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Algorithms
3-colorability

Is this graph 3-colorable?

I Yes!

Is this graph 3-colorable[1]?
I Nodes: pairs of distinct

natural numbers
I Edges: n,m↔ m, k

whenever n 6= k
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1, 2 5, 1

2, 5

3, 1 1, 4

2, 3 4, 5

3, 4

4, 2 5, 3

Is this graph 3-colorable?

I Yes!

Is this graph 3-colorable[1]?
I Nodes: pairs of distinct

natural numbers
I Edges: n,m↔ m, k

whenever n 6= k

No!
BTW, by compactness of FOL, a
graph is 3-colorable iff its every
finite subgraph is 3-colorable.
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Puzzle
Linear equations

I Consider the following set of linear equations[1]:

xm,n + xn,k + xk,m = 0
x0,1 + x1,0 = 1

for pairwise distinct natural numbers m, n, k
I Does this set of equations have a solution in Z2?
I If you cannot answer, you may write a program that solves the

puzzle :-)
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Sets with atoms
Cumulative hierarchy

I Let A be an algebraic structure (Think of A as the set of
natural numbers N with equality =)

I One may define a von Neumann-like hierarchy Vα(A) of sets
with atoms A by transfinite induction [2]:
I V0(A) = A
I Vα+1 = P(Vα) ∪ Vα
I Vλ =

⋃
α<λ Vα if λ is a limit ordinal

I There is a natural action • of the group of automorphisms
Aut(A) of A on the whole universe V =

⋃
α : Ord Vα.

I Example: (0 1 2)(6 7) ∈ Aut(N ):

I 0 7→ 1 7→ 2 7→ 0 and 6 7→ 7 7→ 6
I {0, 1} 7→ {1, 2}
I {0, 1, 2, 3} 7→ {0, 1, 2, 3}
I {{0, 1}, {6, 7, 8}, 7} 7→ {{1, 2}, {6, 7, 8}, 6}
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Sets with atoms
Support

I (Remember: think of algebraic structure A as the set of
natural numbers N with equality =.), define:
I set-wise stabiliser of X ∈ V in Aut(A) as

Aut(A)X = {h ∈ Aut(A) : h • X = X}
I point-wise stabiliser of X ∈ V in Aut(A) as

Aut(A)(X) = {h ∈ Aut(A) : ∀x∈Xh • x = x}

I A set S ⊆ A is a support of X ∈ V iff Aut(A)(S) ⊆ Aut(A)X
I X ∈ V is of finite support if there exists a finite S ⊆ A that

supports X
I X ∈ V is legitimate if it is hereditarily of finite support
I We shall restrict to legitimate sets only.
I X ∈ V is equivariant if it is supported by the empty set
I X ∈ V is coherent if it has only finitely many orbits
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Legitimate sets
Examples

I {0} is supported by {0}

I {0, 1} is supported by {0, 1}
I {2, 3, 4, . . . } is supported by {0, 1}
I {2, 3, 5, 7, 11, 13, . . . } is not finitely supported
I N ,N 2 is equivariant
I N = {〈n,m〉 ∈ N : n 6= m} is equivariant
I E = {〈n,m,m, k〉 ∈ N2 : n 6= k} is equivariant
I N ∗ = {〈〉, 〈0〉, 〈1〉, . . . , 〈0, 0〉, 〈0, 1〉, 〈1, 0〉, . . . , 〈3, 7, 2〉, . . . }

is equivariant, but not coherent
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Good structures
Oligomorphic structures

I Generally, if X is coherent X 2 may be not :-(
I Example: 〈Z,+〉:

I Z has a single orbit — for every x ≤ y ∈ Z there exists
translation by k = y − x , which maps x to y

I Z2 has infinitely many orbits — two pairs 〈x , y〉, 〈x ′, y ′〉 are in
the same orbit iff y − x = y ′ − x ′

Oligomorphic structure
An algebraic structure A is oligomorphic if
I for every k, the action of Aut(A) on Ak has finitely many orbits

I Examples: 〈N ,=〉, 〈Q, <〉, 〈Fℵ′ , 0, 1,∨,∧,¬〉, ...
I For an oligomorphic structure if X is coherent, then X k is

coherent (for every natural k)
I The converse is almost true.
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Good structures
Roelcke precompact groups

I A topological group G is called Roelcke precompact [3] if for
every open subgroup H ⊆ G , there are finitely many double
cosets HxH, x ∈ G

I Theorem: A topological group is Roelcke precompact iff for
every action of G on a set X that has only finitely many orbits
the induced action on X k has only finitely many orbits (for
every natural k)

I Roelcke precompact groups were (independently?)
rediscovered by Blass and Scedrov and called coherent groups
I Theorem: A topological group G is coherent iff its classifying

topos SetGop
is coherent

I BTW, for G = Aut(A) this classifying topos is equivalent to
the category of equivariant sets with atoms A :-)
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Good structures
Sets with good atoms

I Therefore, every Th(A)-definable subset of Ak is a coherent
sets with atoms

I Examples:
I N = {〈n,m〉 ∈ N : n 6= m}
I E = {〈n,m,m, k〉 ∈ N2 : n 6= k}

I Moreover, definable sets can be nested:
I {{a, b} : a, b ∈ N ∧ a 6= b}

I If R is an equivalence relation on X , then: {〈x , {y : xRy}〉 : >}
represents the quotient X/R :-)

I Fact: “nested” definable sets form the pretopos completion of
definable sets
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I (STCON) Does there exist a directed
path from A to B?

I (ASTCON) Does there exist an
alternating path from A to B?
(P-complete)

I (U/A)STCON on coherent graphs with
atoms are decidable :-)
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Reachability
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R ′ ← ∅
R ← {A}
while R ′ 6= R do
R ′ ← R
for 〈x , y〉 ∈ E do

if x ∈ R then
R ← R ∪ {y}

end if
end for

end while
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More exciting problems
Coherent Automata[4]

I Coherent alphabet Σ
I Coherent set Q of states
I Transition relation σ ⊆ Q × Σ× Q
I Initial state q0 ∈ Q and a coherent set of final states F ⊆ Q

I Coherent automata do not determinise
I Myhill-Nerode theorem for coherent deterministic automata

holds
I P 6= NP in sets with atoms
I Coherent automata over 〈N ,=〉 are equivalent to register

automata
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More exciting problems
Coherent Model Checking[5]

I A coherent µ-formula is given by the following syntax:

φ ::= p | X |
∨

Φ | ¬φ | ♦φ | µX .φ

where p is a proposition from an equivariant set P, X is a
variable, and Φ is a coherent set of µ-formulas.

I A Kripke structure consists of a set of states K , a transition
relation R ⊆ K × K , and an interpretation W ⊆ P × K

I Satisfiability of coherent µ-calculus is undecidable :-(
I Model checking for coherent µ-calculus over coherent Kripke

structures is decidable :-)
I Model checking for coherent µ-calculus does not have a

“finite/coherent-model” property
I ∃(

∧
a∈A G(pa → X (G¬pa))) is not expressible in coherent

µ-calculus, but its model-checking is decidable
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More exciting problems
Constraint satisfaction problem[1]

I A purely relational structure T is called template
I An instance I of template T is a structure in the

language of T
I A solution of I over T is a homomorphism s : I → T
I Example (3-colorability): given a graph 〈V ,E 〉 define:

T = 〈{R,G ,B}, 6=〉, I = 〈V ,E 〉

I Let T be a finite template such that CSP(T ) is complete for
a complexity class C under logarithmic space reductions.
Then CSP-Inf(T ) is decidable and complete for the
complexity class exp(C) under logarithmic space reductions.

I For any equivariant, locally finite template, it is decidable
whether a given definable, equivariant instance over it has a
solution
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Definable sets
Algorithms

I Fix a decidable FO theory T , such that every finite set of
formulas generates a finite set (under logical operations)

I Let G = (N,E ) be a T -definable graph
I Is the reachability problem for G decidable?

— Yes!
I Assume that nodes N are represented by formula ψ, and

edges E are represented by formula φ.

comment: T ′ ⊆ T store consecutive approximations to t.c. of φ
T ′ ← ∅
T ← {〈x , x〉 : ψ(x)}
while T ′ 6= T do
T ′ ← T
T ← T ∪ {〈x , y〉 : ∃z〈x , z〉 ∈ T ∧ φ(z , y)}

end while
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Definable sets
Beyond definable sets?

I How about while-like programs in a general category C?
I C should have at least finite products...

I Consider a graph G = (V ,E ) in C — to define a transitive
closure of E :
I There must be a well-defined composition of relations E ◦ E ,

which requires pullbacks and existential quantifiers

I There must be a well-defined notion of union of subobjects

I Fact: A category with finite limits, existential quantifiers and
well-behaved unions is just a coherent category :-)



Michal R. Przybylek

Definable sets
Beyond definable sets?

I How about while-like programs in a general category C?
I C should have at least finite products...
I Consider a graph G = (V ,E ) in C — to define a transitive

closure of E :
I There must be a well-defined composition of relations E ◦ E ,

which requires pullbacks and existential quantifiers

I There must be a well-defined notion of union of subobjects
I Fact: A category with finite limits, existential quantifiers and

well-behaved unions is just a coherent category :-)



Michal R. Przybylek

Definable sets
Beyond definable sets?

I How about while-like programs in a general category C?
I C should have at least finite products...
I Consider a graph G = (V ,E ) in C — to define a transitive

closure of E :
I There must be a well-defined composition of relations E ◦ E ,

which requires pullbacks and existential quantifiers
I There must be a well-defined notion of union of subobjects

I Fact: A category with finite limits, existential quantifiers and
well-behaved unions is just a coherent category :-)



Michal R. Przybylek

Definable sets
Beyond definable sets?

I How about while-like programs in a general category C?
I C should have at least finite products...
I Consider a graph G = (V ,E ) in C — to define a transitive

closure of E :
I There must be a well-defined composition of relations E ◦ E ,

which requires pullbacks and existential quantifiers
I There must be a well-defined notion of union of subobjects

I Fact: A category with finite limits, existential quantifiers and
well-behaved unions is just a coherent category :-)



Michal R. Przybylek

Beyond classifying toposes

I Closure properties:
I products and cofiltered limits of coherent groups are coherent
I (finite) products of coherent toposes are coherent toposes
I products and filtered colimits of pretoposes are pretoposes

I Most of the results survive when moving to the filtered
colimits of classifying toposes
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