Skew monoidal structures on categories of algebras

Marcelo Fiore and Philip Saville

University of Cambridge Department of Computer Science and Technology

10th July 2018

Skew monoidal categories

A version of monoidal categories (Szlachányi (2012)) Structural transformations need not be invertible:

$$\alpha : (A \otimes B) \otimes C \to A \otimes (B \otimes C)$$
$$\lambda : I \otimes A \to A$$
$$\rho : A \to A \otimes I$$

Skew monoidal categories

A version of monoidal categories (Szlachányi (2012)) Structural transformations need not be invertible:

$$\alpha : (A \otimes B) \otimes C \to A \otimes (B \otimes C)$$
$$\lambda : I \otimes A \to A$$
$$\rho : A \to A \otimes I$$

Example

 ${\scriptstyle \blacktriangleright}\,$ For ${\cal C}$ with coproducts, $(X/{\cal C})$ with

$$(X \xrightarrow{a} A) \oplus (X \xrightarrow{b} B) := X \xrightarrow{\operatorname{inl}} X + X \xrightarrow{a+b} A + B$$

• For C cocomplete, $[\mathcal{J}, C]$ with unit J and tensor $F \star G := (\operatorname{lan}_J F) \circ G$ (Altenkirch *et al.* (2010)).

A version of monoidal categories (Szlachányi (2012)) Structural transformations need not be invertible:

$$\alpha : (A \otimes B) \otimes C \to A \otimes (B \otimes C)$$
$$\lambda : I \otimes A \to A$$
$$\rho : A \to A \otimes I$$

Recently studied very actively (*list not exhaustive!*):

Coherence properties: Lack & Street (2014), Andrianopoulos (2017), Bourke (2017), Uustalu (2017, 2018), ...

Extensions, theory and examples: Street (2013), Campbell (2018), ...

Past work

Linton ('69), Kock ('71a, '71b), Guitart ('80), Jacobs ('94), Seal ('13), ...

$\ensuremath{\mathcal{C}}$ monoidal

 $\begin{tabular}{ll} \mathbb{T} a monoidal monad $$\Rightarrow$ $$\mathcal{C}^{\mathbb{T}}$ monoidal $$reflexive coequalizers in \mathcal{C} + $$preservation conditions $$} $$

Past work

Linton ('69), Kock ('71a, '71b), Guitart ('80), Jacobs ('94), Seal ('13), ...

$\ensuremath{\mathcal{C}}$ monoidal

 $\mathbb T$ a monoidal monad reflexive coequalizers in $\mathcal C$ + preservation conditions

This work C skew monoidal \mathbb{T} a strong monad reflexive coequalizers in C + preservation conditions

$$\mathcal{C}^{\mathbb{T}}$$
 monoidal

 \Rightarrow

 \Rightarrow

 $\mathcal{C}^{\mathbb{T}}$ skew monoidal

Past work

Linton ('69), Kock ('71a, '71b), Guitart ('80), Jacobs ('94), Seal ('13), ...

$\ensuremath{\mathcal{C}}$ monoidal

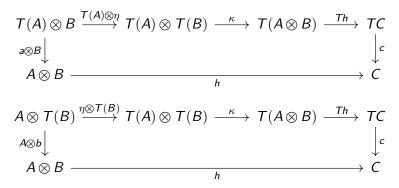
 $\begin{tabular}{ll} \mathbb{T} a monoidal monad $$\Rightarrow$ $$\mathcal{C}^{\mathbb{T}}$ monoidal reflexive coequalizers in $$\mathcal{C}$ + $$ preservation conditions $$} $$$

This work C skew monoidal \mathbb{T} a strong monad reflexive coequalizers in C + preservation conditions

C^T skew monoidal monoids are *T*-monoids Monoidal case (C, \mathbb{T} monoidal)

Definition (Kock (1971))

For $(A, a), (B, b), (C, c) \in C^{\mathbb{T}}$ a map $h : A \otimes B \to C$ in C is *bilinear* if it is linear in each argument:



Monoidal case (C, T monoidal)

Aim

 $\mathsf{Construct}\ (-) \star (=): \mathcal{C}^{\mathbb{T}} \times \mathcal{C}^{\mathbb{T}} \to \mathcal{C}^{\mathbb{T}} \text{ satisfying }$

1.
$$\mathcal{C}^{\mathbb{T}}(A \star B, C) \cong \operatorname{Bilin}_{\mathcal{C}}(A, B; C)$$

2. A suitable preservation property to guarantee coherence

Monoidal case (C, T monoidal)

Aim

Construct $(-) \star (=) : \mathcal{C}^{\mathbb{T}} \times \mathcal{C}^{\mathbb{T}} \to \mathcal{C}^{\mathbb{T}}$ satisfying

1.
$$\mathcal{C}^{\mathbb{T}}(A \star B, C) \cong \operatorname{Bilin}_{\mathcal{C}}(A, B; C)$$

2. A suitable preservation property to guarantee coherence

Construction (Linton 1969)

Reflexive coequalizer in $\mathcal{C}^{\mathbb{T}}$:

$$T(T(A) \otimes T(B)) \xrightarrow[T_{\kappa}]{T_{\kappa}} T^{2}(A \otimes B) \xrightarrow{\mu} T(A \otimes B) \xrightarrow{\text{coeq.}} A \star B$$

NB: $U : \mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ creates reflexive coequalizers if T preserves them

Monoidal case (C, T monoidal)

Aim Construct $(-) \star (=) : \mathcal{C}^{\mathbb{T}} \times \mathcal{C}^{\mathbb{T}} \to \mathcal{C}^{\mathbb{T}}$ satisfying 1. $\mathcal{C}^{\mathbb{T}}(A \star B, C) \cong \operatorname{Bilin}_{\mathcal{C}}(A, B; C)$ 2. if every $(-) \otimes X$ and $X \otimes (-)$ preserve reflexive coequalizers, so do $(-) \star (A, a)$ and $(A, a) \star (-)$

Construction (Linton 1969) Reflexive coequalizer in C^{T} :

$$T(T(A) \otimes T(B)) \xrightarrow[T(a \otimes b]{} T(A \otimes B) \xrightarrow{\mu} T(A \otimes B) \xrightarrow{\text{coeq.}} A \star B$$

NB: $U : \mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ creates reflexive coequalizers if T preserves them

Proposition (Guitart ('80), Seal ('13))

Suppose that

- C has all reflexive coequalizers,
- T preserves reflexive coequalizers,
- Every $(-) \otimes X$ and $X \otimes (-)$ preserves reflexive coequalizers Then $(\mathcal{C}^{\mathbb{T}}, \star, TI)$ is a monoidal category.

Other versions are available: e.g. closed, symmetric, cartesian...

Classify left-linear maps

Construct an action $\mathcal{C}^{\mathbb{T}}\times\mathcal{C}\to\mathcal{C}^{\mathbb{T}}$

Extend to a skew monoidal structure on $\mathcal{C}^{\mathbb{T}}$

Classify left-linear maps

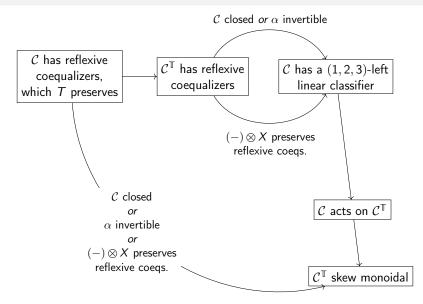
Construct an action $\mathcal{C}^{\mathbb{T}}\times\mathcal{C}\to\mathcal{C}^{\mathbb{T}}$

Extend to a skew monoidal structure on $\mathcal{C}^{\mathbb{T}}$

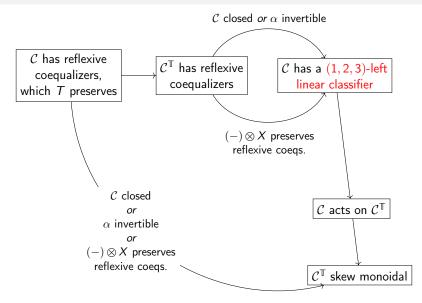
Background assumption:

 \mathcal{C} skew monoidal, \mathbb{T} strong $(st: T(A) \otimes B \rightarrow T(A \otimes B))$

Factoring the proof



Factoring the proof



Definition (c.f. Kock (1971))

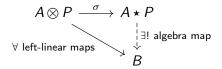
For $(A, a), (B, b) \in C^{\mathbb{T}}$ and $P \in C$, a map $h : A \otimes P \to C$ is *left linear* if

$$\begin{array}{cccc} T(A) \otimes P \xrightarrow{\operatorname{st}_{A,B}} T(A \otimes P) \xrightarrow{Th} TB \\ \downarrow a \otimes P \downarrow & \qquad \qquad \downarrow b \\ A \otimes P \xrightarrow{h} & B \end{array}$$

Left-linear classifiers

Definition (*c.f.* Guitart ('80), Jacobs ('94), Seal ('13)) A *left-linear classifier* is a family of maps $\sigma_{A,P} : A \otimes P \to A \star P$ such that

- 1. $(A \star P, \tau_{A,P}) \in \mathcal{C}^{\mathbb{T}}$
- 2. $\sigma_{A,B}$ is left-linear,
- 3. Every left-linear map $A \otimes P \rightarrow B$ factors uniquely:

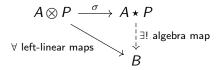


Determines an isomorphism $\mathcal{C}^{\mathbb{T}}(A \star P, B) \cong \text{LeftLin}_{\mathcal{C}}(A, P; B)$.

Left-linear classifiers

Definition (*c.f.* Guitart ('80), Jacobs ('94), Seal ('13)) A *left-linear classifier* is a family of maps $\sigma_{A,P} : A \otimes P \to A \star P$ such that

- 1. $(A \star P, \tau_{A,P}) \in \mathcal{C}^{\mathbb{T}}$
- 2. $\sigma_{A,B}$ is left-linear,
- 3. Every left-linear map $A \otimes P \rightarrow B$ factors uniquely:



Determines an isomorphism $\mathcal{C}^{\mathbb{T}}(A \star P, B) \cong \text{LeftLin}_{\mathcal{C}}(A, P; B)$.

vvv Need to build in a preservation property to guarantee coherence

n-left linear maps

Definition For $(A, a), (B, b) \in C^{\mathbb{T}}$ and $P_1, \dots, P_n \in C$, a map $h : (\cdots ((A \otimes P_1) \otimes P_2) \cdots \otimes P_{n-1}) \otimes P_n \to B$

is *n-left linear* if

where $\operatorname{st}^{\otimes 1} := \operatorname{st}$ and $\operatorname{st}^{\otimes (n+1)} := \operatorname{st} \circ \operatorname{st}^{\otimes n}$.

n-left linear maps

Definition For $(A, a), (B, b) \in C^{\mathbb{T}}$ and $P_1, \dots, P_n \in C$, a map $h : (\cdots ((A \otimes P_1) \otimes P_2) \cdots \otimes P_{n-1}) \otimes P_n \to B$

is *n-left linear* if

where $\operatorname{st}^{\otimes 1} := \operatorname{st}$ and $\operatorname{st}^{\otimes (n+1)} := \operatorname{st} \circ \operatorname{st}^{\otimes n}$.

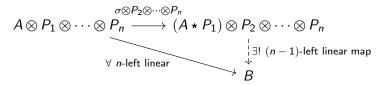
An *n*-parameter version of left-linearity.

n-left linear classifiers

Definition

A *n-left linear classifier* is a family of maps $\sigma_{A,P_1}:A\otimes P_1\to A\star P_1$ such that

- 1. $(A \star P_1, \tau_{A,P_1}) \in \mathcal{C}^{\mathbb{T}}$
- 2. $\sigma_{A,B}$ is left-linear,
- 3. Every *n*-left linear map $(\cdots ((A \otimes P_1) \otimes P_2) \cdots) \otimes P_n \rightarrow B$ factors uniquely:



A (1, ..., n)-left linear classifier is a 1-left linear classifier that is also an *i*-left linear classifier $(1 \le i \le n)$.

n-left linear classifiers

Lemma

If $h: (\cdots ((A \otimes P_1) \otimes P_2) \cdots) \otimes P_{n+1} \rightarrow B$ is (n+1)-left linear, then (if they exist)

- 1. The transpose $\tilde{h} : A \otimes P_1 \otimes \cdots \otimes P_n \rightarrow [P_{n+1}, B]$ is n-left linear,
- 2. $h \circ \alpha^{-1} : (A \otimes P_1 \cdots \otimes P_{n-1}) \otimes (P_n \otimes P_{n+1}) \rightarrow B$ is n-left linear

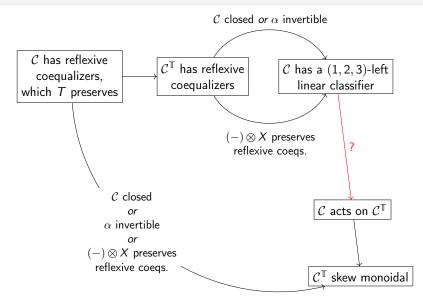
Lemma

If $\mathcal C$ has an n-left linear classifier and satisfies either

- \blacktriangleright C is closed, or
- α is invertible

Then C has an (n + 1)-left linear classifier.

Factoring the proof



Proposition

If C has a (1,2,3)-left linear classifier $\sigma_{A,B} : A \otimes B \to A \star B$, then

- 1. $\star: \mathcal{C}^{\mathbb{T}} \times \mathcal{C} \to \mathcal{C}^{\mathbb{T}}$ is a skew action, and
- 2. The free-forgetful adjunction $F : C \subseteq C^{\mathbb{T}} : U$ is strong.

Proposition

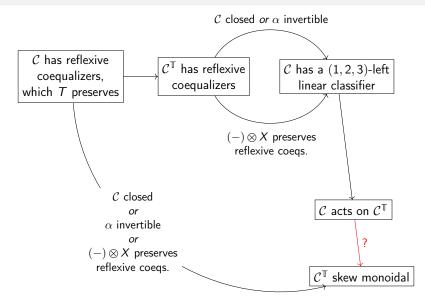
If C has a (1,2,3)-left linear classifier $\sigma_{A,B} : A \otimes B \to A \star B$, then

- 1. $\star: \mathcal{C}^{\mathbb{T}} \times \mathcal{C} \to \mathcal{C}^{\mathbb{T}}$ is a skew action, and
- 2. The free-forgetful adjunction $F : C \subseteq C^{\mathbb{T}} : U$ is strong.

Holds in particular if ${\mathcal C}$ has a 1-left linear classifier and

- $\blacktriangleright \ \mathcal{C}$ is closed, or
- α is invertible

Factoring the proof



From action to skew monoidal structure

Proposition

Given

- 1. A skew monoidal category $(\mathcal{C}, \otimes, I)$,
- 2. A category A,
- 3. A skew action $\star : \mathcal{A} \times \mathcal{C} \rightarrow \mathcal{A}$,
- 4. A strong adjunction $(U, st^U) : \mathcal{A} \leftrightarrows \mathcal{C} : (F, st^F)$

Then, setting

$$A \circledast B := A \star UB$$

makes $(\mathcal{A}, \overline{\star}, FI)$ a skew monoidal category.

Proposition

If ${\mathcal C}$ has any of

- 1. A (1,2,3)-left linear classifier $A \otimes B \to A \star B$,
- 2. A 1-left linear classifier $A \otimes B \rightarrow A \star B$, and C is closed,

3. A 1-left linear classifier $A \otimes B \to A \star B$, and α is invertible Then $(\mathcal{C}^{\mathbb{T}}, \star, TI)$ is skew monoidal.

Proposition

If ${\mathcal C}$ has any of

1. A (1,2,3)-left linear classifier $A \otimes B \to A \star B$,

2. A 1-left linear classifier $A \otimes B \rightarrow A \star B$, and C is closed,

3. A 1-left linear classifier $A \otimes B \to A \star B$, and α is invertible Then $(\mathcal{C}^{\mathbb{T}}, \star, \mathsf{TI})$ is skew monoidal.

Question: how do we construct a (1, 2, 3)-left linear classifier?

Constructing a left-linear classifier

Construction

Reflexive coequalizer in $\mathcal{C}^{\mathbb{T}}$:

$$T(T(A) \otimes P) \xrightarrow[T(a \otimes P)]{T(A \otimes P)} T(A \otimes P) \xrightarrow{\text{coeq.}} A \star P$$

Then

- 1. $\mathcal{C}^{\mathbb{T}}(A \star P, B) \cong \text{LeftLin}_{\mathcal{C}}(A, P; B),$
- 2. If $T(-\otimes X)$ preserves reflexive coequalizers, get a (1,2,3)-left linear classifier.

Proposition

If C has all reflexive coequalizers, T preserves reflexive coequalizers, and any of the following:

- 1. Every $(-) \otimes P$ preserves reflexive coequalizers,
- 2. C is closed,
- 3. α is invertible

Then C has a (1, 2, 3)-left linear classifier:

$$A \otimes B \xrightarrow{\eta} T(A \otimes B) \xrightarrow{coeq.} A \star B$$

Putting it all together

Theorem

If C has all reflexive coequalizers, T preserves reflexive coequalizers, and any of the following:

1. Every $(-) \otimes P$ preserves reflexive coequalizers,

2. C is closed,

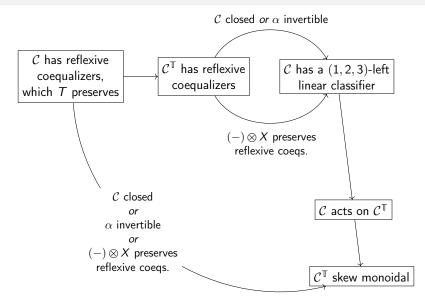
3. α is invertible

Then $(\mathcal{C}^{\mathbb{T}}, \star, TI)$ is skew monoidal.

Remark

Can also do the calculation directly — but it is much more intricate! (c.f. Seal (2013))

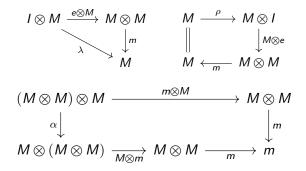
Factoring the proof



Monoids in skew monoidal categories

Definition

A monoid in C is an object M with $(I \xrightarrow{e} M \xleftarrow{m} M \otimes M)$ such that



Question: how do we construct free monoids?

Lemma (folklore)

Let $(\mathcal{C}, \otimes, I)$ be a monoidal category with finite coproducts (0, +)and ω -colimits, and $X \in \mathcal{C}$ such that

1. Every $(-) \otimes P$ preserves coproducts and ω -colimits, and

2.
$$X \otimes (-)$$
 preserves ω -colimits

Then the initial $(I + X \otimes -)$ -algebra is the free monoid on X.

Lemma

Let (C, \otimes, I) be a skew monoidal category with finite coproducts (0, +) and ω -colimits, and $X \in C$ such that

1. Every $(-) \otimes P$ preserves coproducts and ω -colimits, and

2.
$$X \otimes (-)$$
 preserves ω -colimits

Then the initial $(I + X \otimes -)$ -algebra is the free monoid on X.

Free monoids as colimits: $(\mathcal{C}, \otimes, I)$ monoidal

Lemma (Dubuc (1974), Melliès (2008), Lack (2008)) There exists a monoidal category \mathcal{P} such that

 $\text{MonCat}_{\mathrm{strong}}(\mathcal{P},\mathcal{C})\simeq (I/\mathcal{C})$

Lemma (Dubuc (1974), Melliès (2008), Lack (2008)) For $(I \xrightarrow{x} X) \in (I/C)$, if

1. C has P-colimits, and

2. Every $(-) \otimes C$ and $C \otimes (-)$ preserves \mathcal{P} -colimits

Then colim D_x is the free monoid on $(I \xrightarrow{x} X)$, for $D_x : \mathcal{P} \to \mathcal{C}$ the monoidal functor corresponding to $(I \xrightarrow{x} X)$.

Free monoids as colimits: (\mathcal{C},\otimes,I) skew monoidal

Lemma

There exists a skew monoidal \mathcal{P} such that

 $\mathsf{SkMonCat}_{\mathrm{strong}}(\mathcal{P},\mathcal{C}) \simeq (\mathit{I}/\mathcal{C})$

Lemma

- For $(I \xrightarrow{x} X) \in (I/\mathcal{C})$, if
 - 1. C has \mathcal{P} -colimits, and
 - 2. Every $(-) \otimes C$ and $C \otimes (-)$ preserves \mathcal{P} -colimits

Then colim D_x is the free monoid on $(I \xrightarrow{x} X)$, for $D_x : \mathcal{P} \to \mathcal{C}$ the monoidal functor corresponding to $(I \xrightarrow{x} X)$.

Definition (c.f. Fiore et al. (1999))

For a strong monad $(\mathbb{T}, \mathrm{st})$, a *T*-monoid is an object $M \in \mathcal{C}$ with

1. A monoid structure $(M \otimes M \xrightarrow{m} M \xleftarrow{e} I)$,

2. An algebra structure (M, τ_M) ,

Such that the multiplication $m: M \otimes M \to M$ is a left-linear map.

Definition (c.f. Fiore et al. (1999))

For a strong monad $(\mathbb{T}, \mathrm{st})$, a *T*-monoid is an object $M \in \mathcal{C}$ with

1. A monoid structure $(M \otimes M \xrightarrow{m} M \xleftarrow{e} I)$,

2. An algebra structure (M, τ_M) ,

Such that the multiplication $m: M \otimes M \to M$ is a left-linear map.

Example

If C has two monoidal structures (\otimes, I) and (\bullet, J) related by a *distributivity structure*, then for \mathbb{T} the free \bullet -monoid monad on C, a T-monoid in (C, \otimes, I) is a *near semiring object* (Fiore 2016, Fiore & S. 2017).

Definition (c.f. Fiore et al. (1999))

A *T*-monoid is an object $M \in C$ with

- 1. A monoid structure $(M \otimes M \xrightarrow{m} M \xleftarrow{e} I)$,
- 2. An algebra structure (M, τ_M) ,

Such that the multiplication $m: M \otimes M \to M$ is a left-linear map.

Proposition

If C has a (1,2,3)-left linear classifier $\sigma_{A,B} : A \otimes B \to A \star B$, then

$$T-Mon((\mathcal{C},\otimes,I)) \cong Mon((\mathcal{C}^{\mathbb{T}},\star,TI))$$

Monoidal examples

1. If ${\mathcal C}$ has finite coproducts,

$$\mathcal{C}^{\mathbb{T}} \cong T$$
- $Mon((\mathcal{C}, +, 0)) \cong Mon(\mathcal{C}^{\mathbb{T}})$

2. For $M \in Mon(\mathcal{C})$ and $M^{\otimes} := (M \otimes (-), m \otimes (-), e \otimes (-))$ $(M/Mon(\mathcal{C})) \cong M^{\otimes}-Mon(\mathcal{C}) \cong Mon(\mathcal{C}^{\mathbb{M}^{\otimes}})$

(Fiore & S. 2017).

Proof simplified by focus on *n*-left linear classifiers and corresponding skew monoidal actions.

Proof simplified by focus on *n*-left linear classifiers and corresponding skew monoidal actions.

Construction of free monoids in skew setting is as for monoidal categories.

Proof simplified by focus on *n-left linear classifiers* and corresponding *skew monoidal actions*.

Construction of free monoids in skew setting is as for monoidal categories.

```
Monoids in (\mathcal{C}^{\mathbb{T}}, \star, TI) are T-monoids in (\mathcal{C}, \otimes, I).
```

Proof simplified by focus on *n-left linear classifiers* and corresponding *skew monoidal actions*.

Construction of free monoids in skew setting is as for monoidal categories.

```
Monoids in (\mathcal{C}^{\mathbb{T}}, \star, TI) are T-monoids in (\mathcal{C}, \otimes, I).
```

→→ Associated paper in preparation.