Mix Unitary Categories

Robin Cockett, Cole Comfort, and Priyaa Srinivasan

CT2018, Ponta Delgada, Azores

イロト イロト イヨト イヨト ヨー つくや

Dagger compact closed categories

Dagger compact closed categories (†-KCC) provide a categorical framework for finite-dimensional quantum mechanics.

The dagger (†) is a contravariant functor which is stationary on objects $(A = A^{\dagger})$ which is an involution $(f^{\dagger\dagger} = f)$.

In a †-KCC, quantum processes are represented by completely positive maps.

The CPM construction on a \dagger -KCC chooses the completely positive maps from the category.

FHilb, the category of finite-dimensional Hilbert Spaces and linear maps is the canonical example of a *†*-KCC.

CPM[FHilb] is precisely the category of "quantum processes."

2/31

ADDARDAEDAEDE OQO 2/31

(D) (B) (E) (E) E OQO 3/31

Finite versus infinite dimensions

For Hilbert Spaces (and additively enriched categories with negatives) compact closed \Rightarrow finite-dimensionality.

Infinite-dimensional Hilbert spaces have a † but do not have "duals": they are *not* compact closed.

Infinite-dimensional systems occur in many quantum settings including quantum computation and quantum communication.

There have therefore been various attempts to generalize the existing structures and constructions to infinite-dimensions.

The CP^{∞} construction

 CP^∞ construction (Coecke and Heunen) generalizes the CPM construction to †-symmetric monoidal categories by reexpressing completely positive maps as follows:

QUESTION: Is there a way to generalize the CPM construction to arbitrary dimensions while retaining duals *and* the dagger?

Linearly distributive categories

*-autonomous categories and linearly distributive categories generalize compact closed categories ...

Can quantum ideas be extended in this direction?¹

They allow for infinite dimensions, have a nice graphical calculus, allow the expression of "duals" ... but what about dagger?

Recall a **linearly distributive category (LDC)** has two monoidal structures $(\otimes, \top, a_{\otimes}, u_{\otimes}^L, u_{\otimes}^R)$ and $(\oplus, \bot, a_{\oplus}, u_{\oplus}^L, u_{\oplus}^R)$ linked by natural transformations called the linear distributors:

 $\partial_L : A \otimes (B \oplus C) \to (A \otimes B) \oplus C$ $\partial_R : (A \oplus B) \otimes C \to A \oplus (B \otimes C)$

¹See Dusko Pavlovic "Relating Toy Models of Quantum Computation: Comprehension, Complementarity and Dagger Mix Autonomous Categories" $(\Box \mapsto (\Box) \mapsto ($

(D) (B) (E) (E) (O) (O) (O)

Mix categories

A mix category is a LDC with a map $\mathsf{m}:\bot\to\top$ in $\mathbb X$ such that

mx is called a mix map. The mix map is a natural transformation.

It is an **isomix** category if m is an isomorphism.

m being an isomorphism does not make the mx map an isomorphism.

ADDABDAEDAEDE DQC 7/31

The Core of mix category

The core of a mix category, $Core(\mathbb{X}) \subseteq \mathbb{X}$, is the full subcategory determined by objects $U \in \mathbb{X}$ for which the natural transformation is also an isomorphism:

$$U\otimes (_) \xrightarrow{\mathsf{mx}_{U,(_)}} U\oplus (_)$$

The core of a mix category is closed to \otimes and \oplus .

The core of an isomix category contains the monoidal units \top and \bot and is a **compact LDC** (meaning tensor and par are essentially identical).

* - > * # > * E > * E > * E > % 8/31 8/31

Roadmap

The †?

The definition of $\dagger : \mathbb{X}^{op} \to \mathbb{X}$ as stationary on objects cannot be imported to LDCs because the dagger minimally has to flip the tensor products: $(A \otimes B)^{\dagger} = A^{\dagger} \oplus B^{\dagger}$.

Why? If the dagger is identity-on-objects, then the linear distributor degenerates to an associator:

$$\frac{(\delta_R)^{\dagger}: (A \oplus (B \otimes C))^{\dagger} \to ((A \oplus B) \otimes C)^{\dagger}}{(\delta^R)^{\dagger}: A^{\dagger} \oplus (B^{\dagger} \otimes C^{\dagger}) \to (A^{\dagger} \oplus B^{\dagger}) \otimes C^{\dagger}}$$

 $(\square) (\square$

A $\dagger\text{-LDC}$ is a LDC $\mathbb X$ with a dagger functor $\dagger:\mathbb X^{op}\to\mathbb X$ and the natural isomorphisms:

tensor laxors:
$$\lambda_{\oplus} : A^{\dagger} \oplus B^{\dagger} \to (A \otimes B)^{\dagger}$$

 $\lambda_{\otimes} : A^{\dagger} \otimes B^{\dagger} \to (A \oplus B)^{\dagger}$
unit laxors: $\lambda_{\top} : \top \to \bot^{\dagger}$
 $\lambda_{\perp} : \bot \to \top^{\dagger}$
involutor: $\iota : A \to A^{\dagger\dagger}$

which make † a contravariant (Frobenius) linear equivalence.

Coherences for *†*-LDCs

Coherences for the interaction between the tensor laxors and the basic natural isomorphisms (6 coherences):

$$\begin{array}{c|c} A^{\dagger} \otimes (B^{\dagger} \otimes C^{\dagger}) \xrightarrow{a_{\otimes}} (A^{\dagger} \otimes B^{\dagger}) \otimes C^{\dagger} \\ 1 \otimes \lambda_{\otimes} & & & \downarrow \lambda_{\otimes} \otimes 1 \\ (A^{\dagger} \otimes (B \oplus C)^{\dagger}) & (A \oplus B)^{\dagger} \otimes C^{\dagger} \\ \lambda_{\otimes} & & & \downarrow \lambda_{\otimes} \\ (A \oplus (B \oplus C))^{\dagger} \xrightarrow{(a_{\oplus}^{-1})^{\dagger}} ((A \oplus B) \oplus C)^{\dagger} \end{array}$$

Coherences for *†*-LDCs (cont.)

Interaction between the unit laxors and the unitors (2 coherences):

Interaction between the involutor and the laxors (4 coherences):

 $(\square) (\square$

Diagrammatic calculus for †-LDC

Extend the diagrammatic calculus of LDCs

The action of dagger is represented using dagger boxes:

Isomix †-LDCs

A mix \dagger -LDC is a \dagger -LDC with $m : \bot \rightarrow \top$ such that:

If m is an isomorphism, then \mathbb{X} is an **isomix** \dagger -LDC.

Lemma: The following diagram commutes in a mix *†*-LDC:

<ロト 4 @ ト 4 E ト 4 E ト E のQ 15/31

Isomix †-LDCs

Lemma: Suppose X is a mix \dagger -LDC and $A \in Core(X)$ then $A^{\dagger} \in Core(X)$.

Proof: The natural transformation $A^{\dagger} \otimes X \xrightarrow{m_X} A^{\dagger} \oplus X$ is an isomorphism:

$$\begin{array}{c|c} A^{\dagger} \otimes X \xrightarrow{1 \otimes \iota} A^{\dagger} \otimes X^{\dagger \dagger} \xrightarrow{\lambda_{\otimes}} (A \oplus X^{\dagger})^{\dagger} \\ mx \middle| & nat. mx & mx \middle| & Lemma above & \downarrow mx^{\dagger} \\ A^{\dagger} \oplus X \xrightarrow{1 \oplus \iota} A^{\dagger} \oplus A^{\dagger \dagger} \xrightarrow{\lambda_{\oplus}} (A \otimes X^{\dagger})^{\dagger} \end{array}$$

commutes.

Next step: Unitary structure

The usual definition of unitary maps

$$(f^{\dagger}:B^{\dagger} \rightarrow A^{\dagger}=f^{-1}:B \rightarrow A)$$

only works when the † functor is stationary on objects.

Unitary structure

An isomix †-LDC has **unitary structure** in case there is a small class of objects called **unitary objects** such that:

- Every unitary object, $A \in U$, is in the core;
- The dagger of a unitary object is unitary;
- Each unitary object $A \in \mathcal{U}$ comes equipped with an isomorphism, the **unitary structure** of A, $\stackrel{A_1}{\xrightarrow[A_1]}: A \xrightarrow{\varphi_A} A^{\dagger}$ such that

$$\begin{array}{c} A^{\dagger} \\ A^{\dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A^{\dagger} \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A^{\dagger} \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger} \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger} \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \end{array} = \begin{array}{c} A \\ A^{\dagger \dagger} \\ A^{\dagger } \\ A^{\bullet } \\ A^{\dagger } \\ A^{\dagger } \\ A^{\dagger } \\ A^{\bullet } \\ A^{\dagger } \\ A^{\dagger } \\ A^{\dagger }$$

Unitary structure (cont.)

•
$$\top, \bot$$
 are unitary objects with:

$$arphi_{\perp} = \mathsf{m}\lambda_{ op} \qquad arphi_{ op} = \mathsf{m}^{-1}\lambda_{\perp}$$

 If A and B are unitary objects then A ⊗ B and A ⊕ B are unitary objects such that:

$$(\varphi_A \otimes \varphi_B)\lambda_{\otimes} = \mathsf{mx} \ \varphi_{A \oplus B} : A \otimes B \to (A \otimes B)^{\dagger}$$
$$\varphi_{A \otimes B}\lambda_{\oplus}^{-1} = \mathsf{mx}(\varphi_A \oplus \varphi_B) : A \otimes B \to A^{\dagger} \oplus B^{\dagger}$$

<ロト 4 @ ト 4 E ト 4 E ト E の (19/31

Mix Unitary Category (MUC)

An iso-mix †-LDC with unitary structure is a **mix unitary category** (**MUC**).

The unitary objects of a MUC, X, determine a full subcategory, UCore(X) $\subseteq X$, called the **unitary core**. The unitary core is a **unitary category**.

Remark: In order to obtain the right functorial properties a (general) MUC is an isomix †-category with a full and faithful structure preserving inclusion of a unitary category.

Unitary isomorphisms

Suppose A and B are unitary objects. An isomorphism $A \xrightarrow{t} B$ is said to be a **unitary isomorphism** if the following diagram commutes:

Lemma: In a MUC

- f^{\dagger} is a unitary map iff f is;
- $f \otimes g$ and $f \oplus g$ are unitary maps whenever f and g are.
- $a_{\otimes}, a_{\oplus}, c_{\otimes}, c_{\oplus}, \delta^{L}$, m, and mx are unitary isomorphisms.
- $\lambda_{\otimes}, \lambda_{\oplus}, \lambda_{\top}, \lambda_{\perp}$, and ι are unitary isomorphisms.
- φ_A is a unitary isomorphisms for for all unitary objects $A_{20/21}^{\circ}$

Five examples of MUCs

- †-KCC These give a compact closed MUC with a stationary dagger and trivial unitary structure
- $\mathsf{FFVec}_\mathbb{C}$ "Framed" vector spaces (vector spaces with a chosen basis) is a compact closed MUC with non-trivial unitary structure.
 - $\operatorname{Fin}_{\mathbb{C}} \mathbb{C}$ -modules over finiteness spaces is a *-autonomous category: maps are infinite dimensional matrices with composition controlled (by types) to avoid infinite sums. The unitary subcategory is just $\operatorname{Mat}(\mathbb{C})$.
- Bicomp(𝗶) The bicompletion of a †-KCC, 𝗶 is a mix †-∗-autonomous category with unitary objects in 𝗶.
 - Chu_Y(*I*) The Chu construction on a symmetric monoidal closed category with conjugation, with dualizing object the unit *I*, gives a MUC.
 21/31

 CP^∞ construction

22 / 31

Next step: CP^{∞} construction on MUCs

Define †-LDC

Define unitary isomorphisms

Examples

 CP^∞ construction on MUC

Krauss maps

In a MUC, a map $f : A \to U \oplus B$ of \mathbb{X} where U is a unitary object is called a **Krauss map** $f : A \to_U B$. U is called the **ancillary** system of f.

In a MUC, quantum processes are represented using Krauss maps as follows:

Combinator and test maps

Two Krauss maps $f : A \to_{U_1} B$ and $g : A \to_{U_2} B$ are equivalent, $f \sim g$, if for all test maps $h : B \otimes X \to V$ where V is an unitary object, the following equation holds:

Lemma: Let $f : A \to U_1 B$ and $f' : A \to U_2 B$ be Krauss maps such that $U_1 \xrightarrow{\alpha} U_2$ is a unitary isomorphism with $f' = (\alpha \oplus 1)f$, then $f \sim f'$. In this case, f is said to be **unitarily isomorphic** to f'.

CP^∞ construction

```
Given a MUC, X, define CP^{\infty}(X) to have:
Objects: as of X
Maps:
```

```
CP^{\infty}(\mathbb{X})(A, B) := \{f \in \mathbb{X}(A, U \oplus B) | U \in \mathbb{X} \text{ and } U \text{ is unitary}\}/ \sim
Composition:
```

Tensor and Par

 $\mathsf{CP}^\infty(\mathbb{X})$ inherits tensor and par from \mathbb{X} :

Linear adjoints

Suppose X is a LDC and $A, B \in X$. Then, B is left linear adjoint to $A(\eta, \varepsilon) : B \dashv A$, if there exists

 $\eta:\top\to B\oplus A \qquad \varepsilon:A\otimes B\to\bot$

such that the following triangle equalities hold:

Unitary linear adjoints

A unitary linear adjoint (η, ε) : $A \dashv_u B$ is a linear adjoint, $A \dashv B$ with A and B being unitary objects satisfying:

 $\eta_{\mathcal{A}}(\varphi_{\mathcal{A}}\oplus\varphi_{\mathcal{B}})c_{\oplus}=\lambda_{\top}\varepsilon^{\dagger}\lambda_{\oplus}^{-1} \qquad (\varphi_{\mathcal{A}}\otimes\varphi_{\mathcal{B}})\lambda_{\otimes}\eta_{\mathcal{A}}^{\dagger}=c_{\otimes}\varepsilon_{\mathcal{A}}\lambda_{\perp}$

A MUC in which every unitary object has a unitary linear adjoint is called a **MUdC**.

ADDABDAEDAED E OQ@ 28/31

Dagger functor for $\mathsf{CP}^\infty(\mathbb{X})$

Proposition: If X is a *-MUdC, then $CP^{\infty}(X)$ is a *-MUdC.

Sketch of proof: Suppose $f : A \rightarrow U \oplus B$ and $(\eta, \varepsilon) : V \dashv_u U$

$$\dagger:\mathsf{CP}^{\infty}(\mathbb{X})^{\mathrm{op}}\to\mathsf{CP}^{\infty}(\mathbb{X}); \xrightarrow[r]{f} \mapsto \bigvee_{V^{\dagger}} \overbrace{[r]{f}}^{B^{\dagger}}$$

Unitary structure and unitary linear adjoints are preserved due to the functoriality of Q.

Summary

Generalized one important construction of categorical quantum mechanics to MUCs!

- Mix Unitary Categories are *†*-LDCs with unitary subcategory.
- O There is a diagrammatic calculus for MUCs.
- When unitary objects have unitary linear adjoint, then the unitary core is a dagger compact closed category.
- CP[∞] on MUCs generalizes CP[∞] construction on †-SMCs (auxillary systems in the unitary core).
- The construction is functorial and produces a *-MUdC when every (unitary) object has a (unitary) linear adjoint.

(-) (-)

Bibliography

LDC: Robin Cockett, and Robert Seely. Weakly distributive categories. Journal of Pure and Applied Algebra 114.2 (1997): 133-173.

The core of a mix category: Richard Blute, Robin Cockett, and Robert Seely. **Feedback for linearly distributive categories: traces and fixpoints.** Journal of Pure and Applied Algebra 154.1-3 (2000): 27-69.

Graphical calculus for LDCs: Richard Blute, Robin Cockett, Robert Seely, and Todd Trimble. Natural deduction and coherence for weakly distributive categories. Journal of Pure and Applied Algebra 113.3 (1996): 229-296.

†-KCC and the CPM construction Peter Selinger. **Dagger compact closed categories and completely positive maps.** Electronic Notes in Theoretical computer science 170 (2007): 139-163.

 CP^{∞} construction on †-SMCs: Bob Coecke, and Chris Heunen. Pictures of complete positivity in arbitrary dimension. Information and Computation 250 (2016): 50-58.