On the Operational Meaning of the Bar Construction ...with an application to Probability

Paolo Perrone
Joint work with Tobias Fritz

Max Planck Institute
for Mathematics in the Sciences Leipzig, Germany

Category Theory 2018

Monads and formal expressions

Monads and formal expressions

Setting:

Let C be a concrete category and (T, μ, η) a monad with η monic.

Monads and formal expressions

Setting:

Let C be a concrete category and (T, μ, η) a monad with η monic.

$$
X=\{x, y, z, \ldots\}
$$

Monads and formal expressions

Setting:

Let C be a concrete category and (T, μ, η) a monad with η monic.

$$
\begin{aligned}
& X \\
T X & =\{x, y, z, \ldots\} \\
& =\{x+y, x+y+z, x, \ldots\}
\end{aligned}
$$

Monads and formal expressions

Setting:

Let C be a concrete category and (T, μ, η) a monad with η monic.

$$
\begin{aligned}
X & =\{x, y, z, \ldots\} \\
T X & =\{x+y, x+y+z, x, \ldots\} \\
\text { TTX } & =\{(x+y)+(x+z),(x), \ldots\}
\end{aligned}
$$

Monads and formal expressions

Setting:

Let C be a concrete category and (T, μ, η) a monad with η monic.

$$
\begin{aligned}
X & =\{x, y, z, \ldots\} \\
T X & =\{x+y, x+y+z, x, \ldots\} \\
T T X & =\{(x+y)+(x+z),(x), \ldots\} \\
f: X \rightarrow Y & \longmapsto \quad T f: x+x^{\prime} \mapsto f(x)+f\left(x^{\prime}\right)
\end{aligned}
$$

Monads and formal expressions

- $\eta: X \rightarrow T X$ maps the element x to x as a formal expression

Monads and formal expressions

- $\eta: X \rightarrow T X$ maps the element x to x as a formal expression
- $\mu: T T X \rightarrow T X$ removes the brackets:

$$
(x+y)+(z+t) \longmapsto x+y+z+t .
$$

Monads and formal expressions

- $\eta: X \rightarrow T X$ maps the element x to x as a formal expression
- $\mu: T T X \rightarrow T X$ removes the brackets:

$$
(x+y)+(z+t) \longmapsto x+y+z+t
$$

Monads and formal expressions

- $\eta: X \rightarrow T X$ maps the element x to x as a formal expression
- $\mu: T T X \rightarrow T X$ removes the brackets:

$$
(x+y)+(z+t) \longmapsto x+y+z+t
$$

$$
((x+y)+(z))
$$

Monads and formal expressions

- $\eta: X \rightarrow T X$ maps the element x to x as a formal expression
- $\mu: T T X \rightarrow T X$ removes the brackets:

$$
(x+y)+(z+t) \longmapsto x+y+z+t
$$

$$
((x+y)+(z)) \longmapsto(x+y+z)
$$

$(x+y)+(z)$

Monads and formal expressions

- $\eta: X \rightarrow T X$ maps the element x to x as a formal expression
- $\mu: T T X \rightarrow T X$ removes the brackets:

$$
(x+y)+(z+t) \longmapsto x+y+z+t
$$

$$
((x+y)+(z)) \longmapsto(x+y+z)
$$

$$
(x+y)+(z) \longmapsto x+y+z
$$

Monads and formal expressions

- An algebra $e: T A \rightarrow A$ is an object in which formal expressions can be evaluated.

Monads and formal expressions

- An algebra $e: T A \rightarrow A$ is an object in which formal expressions can be evaluated.

$$
2+1 \quad \longmapsto \quad 3 .
$$

Monads and formal expressions

- An algebra $e: T A \rightarrow A$ is an object in which formal expressions can be evaluated.

$$
2+1 \quad \longmapsto \quad 3 .
$$

$$
\begin{array}{lll}
T T A \xrightarrow{T e} & T A \\
\mu \downarrow & & \downarrow e \\
T A \longrightarrow & \\
& &
\end{array}
$$

Monads and formal expressions

- An algebra $e: T A \rightarrow A$ is an object in which formal expressions can be evaluated.

$$
2+1 \quad \longmapsto \quad 3 .
$$

$$
(1+2)+(3)
$$

$$
\begin{array}{lll}
T T A \xrightarrow{T e} & T A \\
\mu \\
\downarrow & & \downarrow \\
T A \longrightarrow & \\
& A
\end{array}
$$

Monads and formal expressions

- An algebra $e: T A \rightarrow A$ is an object in which formal expressions can be evaluated.

$$
2+1 \quad \longmapsto \quad 3 .
$$

$$
\begin{aligned}
& (1+2)+(3) \longmapsto 3+3 \\
& T T A \xrightarrow{T e} T A \\
& \mu \downarrow \downarrow \\
& T A \longrightarrow A \\
& 1+2+3
\end{aligned}
$$

Monads and formal expressions

- An algebra $e: T A \rightarrow A$ is an object in which formal expressions can be evaluated.

$$
2+1 \quad \longmapsto \quad 3 .
$$

The bar construction

The bar construction

A

The bar construction

$$
T A \xrightarrow{e} A
$$

The bar construction

The bar construction

The bar construction

The bar construction

Simplicial object:

The bar construction

Simplicial object:

- A monad defines a comonad on the category of algebras C^{T}

The bar construction

Simplicial object:

- A monad defines a comonad on the category of algebras C^{T}
- A comonad is a comonoid in $\left[\mathrm{C}^{T}, \mathrm{C}^{T}\right]$

The bar construction

Simplicial object:

- A monad defines a comonad on the category of algebras C^{T}
- A comonad is a comonoid in [$\mathrm{C}^{T}, \mathrm{C}^{T}$]
- A comonoid is a (monoidal) functor $\Delta_{a}{ }^{o p} \rightarrow\left[C^{T}, C^{T}\right]$.

The bar construction

Questions:

The bar construction

Questions:

- How can we interpret all these extra objects and arrows?

The bar construction

Questions:

- How can we interpret all these extra objects and arrows?
- Can we interpret the whole simplicial object operationally?

The bar construction

Questions:

- How can we interpret all these extra objects and arrows?
- Can we interpret the whole simplicial object operationally?
- Can this be applied to other areas of math?

Partial evaluations

Idea:

A formal expression of elements of an algebra can also be partially evaluated, instead of totally.

Partial evaluations

Idea:

A formal expression of elements of an algebra can also be partially evaluated, instead of totally.

$$
2+3+4
$$

$$
5+4
$$

Partial evaluations

Idea:

A formal expression of elements of an algebra can also be partially evaluated, instead of totally.

$$
(2+3)+(4)
$$

$$
2+3+4
$$

$$
5+4
$$

Partial evaluations

Idea:

A formal expression of elements of an algebra can also be partially evaluated, instead of totally.

$$
(2+3)+(4)
$$

remove brackets

$$
2+3+4 \quad 5+4
$$

Partial evaluations

Idea:

A formal expression of elements of an algebra can also be partially evaluated, instead of totally.

$$
(2+3)+(4)
$$

remove brackets

Partial evaluations

Idea:

A formal expression of elements of an algebra can also be partially evaluated, instead of totally.

$$
(2+3)+(4)
$$

Partial evaluations

Definition:

Let $p, q \in T A$. A partial evaluation from p to q is an element $m \in T T A$ such that $\mu(m)=p$ and $(T e)(m)=q$.

Partial evaluations

Properties:

Partial evaluations

Properties:

- There is always a partial evaluation from $p \in T A$ to itself:

$$
\begin{gathered}
T T A \\
\uparrow T \eta \\
T A
\end{gathered}
$$

Partial evaluations

Properties:

- There is always a partial evaluation from $p \in T A$ to itself:

Partial evaluations

Properties:

- There is always a partial evaluation from $p \in T A$ to itself:

- There is always a partial evaluation from p to its total evaluation:

Partial evaluations

Properties:

- There is always a partial evaluation from $p \in T A$ to itself:

- There is always a partial evaluation from p to its total evaluation:

7 of 25

Partial evaluations

Properties:

- There is always a partial evaluation from $p \in T A$ to itself:

- There is always a partial evaluation from p to its total evaluation:

Partial evaluations

Example:
 Let G be an internal monoid (or group) in a (cartesian) monoidal category.

Partial evaluations

Example:

Let G be an internal monoid (or group) in a (cartesian) monoidal category.

- $X \mapsto G \times X$ is a monad;

Partial evaluations

Example:

Let G be an internal monoid (or group) in a (cartesian) monoidal category.

- $X \mapsto G \times X$ is a monad;
- The algebras $e: G \times A \rightarrow A$ are G-spaces.

Partial evaluations

Example:

Let G be an internal monoid (or group) in a (cartesian) monoidal category.

- $X \mapsto G \times X$ is a monad;
- The algebras $e: G \times A \rightarrow A$ are G-spaces.

Let $(g, x),(h, y) \in G \times A$.

Partial evaluations

Example:

Let G be an internal monoid (or group) in a (cartesian) monoidal category.

- $X \mapsto G \times X$ is a monad;
- The algebras $e: G \times A \rightarrow A$ are G-spaces.

Let $(g, x),(h, y) \in G \times A$. A partial evaluation from (g, x) to (h, y) is an element $(h, \ell, x) \in G \times G \times A$ such that $h \ell=g$ and $\ell \cdot x=y$.

Partial evaluations

Example:

Let G be an internal monoid (or group) in a (cartesian) monoidal category.

- $X \mapsto G \times X$ is a monad;
- The algebras $e: G \times A \rightarrow A$ are G-spaces.

Let $(g, x),(h, y) \in G \times A$. A partial evaluation from (g, x) to (h, y) is an element $(h, \ell, x) \in G \times G \times A$ such that $h \ell=g$ and $\ell \cdot x=y$.

Partial evaluations

Example:

Let G be an internal monoid (or group) in a (cartesian) monoidal category.

- $X \mapsto G \times X$ is a monad;
- The algebras $e: G \times A \rightarrow A$ are G-spaces.

Let $(g, x),(h, y) \in G \times A$. A partial evaluation from (g, x) to (h, y) is an element $(h, \ell, x) \in G \times G \times A$ such that $h \ell=g$ and $\ell \cdot x=y$.

Partial evaluations

Question:

Can partial evaluations be composed?

Partial evaluations

Question:

Can partial evaluations be composed?
$1+1+1+1$
$2+2$

4

Partial evaluations

Question:
Can partial evaluations be composed?
$(1+1)+(1+1)$
$(2+2)$

$\stackrel{\downarrow T e}{\downarrow}$

Partial evaluations

Question:

Can partial evaluations be composed?

Partial evaluations

Question:

Can partial evaluations be composed?

Partial evaluations

Question:

Can partial evaluations be composed?

Partial evaluations

Question:

Can partial evaluations be composed?

Partial evaluations

Question:

Can partial evaluations be composed?

Partial evaluations

Question:

Can partial evaluations be composed?

The question is a Kan filler condition for the inner 2-horns.

Partial evaluations

Question:

Can partial evaluations be composed?

Partial evaluations

Question:

Can partial evaluations be composed?

Partial evaluations

Question:

Can partial evaluations be composed?

The question is a Kan filler condition for the inner 2-horns.

Partial evaluations

Question:

Is the composition unique?

Partial evaluations

Question:

Is the composition unique? In general, no.

$$
\begin{gathered}
(4(-1))+(4(+1))+2(2(-2)+2(+2)) \\
(4(-1)+4(+1))+(3(-2)+(+2))+((-2)+3(+2))
\end{gathered}
$$

These give unequal parallel 1-cells between:

$$
4(-1)+4(+1)+4(-2)+4(+2) \quad \text { and } \quad(+4)+(-4) .
$$

Partial evaluations

What we know so far:

Partial evaluations

What we know so far:

1. $\pi_{0}(\operatorname{Bar}(A)) \cong A$.

Partial evaluations

What we know so far:

1. $\pi_{0}(\operatorname{Bar}(A)) \cong A$.
2. For idempotent monads, $\operatorname{Bar}(A) \cong A$.

Partial evaluations

What we know so far:

1. $\pi_{0}(\operatorname{Bar}(A)) \cong A$.
2. For idempotent monads, $\operatorname{Bar}(A) \cong A$.
3. For cartesian monads, $\operatorname{Bar}(A)$ is the nerve of a category.

Partial evaluations

What we know so far:

1. $\pi_{0}(\operatorname{Bar}(A)) \cong A$.
2. For idempotent monads, $\operatorname{Bar}(A) \cong A$.
3. For cartesian monads, $\operatorname{Bar}(A)$ is the nerve of a category.
4. In general, composition (when defined) is not unique.

Partial evaluations

What we know so far:

1. $\pi_{0}(\operatorname{Bar}(A)) \cong A$.
2. For idempotent monads, $\operatorname{Bar}(A) \cong A$.
3. For cartesian monads, $\operatorname{Bar}(A)$ is the nerve of a category.
4. In general, composition (when defined) is not unique.

Open questions:

Partial evaluations

What we know so far:

1. $\pi_{0}(\operatorname{Bar}(A)) \cong A$.
2. For idempotent monads, $\operatorname{Bar}(A) \cong A$.
3. For cartesian monads, $\operatorname{Bar}(A)$ is the nerve of a category.
4. In general, composition (when defined) is not unique.

Open questions:

1. Can partial evaluations always be composed?

Partial evaluations

What we know so far:

1. $\pi_{0}(\operatorname{Bar}(A)) \cong A$.
2. For idempotent monads, $\operatorname{Bar}(A) \cong A$.
3. For cartesian monads, $\operatorname{Bar}(A)$ is the nerve of a category.
4. In general, composition (when defined) is not unique.

Open questions:

1. Can partial evaluations always be composed?
2. Is the bar construction always a quasi-category?

Partial evaluations

What we know so far:

1. $\pi_{0}(\operatorname{Bar}(A)) \cong A$.
2. For idempotent monads, $\operatorname{Bar}(A) \cong A$.
3. For cartesian monads, $\operatorname{Bar}(A)$ is the nerve of a category.
4. In general, composition (when defined) is not unique.

Open questions:

1. Can partial evaluations always be composed?
2. Is the bar construction always a quasi-category?
3. Is there a link with generalized multicategories?

Probability monads

Idea [Giry, 1982]:

Spaces of random elements as formal convex combinations.

Probability monads

Idea [Giry, 1982]:

Spaces of random elements as formal convex combinations.

- Base category C

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

- Base category C

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

- Base category C
- Functor $X \mapsto P X$

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

- Base category C
- Functor $X \mapsto P X$
- Unit $\delta: X \rightarrow P X$

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

- Base category C

- Functor $X \mapsto P X$
- Unit $\delta: X \rightarrow P X$

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

- Base category C

- Functor $X \mapsto P X$
- Unit $\delta: X \rightarrow P X$

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

- Base category C
- Functor $X \mapsto P X$
- Unit $\delta: X \rightarrow P X$

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

- Base category C
- Functor $X \mapsto P X$
- Unit $\delta: X \rightarrow P X$

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

- Algebras $e: P A \rightarrow A$ are "convex spaces"

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

- Algebras $e: P A \rightarrow A$ are "convex spaces"

Probability monads

Idea [Giry, 1982]:
Spaces of random elements as formal convex combinations.

- Algebras $e: P A \rightarrow A$ are "convex spaces"

Probability monads

Idea [Giry, 1982]:

Spaces of random elements as formal convex combinations.

- Algebras $e: P A \rightarrow A$ are "convex spaces"
- Formal averages are mapped to actual averages

The Kantorovich monad

Kantorovich monad [van Breugel, 2005, Fritz and Perrone, 2017]:

- Given a complete metric space $X, P X$ is the set of Radon probability measures of finite first moment, equipped with the Wasserstein distance, or Kantorovich-Rubinstein distance, or earth mover's distance:

$$
d_{P X}(p, q)=\sup _{f: X \rightarrow \mathbb{R}}\left|\int_{X} f(x) d(p-q)(x)\right|
$$

The Kantorovich monad

Kantorovich monad [van Breugel, 2005, Fritz and Perrone, 2017]:

- Given a complete metric space $X, P X$ is the set of Radon probability measures of finite first moment, equipped with the Wasserstein distance, or Kantorovich-Rubinstein distance, or earth mover's distance:

$$
d_{P X}(p, q)=\sup _{f: X \rightarrow \mathbb{R}}\left|\int_{X} f(x) d(p-q)(x)\right|
$$

- The assignment $X \mapsto P X$ is part of a monad on the category of complete metric spaces and short maps.

The Kantorovich monad

Kantorovich monad [van Breugel, 2005, Fritz and Perrone, 2017]:

- Given a complete metric space $X, P X$ is the set of Radon probability measures of finite first moment, equipped with the Wasserstein distance, or Kantorovich-Rubinstein distance, or earth mover's distance:

$$
d_{P X}(p, q)=\sup _{f: X \rightarrow \mathbb{R}}\left|\int_{X} f(x) d(p-q)(x)\right|
$$

- The assignment $X \mapsto P X$ is part of a monad on the category of complete metric spaces and short maps.
- Algebras of P are closed convex subsets of Banach spaces.

The Kantorovich monad

Idea:

Partial evaluations for P are "partial expectations".

The Kantorovich monad

Idea:
Partial evaluations for P are "partial expectations".

The Kantorovich monad

Idea:

Partial evaluations for P are "partial expectations".

The Kantorovich monad

Idea:

Partial evaluations for P are "partial expectations".

The Kantorovich monad

Idea:

Partial evaluations for P are "partial expectations".

The Kantorovich monad

Idea:
Partial evaluations for P are "partial expectations".

Properties:

1. A partial expectation makes a distribution "more concentrated", or "less random" (closer to its center of mass);

The Kantorovich monad

Idea:

Partial evaluations for P are "partial expectations".

Properties:

1. A partial expectation makes a distribution "more concentrated", or "less random" (closer to its center of mass);
2. Partial expectations can always be composed (not uniquely);

The Kantorovich monad

Idea:

Partial evaluations for P are "partial expectations".

Properties:

1. A partial expectation makes a distribution "more concentrated", or "less random" (closer to its center of mass);
2. Partial expectations can always be composed (not uniquely);
3. The relation "Admitting a partial evaluation" is a closed partial order, which we call partial evaluation order. This is a $(0,1)$-truncation of the bar construction for P.

The Kantorovich monad

Theorem, extending [Winkler, 1985, Theorem 1.3.6]
Let A be a P-algebra and $p, q \in P A$. The following conditions are equivalent:

The Kantorovich monad

Theorem, extending [Winkler, 1985, Theorem 1.3.6]
Let A be a P-algebra and $p, q \in P A$. The following conditions are equivalent:

1. There exists a partial evaluation from p to q;

The Kantorovich monad

Theorem, extending [Winkler, 1985, Theorem 1.3.6]
Let A be a P-algebra and $p, q \in P A$. The following conditions are equivalent:

1. There exists a partial evaluation from p to q;
2. There exists random variables X and Y on A with laws p and q, respectively, and such that Y is a conditional expectation of X.

The Kantorovich monad

The Kantorovich monad

The Kantorovich monad

The Kantorovich monad

The Kantorovich monad

The Kantorovich monad

The Kantorovich monad

The Kantorovich monad

Theorem, extending [Winkler, 1985, Theorem 1.3.6]
Let A be a P-algebra and $p, q \in P A$. The following conditions are equivalent:

1. There exists a partial evaluation from p to q;
2. There exists random variables X and Y on A with laws p and q, respectively, and such that Y is a conditional expectation of X.

The Kantorovich monad

Theorem, extending [Winkler, 1985, Theorem 1.3.6]
Let A be a P-algebra and $p, q \in P A$. The following conditions are equivalent:

1. There exists a partial evaluation from p to q;
2. There exists random variables X and Y on A with laws p and q, respectively, and such that Y is a conditional expectation of X.

Corollary

A chain of composable partial evaluations in $P A$ is (basically) the same as a martingale on A, in reverse time.

Ordered Kantorovich monad

Ordered Kantorovich monad

Definition

An L-ordered metric space is a metric space X equipped with a partial order such that for all x, y, the following are equivalent:

- $x \leq y$
- For all short, monotone $f: X \rightarrow \mathbb{R}, f(x) \leq f(y)$.

Ordered Kantorovich monad

Definition

An L-ordered metric space is a metric space X equipped with a partial order such that for all x, y, the following are equivalent:

- $x \leq y$
- For all short, monotone $f: X \rightarrow \mathbb{R}, f(x) \leq f(y)$.

Definition (stochastic order)
Let $p, q \in P X$. We say that $p \leq q$ if equivalently:

- There exists a coupling of p and q entirely supported on $\{x \leq y\} \in X \times X$;
- For all short, monotone $f: X \rightarrow \mathbb{R}, \int f d p \leq \int f d q$.

Ordered Kantorovich monad

Definition

An L-ordered metric space is a metric space X equipped with a partial order such that for all x, y, the following are equivalent:

- $x \leq y$
- For all short, monotone $f: X \rightarrow \mathbb{R}, f(x) \leq f(y)$.

Theorem

- If X is L-ordered, $P X$ with the stochastic order is L-ordered;
- P lifts to a monad on the category L-COMet of L-ordered spaces;
- The algebras of P are exactly closed convex subsets of ordered Banach spaces (i.e. equipped with a closed positive cone).

Ordered Kantorovich monad

Pointwise order: $f \leq g: X \rightarrow Y$ iff for every $x \in X, f(x) \leq g(x)$.

Ordered Kantorovich monad

Pointwise order: $f \leq g: X \rightarrow Y$ iff for every $x \in X, f(x) \leq g(x)$.

Proposition:
Let $f \leq g: X \rightarrow Y$. Then $P f \leq P g: P X \rightarrow P Y$.
Corollary:
L-COMet is a strict 2-category, and P a strict 2-monad.

Lax codescent objects

Proposition:

Let A be a (unordered) P-algebra in L-COMet. The partial evaluation order on PA is the coinserter in L-COMet ${ }^{P}$ of the diagram:

$$
P P A \underset{P e}{\stackrel{E}{\rightrightarrows}} P A .
$$

Lax codescent objects

Proposition:

Let A be a (unordered) P-algebra in L-COMet. The partial evaluation order on PA is the coinserter in L-COMet ${ }^{P}$ of the diagram:

Lax codescent objects

Proposition:

Let A be a (unordered) P-algebra in L-COMet. The partial evaluation order on PA is the lax codescent object of the algebra A.

Lax codescent objects

Proposition:

Let A be a (unordered) P-algebra in L-COMet. The partial evaluation order on PA is the lax codescent object of the algebra A.

Corollary:

Let A be ordered. The lax codescent object obtained as above gives again $P A$, with as order the composition of:

- The partial evaluation order, and
- The stochastic order on PA induced by the order on A.

Let's call this order ($P A, \preceq_{\ell}$), lax codescent order.

Lax codescent objects

Proposition:

Let A be a (unordered) P-algebra in L-COMet. The partial evaluation order on $P A$ is the lax codescent object of the algebra A.

Explicitly:

Given $p, q \in P A, p \preceq_{\ell} q$ if and only if there exists $p^{\prime} \in P A$ such that which can be obtained by partially averaging p, and such that $p^{\prime} \leq q$ in the stochastic order.

$$
p \stackrel{\text { p. eval. }}{\longmapsto} p^{\prime} \xrightarrow{\leq} q
$$

Lax codescent objects

The adjunction associated to P is natural isomorphism of partial orders:

$$
\begin{aligned}
\operatorname{L-COMet}(X, B) & \cong \operatorname{L-COMet}^{P}(P X, B) \\
f: X \rightarrow B & \longmapsto\left(p \mapsto \int f d p\right)
\end{aligned}
$$

Lax codescent objects

The adjunction associated to P is natural isomorphism of partial orders:

$$
\begin{aligned}
\operatorname{L-COMet}(X, B) & \cong \operatorname{L-COMet}^{P}(P X, B) \\
f: X \rightarrow B & \longmapsto\left(p \mapsto \int f d p\right)
\end{aligned}
$$

Theorem (Corollary of [Lack, 2002]):
Let A and B and be a P-algebras. The adjunction above specializes to:
$\mathrm{L}-\operatorname{COMet}_{l a x}^{P}(A, B) \cong \operatorname{L-COMet}^{P}((P A, \preceq \ell), B)$.

Lax codescent objects

$$
\begin{array}{ll}
P A \xrightarrow{P f} & P B \\
e \downarrow & \\
& \\
A \longrightarrow \\
A & \\
\hline
\end{array}
$$

Lax codescent objects

$$
\begin{aligned}
& P A \xrightarrow{P f} P B \\
& { }^{e} \downarrow / \downarrow \text { e } \\
& A \longrightarrow B
\end{aligned}
$$

Lax codescent objects

$$
\begin{array}{ll}
P A \xrightarrow{P f} & P B \\
e \downarrow \\
\downarrow & \downarrow \\
A \xrightarrow[f]{\longrightarrow} & \downarrow^{2}
\end{array}
$$

Lax codescent objects

$$
\begin{array}{ll}
P A \xrightarrow{P f} & P B \\
e \downarrow & \downarrow \\
A \xrightarrow[f]{ } & \downarrow
\end{array}
$$

Lax codescent objects

$$
\begin{array}{ll}
P A \xrightarrow{P f} & P B \\
e \downarrow & \downarrow \\
A \xrightarrow[f]{ } & \downarrow
\end{array}
$$

Lax codescent objects

$$
\begin{array}{ll}
P A \xrightarrow{P f} & P B \\
e \downarrow \\
A & \\
A \xrightarrow[f]{l} & \downarrow
\end{array}
$$

Lax codescent objects

Corollary of [Lack, 2002]:

Let A and B and be P-algebras, and let $f: A \rightarrow B$. Then f is concave if and only if $p \mapsto \int f d p$ is monotone for \preceq_{ℓ}. In other words, if and only if for every $p \preceq_{\ell} q$,

$$
\begin{equation*}
\int f d p \leq \int f d q \tag{1}
\end{equation*}
$$

Lax codescent objects

Corollary of [Lack, 2002]:

Let A and B and be P-algebras, and let $f: A \rightarrow B$. Then f is concave if and only if $p \mapsto \int f d p$ is monotone for \preceq_{ℓ}. In other words, if and only if for every $p \preceq_{\ell} q$,

$$
\begin{equation*}
\int f d p \leq \int f d q \tag{1}
\end{equation*}
$$

Corollary of Hahn-Banach:
Fix now $B=\mathbb{R}$. Let $p, q \in P A$. Then $p \preceq_{\ell} q$ if and only for every affine monotone $\operatorname{map} \tilde{f}:\left(P A, \preceq_{\ell}\right) \rightarrow \mathbb{R}, \tilde{f}(p) \leq \tilde{f}(q)$.

Lax codescent objects

Corollary of [Lack, 2002]:

Let A and B and be P-algebras, and let $f: A \rightarrow B$. Then f is concave if and only if $p \mapsto \int f d p$ is monotone for \preceq_{ℓ}. In other words, if and only if for every $p \preceq_{\ell} q$,

$$
\begin{equation*}
\int f d p \leq \int f d q \tag{1}
\end{equation*}
$$

Corollary of Hahn-Banach:
Fix now $B=\mathbb{R}$. Let $p, q \in P A$. Then $p \preceq_{\ell} q$ if and only for every concave monotone map $f: A \rightarrow \mathbb{R}$, the inequality (1) holds.

Lax codescent objects

Corollary:

Let A be an unordered P-algebra, let $p, q \in P A$. The following conditions are equivalent:

1. For all concave functions $f: A \rightarrow \mathbb{R}$,

$$
\int f d p \leq \int f d q
$$

2. There exists a partial evaluation between p and q.

Lax codescent objects

Corollary:

Let A be an unordered P-algebra, let $p, q \in P A$. The following conditions are equivalent:

1. For all concave functions $f: A \rightarrow \mathbb{R}$,

$$
\int f d p \leq \int f d q
$$

2. There exists a partial evaluation between p and q.

This order is known in the literature as the convex or Choquet order [Winkler, 1985]. The result above is known.

Lax codescent objects

Corollary:

Let A be a ordered P-algebra, let $p, q \in P A$. The following conditions are equivalent:

1. For all concave monotone functions $f: A \rightarrow \mathbb{R}$,

$$
\int f d p \leq \int f d q
$$

2. There exists $p^{\prime} \in P A$ such that which can be obtained by partially averaging p, and such that $p^{\prime} \leq q$ in the stochastic order.

Lax codescent objects

Corollary:

Let A be a ordered P-algebra, let $p, q \in P A$. The following conditions are equivalent:

1. For all concave monotone functions $f: A \rightarrow \mathbb{R}$,

$$
\int f d p \leq \int f d q
$$

2. There exists $p^{\prime} \in P A$ such that which can be obtained by partially averaging p, and such that $p^{\prime} \leq q$ in the stochastic order.

This order is known in the literature as the increasing convex order. The result above, in its full generality, is new.

Acknowledgements

Joint work with Tobias Fritz

Special thanks to Slava Matveev and Sharwin Rezagholi (MPI MIS Leipzig)

References

Fitz, T. and Perrone, P. (2017).
A Probability Monad as the Colimit of Finite Powers.
Submitted. arXiv:1712.05363.
Fritz, T. and Perrone, P. (2018).
Bimonoidal Structure of Probability Monads.
Proceedings of MFPS 34, ENTCS.
arXiv:1804.03527.
R Giry, M. (1982).
A Categorical Approach to Probability Theory.
In Categorical aspects of topology and analysis, volume 915 of Lecture Notes in Mathematics.

R Lack, S. (2002).
Codescent objects and coherence.
Journal of Pure and Applied Algebra, 175(1-3).
R- Leinster, T. (2004).
Higher Operads, Higher Categories, volume 298 of London Mathematical Society Lecture Note Series.
Cambridge University Press.
arXiv:math/0305049

Perrone, P.
Categorical Probability and Stochastic Dominance in Metric Spaces.
PhD thesis.
Submitted, 5th July 2018. Available at www.paoloperrone.org/phdthesis.pdf.

Rothschild, M. and Stiglitz, J. E. (1970).
Increasing risk: I. A definition. Journal of Economic Theory, 2:225-243.

R van Breugel, F. (2005).
The Metric Monad for Probabilistic Nondeterminism.
Villani, C. (2009).
Optimal transport: old and new.
Grundlehren der mathematischen Wissenschaften. Springer.

R Winkler, G. (1985).
Choquet order and simplices with applications in probabilistic models.
Lecture Notes in Mathematics. Springer.

Contents

Front Page

Monads and formal expressions
The bar construction
Partial evaluations
The Kantorovich monad
Ordered Kantorovich monad
Lax codescent objects
References

