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Monads and formal expressions

Setting:

Let C be a concrete category and (T , µ, η) a monad with η monic.

X =
{
x , y , z , . . .

}
TX =

{
x + y , x + y + z , x , . . .

}
TTX =

{
(x + y) + (x + z) , (x) , . . .

}
f : X → Y 7−→ Tf : x + x ′ 7→ f (x) + f (x ′)
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Monads and formal expressions

• η : X → TX maps the element x to x as a formal expression

• µ : TTX → TX removes the brackets:

(x + y) + (z + t) 7−→ x + y + z + t.

((x + y) + (z)) (x + y + z)

TTTX TTX

TTX TX

(x + y) + (z) x + y + z

Tµ

µ µ

µ
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Monads and formal expressions

• An algebra e : TA→ A is an object in which formal expressions
can be evaluated.

2 + 1 7−→ 3.

(1 + 2) + (3) 3 + 3

TTA TA

TA A

1 + 2 + 3 6

Te

µ e

e
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The bar construction

· · · TTTA TTA TA A
µT

Tµ

TTe

TηT

TTη

Te

µ

Tη

e
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The bar construction

· · · TTTA TTA TA A
d0

d1

d2

s0

s1

d1

d0

s0

d0

Simplicial object:

• A monad defines a comonad on the category of algebras CT

• A comonad is a comonoid in [CT ,CT ]

• A comonoid is a (monoidal) functor ∆a
op → [CT ,CT ].
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The bar construction

· · · TTTA TTA TA A
d0

d1

d2

s0

s1

d1

d0

s0

d0

Questions:

• How can we interpret all these extra objects and arrows?

• Can we interpret the whole simplicial object operationally?

• Can this be applied to other areas of math?
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Partial evaluations

Idea:
A formal expression of elements of an algebra can also be partially
evaluated, instead of totally.
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Partial evaluations

Definition:
Let p, q ∈ TA. A partial evaluation from p to q is an element
m ∈ TTA such that µ(m) = p and (Te)(m) = q.

(2 + 3) + (4)

2 + 3 + 4 5 + 4

remove brackets evaluate brackets

TTA

TA TA

µ Te
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Partial evaluations

Properties:

• There is always a partial evaluation from p ∈ TA to itself:

TTA

TA
Teµ

Tη

• There is always a partial evaluation from p to its total evaluation:

TA TTA

A TA

e

η

Te
µ

η
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Partial evaluations

Example:

Let G be an internal monoid (or group) in a (cartesian) monoidal
category.

• X 7→ G × X is a monad;

• The algebras e : G × A→ A are G -spaces.

Let (g , x), (h, y) ∈ G × A. A partial evaluation from (g , x) to (h, y) is
an element (h, `, x) ∈ G × G × A such that h` = g and ` · x = y .

x `x g · x

g

` h
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Partial evaluations

Question:
Can partial evaluations be composed?
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The question is a Kan filler condition for the inner 2-horns.
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Partial evaluations

Question:
Is the composition unique?

In general, no.

(4(−1)) + (4(+1)) + 2(2(−2) + 2(+2))

(4(−1) + 4(+1)) + (3(−2) + (+2)) + ((−2) + 3(+2))

These give unequal parallel 1-cells between:

4(−1) + 4(+1) + 4(−2) + 4(+2) and (+4) + (−4).
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Partial evaluations

What we know so far:

1. π0(Bar(A)) ∼= A.

2. For idempotent monads, Bar(A) ∼= A.

3. For cartesian monads, Bar(A) is the nerve of a category.

4. In general, composition (when defined) is not unique.

Open questions:

1. Can partial evaluations always be composed?

2. Is the bar construction always a quasi-category?

3. Is there a link with generalized multicategories?
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Probability monads

Idea [Giry, 1982]:

Spaces of random elements as formal convex combinations.

• Base category C

• Functor X 7→ PX

• Unit δ : X → PX

• Composition
E : PPX → PX
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Probability monads

Idea [Giry, 1982]:

Spaces of random elements as formal convex combinations.

PA A

a

b

λa + (1−λ)b

a b

a b

a b

• Algebras
e : PA→ A are
“convex spaces”

• Formal averages are
mapped to actual
averages
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The Kantorovich monad

Kantorovich monad [van Breugel, 2005, Fritz and Perrone, 2017]:

• Given a complete metric space X , PX is the set of Radon
probability measures of finite first moment, equipped with the
Wasserstein distance, or Kantorovich-Rubinstein distance, or earth
mover’s distance:

dPX (p, q) = sup
f :X→R

∣∣∣∣∫
X
f (x) d(p − q)(x)

∣∣∣∣

• The assignment X 7→ PX is part of a monad on the category of
complete metric spaces and short maps.

• Algebras of P are closed convex subsets of Banach spaces.
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The Kantorovich monad

Idea:
Partial evaluations for P are “partial expectations”.

Properties:

1. A partial expectation makes a distribution “more concentrated”, or
“less random” (closer to its center of mass);

2. Partial expectations can always be composed (not uniquely);

3. The relation “Admitting a partial evaluation” is a closed partial
order, which we call partial evaluation order. This is a
(0,1)-truncation of the bar construction for P.
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The Kantorovich monad

Theorem, extending [Winkler, 1985, Theorem 1.3.6]

Let A be a P-algebra and p, q ∈ PA. The following conditions are
equivalent:

1. There exists a partial evaluation from p to q;

2. There exists random variables X and Y on A with laws p and q,
respectively, and such that Y is a conditional expectation of X .
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The Kantorovich monad

Theorem, extending [Winkler, 1985, Theorem 1.3.6]

Let A be a P-algebra and p, q ∈ PA. The following conditions are
equivalent:

1. There exists a partial evaluation from p to q;

2. There exists random variables X and Y on A with laws p and q,
respectively, and such that Y is a conditional expectation of X .

Corollary

A chain of composable partial evaluations in PA is (basically) the
same as a martingale on A, in reverse time.
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Ordered Kantorovich monad

Definition
An L-ordered metric space is a metric space X equipped with a partial
order such that for all x , y , the following are equivalent:

• x ≤ y

• For all short, monotone f : X → R, f (x) ≤ f (y).
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An L-ordered metric space is a metric space X equipped with a partial
order such that for all x , y , the following are equivalent:

• x ≤ y

• For all short, monotone f : X → R, f (x) ≤ f (y).

Definition (stochastic order)

Let p, q ∈ PX . We say that p ≤ q if equivalently:

• There exists a coupling of p and q entirely supported on
{x ≤ y} ∈ X × X ;

• For all short, monotone f : X → R,
∫
f dp ≤

∫
f dq.
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Ordered Kantorovich monad

Definition
An L-ordered metric space is a metric space X equipped with a partial
order such that for all x , y , the following are equivalent:

• x ≤ y

• For all short, monotone f : X → R, f (x) ≤ f (y).

Theorem

• If X is L-ordered, PX with the stochastic order is L-ordered;

• P lifts to a monad on the category L-COMet of L-ordered spaces;

• The algebras of P are exactly closed convex subsets of ordered
Banach spaces (i.e. equipped with a closed positive cone).
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Ordered Kantorovich monad

Pointwise order: f ≤ g : X → Y iff for every x ∈ X , f (x) ≤ g(x).

X Y

f

g

Proposition:

Let f ≤ g : X → Y . Then Pf ≤ Pg : PX → PY .

Corollary:

L-COMet is a strict 2-category, and P a strict 2-monad.
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Lax codescent objects

Proposition:

Let A be a (unordered) P-algebra in L-COMet. The partial evaluation
order on PA is the coinserter in L-COMetP of the diagram:

PPA PA.
E

Pe
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Lax codescent objects

Proposition:

Let A be a (unordered) P-algebra in L-COMet. The partial evaluation
order on PA is the lax codescent object of the algebra A.

Corollary:

Let A be ordered. The lax codescent object obtained as above gives
again PA, with as order the composition of:

• The partial evaluation order, and

• The stochastic order on PA induced by the order on A.

Let’s call this order (PA,�`), lax codescent order.
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Lax codescent objects

Proposition:

Let A be a (unordered) P-algebra in L-COMet. The partial evaluation
order on PA is the lax codescent object of the algebra A.

Explicitly:

Given p, q ∈ PA, p �` q if and only if there exists p′ ∈ PA such that
which can be obtained by partially averaging p, and such that p′ ≤ q
in the stochastic order.

p p′ q
p. eval. ≤

19 of 25



Lax codescent objects

The adjunction associated to P is natural isomorphism of partial
orders:

L-COMet(X ,B) L-COMetP(PX ,B)
∼=

f : X → B 7−→
(
p 7→

∫
f dp

)

Theorem (Corollary of [Lack, 2002]):

Let A and B and be a P-algebras. The adjunction above specializes
to:

L-COMetPlax
(
A,B

) ∼= L-COMetP
(
(PA,�`),B

)
.
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Lax codescent objects
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B
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Lax codescent objects

Corollary of [Lack, 2002]:

Let A and B and be P-algebras, and let f : A→ B. Then f is
concave if and only if p 7→

∫
f dp is monotone for �`. In other words,

if and only if for every p �` q,∫
f dp ≤

∫
f dq. (1)

Corollary of Hahn-Banach:

Fix now B = R. Let p, q ∈ PA. Then p �` q if and only for every
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Lax codescent objects

Corollary of [Lack, 2002]:

Let A and B and be P-algebras, and let f : A→ B. Then f is
concave if and only if p 7→

∫
f dp is monotone for �`. In other words,

if and only if for every p �` q,∫
f dp ≤

∫
f dq. (1)

Corollary of Hahn-Banach:

Fix now B = R. Let p, q ∈ PA. Then p �` q if and only for every
concave monotone map f : A→ R, the inequality (1) holds.
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Lax codescent objects

Corollary:

Let A be an unordered P-algebra, let p, q ∈ PA. The following
conditions are equivalent:

1. For all concave functions f : A→ R,∫
f dp ≤

∫
f dq;

2. There exists a partial evaluation between p and q.
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Let A be an unordered P-algebra, let p, q ∈ PA. The following
conditions are equivalent:

1. For all concave functions f : A→ R,∫
f dp ≤

∫
f dq;

2. There exists a partial evaluation between p and q.

This order is known in the literature as the convex or Choquet order
[Winkler, 1985]. The result above is known.
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Corollary:

Let A be a ordered P-algebra, let p, q ∈ PA. The following conditions
are equivalent:

1. For all concave monotone functions f : A→ R,∫
f dp ≤

∫
f dq;

2. There exists p′ ∈ PA such that which can be obtained by partially
averaging p, and such that p′ ≤ q in the stochastic order.
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Lax codescent objects

Corollary:

Let A be a ordered P-algebra, let p, q ∈ PA. The following conditions
are equivalent:

1. For all concave monotone functions f : A→ R,∫
f dp ≤

∫
f dq;

2. There exists p′ ∈ PA such that which can be obtained by partially
averaging p, and such that p′ ≤ q in the stochastic order.

This order is known in the literature as the increasing convex order.
The result above, in its full generality, is new.
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