if $E \otimes_{\mathscr{C}}$ - is finite limit-preserving.

A few remarks:

A few remarks:
The tensor $E \otimes_{\mathscr{C}} F$ is a computation of the pseudo-colimit of E weighted by F, denoted $E \star F$.

A few remarks:
The tensor $E \otimes_{\mathscr{C}} F$ is a computation of the pseudo-colimit of E weighted by F, denoted $E \star F$. This generalizes the well-known computation of Grothendieck and Verdier of $\S 6.4 .0$ of SGA4.

A few remarks:
The tensor $E \otimes_{\mathscr{C}} F$ is a computation of the pseudo-colimit of E weighted by F, denoted $E \star F$. This generalizes the well-known computation of Grothendieck and Verdier of $\S 6.4 .0$ of SGA4.

A weaker "bitensor product" is given as a coend

$$
G \otimes_{\mathscr{C}}^{w} F:=(E \times F) \star \mathscr{C}(-,-)
$$

A few remarks:
The tensor $E \otimes_{\mathscr{C}} F$ is a computation of the pseudo-colimit of E weighted by F, denoted $E \star F$. This generalizes the well-known computation of Grothendieck and Verdier of $\S 6.4 .0$ of SGA4.

A weaker "bitensor product" is given as a coend

$$
G \otimes_{\mathscr{C}}^{w} F:=(E \times F) \star \mathscr{C}(-,-)
$$

making a biadjunction

$$
\mathfrak{C A T}\left(E \otimes_{\mathscr{C}}^{w} F, \mathscr{X}\right) \simeq\left[\mathscr{C}^{o p}, \mathfrak{C A T}\right](F, \mathfrak{C A T}(E, \mathscr{X})) .
$$

A few remarks:
The tensor $E \otimes_{\mathscr{C}} F$ is a computation of the pseudo-colimit of E weighted by F, denoted $E \star F$. This generalizes the well-known computation of Grothendieck and Verdier of $\S 6.4 .0$ of SGA4.

A weaker "bitensor product" is given as a coend

$$
G \otimes_{\mathscr{C}}^{w} F:=(E \times F) \star \mathscr{C}(-,-)
$$

making a biadjunction

$$
\mathfrak{C A T}\left(E \otimes_{\mathscr{C}}^{w} F, \mathscr{X}\right) \simeq\left[\mathscr{C}^{o p}, \mathfrak{C A T}\right](F, \mathfrak{C A T}(E, \mathscr{X})) .
$$

For a study of flat pseudo-functors see
M.E. Descotte, E.J. Dubuc, M. Szyld. "Sigma limits in 2-categories and flat pseudofunctors." arXiv:1610.09429v3.

Define correspondences

Define correspondences

$$
\begin{aligned}
\mathfrak{F l a t}(\mathscr{C}) & \rightleftarrows \mathfrak{G e o m}\left(\mathfrak{C A T},\left[\mathscr{C}^{\circ p}, \mathfrak{C A T}\right]\right) \\
E & \mapsto E \otimes \mathscr{C}- \\
G^{*} \circ \mathbf{y} & \leftarrow G .
\end{aligned}
$$

Define correspondences

$$
\begin{aligned}
\mathfrak{F l a t}(\mathscr{C}) & \rightleftarrows \mathfrak{G e o m}\left(\mathfrak{C A T},\left[\mathscr{C}^{\circ p}, \mathfrak{C A T}\right]\right) \\
E & \mapsto E \otimes_{\mathscr{C}}- \\
G^{*} \circ \mathbf{y} & \leftrightarrow G .
\end{aligned}
$$

Proposition

The maps above result in a biequivalence of 2-categories

$$
\mathfrak{F l a t}(\mathscr{C}) \simeq \mathfrak{G e o m}\left(\mathfrak{C A T},\left[\mathscr{C}^{o p}, \mathfrak{C A T}\right]\right)
$$

Define correspondences

$$
\begin{aligned}
\mathfrak{F l a t}(\mathscr{C}) & \rightleftarrows \mathfrak{G e o m}\left(\mathfrak{C A T},\left[\mathscr{C}^{\circ p}, \mathfrak{C A T}\right]\right) \\
E & \mapsto E \otimes_{\mathscr{C}}- \\
G^{*} \circ \mathbf{y} & \leftarrow G .
\end{aligned}
$$

Proposition

The maps above result in a biequivalence of 2-categories

$$
\mathfrak{F l a t}(\mathscr{C}) \simeq \mathfrak{G e o m}\left(\mathfrak{C A T},\left[\mathscr{C}^{\circ p}, \mathfrak{C A T}\right]\right)
$$

Crucial part: there is an equivalence

$$
G^{*} \mathbf{y} \otimes_{\mathscr{C}} F \simeq G^{*} F
$$

pseudo-natural in F.

Let (\mathscr{C}, J) denote a site.

Let (\mathscr{C}, J) denote a site.
Say that $E: \mathscr{C} \rightarrow \mathfrak{C A T}$ is continuous if $E \otimes_{\mathscr{C}}$ - factors through the inclusion $i: \mathfrak{S t}(\mathscr{C}, J) \rightarrow\left[\mathscr{C}^{\text {op }}, \mathfrak{C A T}\right]$.

Let (\mathscr{C}, J) denote a site.
Say that $E: \mathscr{C} \rightarrow \mathfrak{C A T}$ is continuous if $E \otimes_{\mathscr{C}}$ - factors through the inclusion $i: \mathfrak{S t}(\mathscr{C}, J) \rightarrow\left[\mathscr{C}^{\text {op }}, \mathfrak{C A T}\right]$.

Let $\mathfrak{F a c t}$ denote the full sub-2-category of those points
$G: \mathfrak{C} \mathfrak{A T} \rightarrow\left[\mathscr{C}^{\circ p}, \mathfrak{C A T}\right]$ factoring through i.

Let (\mathscr{C}, J) denote a site.
Say that $E: \mathscr{C} \rightarrow \mathfrak{C A T}$ is continuous if $E \otimes_{\mathscr{C}}$ - factors through the inclusion $i: \mathfrak{S t}(\mathscr{C}, J) \rightarrow\left[\mathscr{C}^{\text {op }}, \mathfrak{C A T}\right]$.

Let $\mathfrak{F a c t}$ denote the full sub-2-category of those points
$G: C^{\mathfrak{A T}} \rightarrow\left[\mathscr{C}^{\text {op }}, \mathfrak{C A T}\right]$ factoring through i.
The equivalence of the previous proposition restricts to one

$$
\mathfrak{C o n F l a t}(\mathscr{C}, J) \simeq \mathfrak{F a c t}
$$

Let (\mathscr{C}, J) denote a site.
Say that $E: \mathscr{C} \rightarrow \mathfrak{C A T}$ is continuous if $E \otimes_{\mathscr{C}}$ - factors through the inclusion $i: \mathfrak{S t}(\mathscr{C}, J) \rightarrow\left[\mathscr{C}^{\text {op }}, \mathfrak{C A T}\right]$.

Let $\mathfrak{F a c t}$ denote the full sub-2-category of those points
$G: C^{\mathfrak{A} T} \rightarrow\left[\mathscr{C}^{\circ p}, \mathfrak{C A T}\right]$ factoring through i.
The equivalence of the previous proposition restricts to one

$$
\mathfrak{C o n z l a t}(\mathscr{C}, J) \simeq \mathfrak{F a c t} .
$$

The work consists in showing that

$$
\mathfrak{F a c t} \simeq \mathfrak{G e o m}(\mathfrak{C A T}, \mathfrak{S t}(\mathscr{C}, J))
$$

Observation: if G factors through i, there is a canonical geometric morphism that does this.

Observation: if G factors through i, there is a canonical geometric morphism that does this.

Observation: if G factors through i, there is a canonical geometric morphism that does this.

Thus, have that

$$
H^{*} \simeq G^{*} i \quad H_{*} \simeq \mathbf{A} G_{*}
$$

Can exhibit functors

$$
\mathfrak{G e o m}(\mathfrak{C A T}, \mathfrak{S t}(\mathscr{C}, J)) \rightleftarrows \mathfrak{F a c t}
$$

Can exhibit functors

$$
\mathfrak{G e o m}(\mathfrak{C A T}, \mathfrak{S t}(\mathscr{C}, J)) \rightleftarrows \mathfrak{F a c t}
$$

taking a H on the left to $i H$, the pullback by inclusion and taking G on the right to $G^{*} i \dashv \mathbf{A} G_{*}$.

Can exhibit functors

$$
\mathfrak{G e o m}(\mathfrak{C A T}, \mathfrak{S t}(\mathscr{C}, J)) \rightleftarrows \mathfrak{F a c t}
$$

taking a H on the left to $i H$, the pullback by inclusion and taking G on the right to $G^{*} i \dashv \mathbf{A} G_{*}$.

This yields the desired biequivalence:

Can exhibit functors

$$
\mathfrak{G e o m}(\mathfrak{C A T}, \mathfrak{S t}(\mathscr{C}, J)) \rightleftarrows \mathfrak{F a c t}
$$

taking a H on the left to $i H$, the pullback by inclusion and taking G on the right to $G^{*} i \dashv \mathbf{A} G_{*}$.

This yields the desired biequivalence:

Theorem

There is a biequivalence of 2-categories

$$
\mathfrak{C o n F l a t}(\mathscr{C}, J) \simeq \mathfrak{G e o m}(\mathfrak{C A T}, \mathfrak{S t}(\mathscr{C}, J))
$$

