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Dagger compact closed categories

Dagger compact closed categories (†-KCC) provide a categorical
framework for finite-dimensional quantum mechanics.

The dagger (†) is a contravariant functor which is stationary on
objects (A = A†) which is an involution (f †† = f ).

In a †-KCC, quantum processes are represented by completely
positive maps.

The CPM construction on a †-KCC chooses the completely
positive maps from the category.

FHilb, the category of finite-dimensional Hilbert Spaces and linear
maps is the canonical example of a †-KCC.

CPM[FHilb] is precisely the category of “quantum processes.”
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Finite versus infinite dimensions

For Hilbert Spaces (and additively enriched categories with
negatives) compact closed ⇒ finite-dimensionality.

Infinite-dimensional Hilbert spaces have a † but do not have
“duals”: they are not compact closed.

Infinite-dimensional systems occur in many quantum settings
including quantum computation and quantum communication.

There have therefore been various attempts to generalize the
existing structures and constructions to infinite-dimensions.
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The CP∞ construction

CP∞ construction (Coecke and Heunen) generalizes the CPM
construction to †-symmetric monoidal categories by reexpressing
completely positive maps as follows:

(f †)∗ f
7→

f

f †

QUESTION: Is there a way to generalize the CPM construction
to arbitrary dimensions while retaining
duals and the dagger?
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Linearly distributive categories

∗-autonomous categories and linearly distributive categories
generalize compact closed categories . . .

Can quantum ideas be extended in this direction?1

They allow for infinite dimensions, have a nice graphical calculus,
allow the expression of “duals” . . . but what about dagger?

Recall a linearly distributive category (LDC) has two monoidal
structures (⊗,>, a⊗, uL⊗, uR⊗) and (⊕,⊥, a⊕, uL⊕, uR⊕) linked by
natural transformations called the linear distributors:

∂L : A⊗ (B ⊕ C )→ (A⊗ B)⊕ C

∂R : (A⊕ B)⊗ C → A⊕ (B ⊗ C )

1
See Dusko Pavlovic “Relating Toy Models of Quantum Computation: Comprehension, Complementarity and

Dagger Mix Autonomous Categories”
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Mix categories

A mix category is a LDC with a map m : ⊥ −→ > in X such that

mxA,B : A⊗ B −→ A⊕ B :=
⊥

m

>

=
⊥

m

>

mx is called a mix map. The mix map is a natural transformation.

It is an isomix category if m is an isomorphism.

m being an isomorphism does not make the mx map an
isomorphism.
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The Core of mix category

The core of a mix category, Core(X) ⊆ X, is the full subcategory
determined by objects U ∈ X for which the natural transformation
is also an isomorphism:

U ⊗ ( )
mxU,( )−−−−−→ U ⊕ ( )

The core of a mix category is closed to ⊗ and ⊕.

The core of an isomix category contains the monoidal units
> and ⊥ and is a compact LDC (meaning tensor and par are
essentially identical) .
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Roadmap

LDC

��
Define † -LDC

��
Define unitary isomorphisms in † -LDCs

��
Generalize CP∞ construction for † -LDCs
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The †?

The definition of † : Xop −→ X as stationary on objects cannot be
imported to LDCs because the dagger minimally has to flip the
tensor products: (A⊗ B)† = A† ⊕ B†.

Why? If the dagger is identity-on-objects, then the linear
distributor degenerates to an associator:

(δR)† : (A⊕ (B ⊗ C ))† −→ ((A⊕ B)⊗ C )†

(δR)† : A† ⊕ (B† ⊗ C †) −→ (A† ⊕ B†)⊗ C †
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†-LDCs

A †-LDC is a LDC X with a dagger functor † : Xop −→ X and the
natural isomorphisms:

tensor laxors: λ⊕ : A† ⊕ B† −→ (A⊗ B)†

λ⊗ : A† ⊗ B† −→ (A⊕ B)†

unit laxors: λ> : > −→ ⊥†

λ⊥ : ⊥ −→ >†

involutor: ι : A −→ A††

which make † a contravariant (Frobenius) linear equivalence.
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Coherences for †-LDCs

Coherences for the interaction between the tensor laxors and the
basic natural isomorphisms (6 coherences):

A† ⊗ (B† ⊗ C †)
a⊗ //

1⊗λ⊗
��

(A† ⊗ B†)⊗ C †

λ⊗⊗1
��

(A† ⊗ (B ⊕ C )†)

λ⊗
��

(A⊕ B)† ⊗ C †

λ⊗
��

(A⊕ (B ⊕ C ))†
(a−1
⊕ )†
// ((A⊕ B)⊕ C )†
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Coherences for †-LDCs (cont.)

Interaction between the unit laxors and the unitors (2 coherences):

>⊗ A†
λ>⊗1 //

ul⊗
��

⊥† ⊗ A†

λ⊗
��

A† (⊥⊕ A)†//
(ul⊕)

†

⊥⊕ A†
λ⊥⊕1 //

ul⊕
��

>† ⊕ A†

λ⊕
��

A† (>⊗ A)†//
(ul⊗)

†

Interaction between the involutor and the laxors (4 coherences):

A⊕ B
ι //

i⊕i
��

((A⊕ B)†)†

λ†⊗
��

(A†)† ⊕ (B†)†
λ⊕

// (A† ⊗ B†)†

⊥ ι //

λ⊥ !!

(⊥†)†

λ†>��
>†
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Diagrammatic calculus for †-LDC

Extend the diagrammatic calculus of LDCs

The action of dagger is represented using dagger boxes:

† :

A

B

f 7→ f

A

B

A†

B†

.
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Isomix †-LDCs

A mix †-LDC is a †-LDC with m : ⊥ −→ > such that:

⊥ m //

λ⊥
��

>
λ>
��

>†
m†
// ⊥†

If m is an isomorphism, then X is an isomix †-LDC.

Lemma: The following diagram commutes in a mix †-LDC:

A† ⊗ B†
mx //

λ⊗
��

A† ⊕ B†

λ⊕
��

(A⊕ B)†
mx†
// (A⊗ B)†
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Isomix †-LDCs

Lemma: Suppose X is a mix †-LDC and A ∈ Core(X) then A† ∈
Core(X).

Proof: The natural transformation A† ⊗ X
mx−−→ A† ⊕ X is an

isomorphism:

A† ⊗ X
1⊗ι //

mx
��

nat. mx

A† ⊗ X ††
λ⊗ //

mx
��

Lemma above

(A⊕ X †)†

mx†

��
A† ⊕ X

1⊕ι
// A† ⊕ A††

λ⊕
// (A⊗ X †)†

commutes.
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Next step: Unitary structure

Define †-LDC

Define unitary isomorphisms

The usual definition of unitary maps

(f † : B† → A† = f −1 : B −→ A)

only works when the † functor is stationary on objects.
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Unitary structure

An isomix †-LDC has unitary structure in case there is a small
class of objects called unitary objects such that:

Every unitary object, A ∈ U , is in the core;

The dagger of a unitary object is unitary;

Each unitary object A ∈ U comes equipped with an

isomorphism, the unitary structure of A,
A

A†
: A

ϕA−→ A† such

that

A†

A††

A†

A††
=

= ι

A

A†

A††

A

A††

ϕA† = ((ϕA)−1)† (ϕAϕA†) = ι
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Unitary structure (cont.)

>,⊥ are unitary objects with:

ϕ⊥ = mλ> ϕ> = m−1λ⊥

If A and B are unitary objects then A⊗ B and A⊕ B are
unitary objects such that:

(ϕA ⊗ ϕB)λ⊗ = mx ϕA⊕B : A⊗ B −→ (A⊗ B)†

ϕA⊗Bλ
−1
⊕ = mx(ϕA ⊕ ϕB) : A⊗ B −→ A† ⊕ B†

⊥ > =

⊥

>

m =

ϕ⊥λ
−1
> = m (ϕA ⊗ ϕB)λ⊗ = mx ϕA⊕B
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Mix Unitary Category (MUC)

An iso-mix †-LDC with unitary structure is a mix unitary
category (MUC).

The unitary objects of a MUC, X, determine a full subcategory,
UCore(X) ⊆ X, called the unitary core. The unitary core is a
unitary category.

Remark: In order to obtain the right functorial properties a
(general) MUC is an isomix †-category with a full and faithful
structure preserving inclusion of a unitary category.
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Unitary isomorphisms

Suppose A and B are unitary objects. An isomorphism A
f−→ B is

said to be a unitary isomorphism if the following diagram
commutes:

A

B

B†

A†

f

f

=

A

A†

f ϕB f
† = ϕA

Lemma: In a MUC

f † is a unitary map iff f is;
f ⊗ g and f ⊕ g are unitary maps whenever f and g are.
a⊗, a⊕, c⊗, c⊕, δ

L,m, and mx are unitary isomorphisms.
λ⊗, λ⊕, λ>, λ⊥, and ι are unitary isomorphisms.
ϕA is a unitary isomorphisms for for all unitary objects A.
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Five examples of MUCs

†-KCC These give a compact closed MUC with a stationary
dagger and trivial unitary structure

FFVecC “Framed” vector spaces (vector spaces with a chosen
basis) is a compact closed MUC with non-trivial
unitary structure.

FinC C-modules over finiteness spaces is a ∗-autonomous
category: maps are infinite dimensional matrices with
composition controlled (by types) to avoid infinite
sums. The unitary subcategory is just Mat(C).

Bicomp(X) The bicompletion of a †-KCC, X is a mix
†-∗-autonomous category with unitary objects in X.

ChuY(I ) The Chu construction on a symmetric monoidal
closed category with conjugation, with dualizing
object the unit I , gives a MUC.
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Next step: CP∞ construction on MUCs

Define †-LDC

Define unitary isomorphisms

Examples

CP∞ construction on MUC
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Krauss maps

In a MUC, a map f : A −→ U ⊕ B of X where U is a unitary object
is called a Krauss map f : A→U B. U is called the ancillary
system of f .

In a MUC, quantum processes are represented using Krauss maps
as follows:

f

:=

f

f

A

U

U†

A†

B

B†
analogous to

A

f

f †

A†

U in †-SMCs.

A
f−→ U ⊕ B

mx−1

−−−→ U ⊗ B
ϕ⊗1−−→ U† ⊗ B

U† ⊗ B†
λ⊗−−→ (U ⊕ B)†

f †−→ A†
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Combinator and test maps

Two Krauss maps f : A→U1 B and g : A→U2 B are equivalent,
f ∼ g , if for all test maps h : B ⊗ X → V where V is an unitary
object, the following equation holds:

h

h

f

=
h

h

g

Lemma: Let f : A→U1 B and f ′ : A→U2 B be Krauss maps such

that U1
α−→ U2 is a unitary isomorphism with f ′ = (α⊕ 1)f , then

f ∼ f ′. In this case, f is said to be unitarily isomorphic to f ′.
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CP∞ construction

Given a MUC, X, define CP∞(X) to have:

Objects: as of X
Maps:

CP∞(X)(A,B) := {f ∈ X(A,U⊕B)|U ∈ X and U is unitary}/ ∼

Composition:
f

g

Identity: A
(uL⊕)

−1

−−−−→ ⊥⊕ A ∈ X
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Tensor and Par

CP∞(X) inherits tensor and par from X:

f ⊗̂g := f g f ⊕̂g := f g

>̂ := > ⊥̂ := ⊥
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Linear adjoints

Suppose X is a LDC and A,B ∈ X. Then, B is left linear adjoint
to A (η, ε) : B aa A, if there exists

η : > → B ⊕ A ε : A⊗ B → ⊥

such that the following triangle equalities hold:

B
(uL⊗)

−1

// >⊗ B
η⊗1// (B ⊕ A)⊗ B

∂R
��

B B ⊕⊥
uR⊕

oo B ⊕ (A⊗ B)
1⊕ε

oo

A
(uR⊗)

−1

// A⊗> 1⊗η// A⊗ (B ⊕ A)

∂L
��

A ⊥⊕ A
uL⊕

oo (A⊗ B)⊕ A
ε⊕1

oo

η

ε

=
ε

η

=

When every object of a MUC has a linear adjoint, it is called a
∗- MUC.
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Unitary linear adjoints

A unitary linear adjoint (η, ε) : A aa u B is a linear adjoint, A aa B
with A and B being unitary objects satisfying:

ηA(ϕA ⊕ ϕB)c⊕ = λ>ε
†λ−1⊕ (ϕA ⊗ ϕB)λ⊗η

†
A = c⊗εAλ⊥

ε
=

η

λ>ε
†λ−1⊕ = ηc⊕(ϕA ⊕ ϕB)

A MUC in which every unitary object has a unitary linear adjoint is
called a MUdC.
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Dagger functor for CP∞(X)

Proposition: If X is a ∗-MUdC, then CP∞(X) is a ∗-MUdC.

Sketch of proof: Suppose f : A −→ U ⊕ B and (η, ε) : V aa u U

† : CP∞(X)op −→ CP∞(X);
f
7→

f

ε

V †

B†

A†

Unitary structure and unitary linear adjoints are preserved due to
the functoriality of Q.
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Summary

Generalized one important construction of categorical quantum
mechanics to MUCs!

1 Mix Unitary Categories are †-LDCs with unitary subcategory.

2 There is a diagrammatic calculus for MUCs.

3 When unitary objects have unitary linear adjoint, then the
unitary core is a dagger compact closed category.

4 CP∞ on MUCs generalizes CP∞ construction on †-SMCs
(auxillary systems in the unitary core).

5 The construction is functorial and produces a *-MUdC when
every (unitary) object has a (unitary) linear adjoint.
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