Extension creation under base change¹

Ross Street

Macquarie University

8 - 14 July 2018: University of Azores, Ponta Delgada

¹joint with Branko Nikolić

Ross Street (Macquarie University)

- ▶ By now there are numerous variants of category theory; for example,
 - categories enriched in a fixed monoidal category or bicategory,
 - categories parametrized over a fixed category,
 - stacks on a site,
 - categories with given extra properties or structure,
 - the derivators of homotopy theory,
 - quasicategories (= weak Kan complexes = $(\infty, 1)$ -categories).

- > By now there are numerous variants of category theory; for example,
 - categories enriched in a fixed monoidal category or bicategory,
 - categories parametrized over a fixed category,
 - stacks on a site,
 - categories with given extra properties or structure,
 - the derivators of homotopy theory,
 - quasicategories (= weak Kan complexes = $(\infty, 1)$ -categories).
- ▶ There can be different morphism choices: functors, modules,

- > By now there are numerous variants of category theory; for example,
 - categories enriched in a fixed monoidal category or bicategory,
 - categories parametrized over a fixed category,
 - stacks on a site,
 - categories with given extra properties or structure,
 - the derivators of homotopy theory,
 - quasicategories (= weak Kan complexes = $(\infty, 1)$ -categories).
- ▶ There can be different morphism choices: functors, modules,
- In all cases, each class forms a bicategory. The surprise is how penetrating this observation is! Many specific features of each example can be understood through bicategorical concepts.

- > By now there are numerous variants of category theory; for example,
 - categories enriched in a fixed monoidal category or bicategory,
 - categories parametrized over a fixed category,
 - stacks on a site,
 - categories with given extra properties or structure,
 - the derivators of homotopy theory,
 - quasicategories (= weak Kan complexes = $(\infty, 1)$ -categories).
- ▶ There can be different morphism choices: functors, modules,
- In all cases, each class forms a bicategory. The surprise is how penetrating this observation is! Many specific features of each example can be understood through bicategorical concepts.
- ► The bicategorical concept of left extension is extremely expressive. This is well documented.

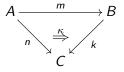
- ▶ By now there are numerous variants of category theory; for example,
 - categories enriched in a fixed monoidal category or bicategory,
 - categories parametrized over a fixed category,
 - stacks on a site,
 - categories with given extra properties or structure,
 - the derivators of homotopy theory,
 - quasicategories (= weak Kan complexes = $(\infty, 1)$ -categories).
- ▶ There can be different morphism choices: functors, modules,
- In all cases, each class forms a bicategory. The surprise is how penetrating this observation is! Many specific features of each example can be understood through bicategorical concepts.
- The bicategorical concept of left extension is extremely expressive. This is well documented.
- Little has been done on preservation and reflection of left extensions by morphisms between bicategories.

A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- ▶ By now there are numerous variants of category theory; for example,
 - categories enriched in a fixed monoidal category or bicategory,
 - categories parametrized over a fixed category,
 - stacks on a site,
 - categories with given extra properties or structure,
 - the derivators of homotopy theory,
 - quasicategories (= weak Kan complexes = $(\infty, 1)$ -categories).
- ▶ There can be different morphism choices: functors, modules,
- In all cases, each class forms a bicategory. The surprise is how penetrating this observation is! Many specific features of each example can be understood through bicategorical concepts.
- The bicategorical concept of left extension is extremely expressive. This is well documented.
- Little has been done on preservation and reflection of left extensions by morphisms between bicategories.
- ► The goal is to explain how this can happen in comonadic situations.

Left extensions

Please remember this diagram for three more frames!! A diagram



in a bicategory \mathcal{N} exhibits k as a *left extension* of n along m when, for all $g: B \to C$, the function

$$\mathcal{N}(B,C)(k,g) \longrightarrow \mathcal{N}(A,C)(n,g \circ m) ,$$
$$(k \stackrel{\theta}{\Rightarrow} g) \mapsto (n \stackrel{\kappa}{\Rightarrow} k \circ m \stackrel{\theta \circ m}{\Longrightarrow} g \circ m)$$

is a bijection. Such k is unique up to a unique isomorphism: write

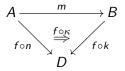
$$k=\ln(m,n).$$

In his thesis, Dubuc suggested "Lan" as a contraction of "left Kan".

3 / 15

Respecting left extensions

The left extension is *respected* by a morphism $f: C \rightarrow D$ when the diagram



exhibits $f \circ k$ as a left extension of $f \circ n$ along m; symbolically,

 $f \circ \operatorname{lan}(m, n) \cong \operatorname{lan}(m, f \circ n)$.

Right adjoints as left extensions

Here is what Dubuc called "The Formal Adjoint Functor Theorem".

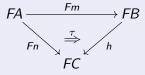
Proposition

A morphism $m: A \to B$ in a bicategory has a right adjoint if and only if the identity of A has a left extension $lan(m, 1_A)$ along m which is respected by m. In that case, $m^* = lan(m, 1_A)$ is the right adjoint and it is respected by all morphisms $f: A \to D$; that is, $lan(m, f) = f \circ m^*$.

Creation of left extensions

Definition

A lax functor $F: \mathcal{N} \to \mathcal{M}$ creates left extensions when, given morphisms $m: A \to B$ and $n: A \to C$ in \mathcal{N} and a diagram



in \mathscr{M} which exhibits $h = \operatorname{lan}(Fm, Fn)$, there exists a diagram that you all remember and isomorphism $h \cong Fk$ unique up to isomorphism with

$$F\kappa = (Fn \xrightarrow{\tau} h \circ Fm \cong Fk \circ Fm \xrightarrow{F_2} F(k \circ m));$$

moreover, the remembered diagram must exhibit k = lan(m, n).

 Clearly pseudofunctors which are local equivalences create left extensions.

Image: Image:

э

Remarks

- Clearly pseudofunctors which are local equivalences create left extensions.
- Pseudofunctors which create left extensions reflect the existence of right adjoints.

э

Remarks

- Clearly pseudofunctors which are local equivalences create left extensions.
- Pseudofunctors which create left extensions reflect the existence of right adjoints.
- Left extensions in a one-object bicategory Σ𝒴 are internal right cohoms in the monoidal category 𝒴. So, for a monoidal functor U: 𝒴 → 𝒴, to say ΣU: Σ𝒴 → Σ𝒴 creates left extensions is to say U: 𝒴 → 𝒴 creates right cohoms.

- Some references here are
 - (i) [Bruguières-Lack-Virelizier: Advances 227(2) (2011)],
 - (ii) [Chikhladze-Lack-St: TAC 24(19) (2010)] and
 - (iii) [St: APCS 6(2) (1998)].

- Some references here are
 - (i) [Bruguières-Lack-Virelizier: Advances 227(2) (2011)],
 - (ii) [Chikhladze-Lack-St: TAC 24(19) (2010)] and
 - (iii) [St: APCS 6(2) (1998)].
- For a monoidal comonad (D, ε: D → 1, δ: D → D², D₀: I → DI, D₂: DX ⊗ DY → D(X ⊗ Y)) on a monoidal category 𝒱, the fusion map is the natural transformation with components

$$v_{Y,DX} = (DY \otimes DX \xrightarrow{1 \otimes \delta} DY \otimes D^2X \xrightarrow{D_2} D(Y \otimes DX))$$
.

- Some references here are
 - (i) [Bruguières-Lack-Virelizier: Advances 227(2) (2011)],
 - (ii) [Chikhladze-Lack-St: TAC 24(19) (2010)] and
 - (iii) [St: APCS 6(2) (1998)].
- For a monoidal comonad (D, ε: D → 1, δ: D → D², D₀: I → DI, D₂: DX ⊗ DY → D(X ⊗ Y)) on a monoidal category 𝒱, the fusion map is the natural transformation with components

$$v_{Y,DX} = (DY \otimes DX \xrightarrow{1 \otimes \delta} DY \otimes D^2X \xrightarrow{D_2} D(Y \otimes DX))$$
.

► The monoidal comonad D on 𝒴 is Hopf when the fusion map is invertible.

- Some references here are
 - (i) [Bruguières-Lack-Virelizier: Advances 227(2) (2011)],
 - (ii) [Chikhladze-Lack-St: TAC 24(19) (2010)] and
 - (iii) [St: APCS 6(2) (1998)].
- For a monoidal comonad (D, ε: D → 1, δ: D → D², D₀: I → DI, D₂: DX ⊗ DY → D(X ⊗ Y)) on a monoidal category 𝒱, the fusion map is the natural transformation with components

$$v_{Y,DX} = (DY \otimes DX \xrightarrow{1 \otimes \delta} DY \otimes D^2X \xrightarrow{D_2} D(Y \otimes DX))$$
.

- The monoidal comonad D on \mathscr{V} is Hopf when the fusion map is invertible.
- ▶ Examples include tensoring $D = H \otimes -$ with a Hopf monoid H in a braided \mathscr{V} .

Coalgebras for Hopf monoidal comonads

While not made explicit in reference (ii) of the last frame, the constructions are there for the next result in which D-Coalg is the monoidal category of Eilenberg-Moore D-coalgebras.

Theorem

If D is a Hopf monoidal comonad on a monoidal category $\mathscr V$ then the underlying functor

 $\mathrm{U}\colon D\operatorname{-Coalg} \longrightarrow \mathscr{V}$

creates cohoms.

Easy examples

Let DGAb denote the category of differential graded (that is, chain complexes of) abelian groups. The strong monoidal comonadic functors

 $\Sigma\colon \mathrm{GAb}\to\mathrm{Ab}$, $\mathrm{U}\colon\mathrm{DGAb}\to\mathrm{GAb}$ and $\Sigma\colon\mathrm{DGAb}\to\mathrm{Ab}$

are all Hopf monoidal comonadic.

Therefore they reflect dualizability.

The dualizable objects of Ab are of course the finitely generated free abelian groups. So, for example, a chain complex of the form

$$\cdots \to 0 \to \mathbb{Z} \xrightarrow{\left[\begin{array}{c}3\\-2\end{array}\right]} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\left[\begin{array}{c}2&3\end{array}\right]} \mathbb{Z} \to 0 \to 0 \to \ldots$$

has a dual in DGAb.

Creative change of base

In the situation of the last Theorem, put $\mathscr{W} = D$ -Coalg and assume \mathscr{V} is cocomplete and closed. Then we have the bicategory \mathscr{V} -Mod of \mathscr{V} -enriched categories and modules (or distributors or profunctors) between them. Also, we have \mathscr{W} -Mod.

Theorem

If the right adjoint to ${\rm U}$ preserves colimits, the change of base pseudofunctor

 $U_* \colon \mathscr{W}\operatorname{-Mod} \longrightarrow \mathscr{V}\operatorname{-Mod}$

creates left extensions. In particular, a \mathscr{W} -module $M: \mathscr{K} \to \mathscr{A}$ is Cauchy if and only if the \mathscr{V} -module $U_*M: U_*\mathscr{K} \to U_*\mathscr{A}$ is.

Incidentally, the right adjoints of all of $\Sigma\colon\mathrm{GAb}\to\mathrm{Ab},\,\mathrm{U}\colon\mathrm{DGAb}\to\mathrm{GAb}$ and $\Sigma\colon\mathrm{DGAb}\to\mathrm{Ab}$ have further right adjoints.

▶ A DG-module $M : \mathscr{I} \to \mathscr{A}$ from the unit DG-category \mathscr{I} to a small DG-category \mathscr{A} amounts to a DG-functor $M : \mathscr{A}^{\mathrm{op}} \to \mathrm{DGAb}$.

3

- A DG-module M : 𝒴 → 𝒴 from the unit DG-category 𝒴 to a small DG-category 𝒴 amounts to a DG-functor M: 𝒴^{op} → DGAb.
- ► The Cauchy completion *QA* of *A* (following Lawvere) is the full sub-DG-category of the presheaf DG-category [*A*^{op}, DGAb] consisting of those *M* which have a right adjoint module; that is, the DG-functor [*A*^{op}, DGAb](*M*, -) preserves small weighted colimits.

- ▶ A DG-module $M : \mathscr{I} \to \mathscr{A}$ from the unit DG-category \mathscr{I} to a small DG-category \mathscr{A} amounts to a DG-functor $M : \mathscr{A}^{\mathrm{op}} \to \mathrm{DGAb}$.
- ► The Cauchy completion *QA* of *A* (following Lawvere) is the full sub-DG-category of the presheaf DG-category [*A*^{op}, DGAb] consisting of those *M* which have a right adjoint module; that is, the DG-functor [*A*^{op}, DGAb](*M*, -) preserves small weighted colimits.
- ► DG-Morita Theorem:

 $[\mathscr{A}^{\mathrm{op}},\mathrm{DGAb}]\simeq [\mathscr{B}^{\mathrm{op}},\mathrm{DGAb}] \text{ if and only if } \mathscr{QA}\simeq \mathscr{QB}$

- A DG-module M : 𝒴 → 𝒴 from the unit DG-category 𝒴 to a small DG-category 𝒴 amounts to a DG-functor M: 𝒴^{op} → DGAb.
- ► The Cauchy completion *QA* of *A* (following Lawvere) is the full sub-DG-category of the presheaf DG-category [*A*^{op}, DGAb] consisting of those *M* which have a right adjoint module; that is, the DG-functor [*A*^{op}, DGAb](*M*, -) preserves small weighted colimits.
- ► DG-Morita Theorem:

 $[\mathscr{A}^{\mathrm{op}},\mathrm{DGAb}]\simeq [\mathscr{B}^{\mathrm{op}},\mathrm{DGAb}] \text{ if and only if } \mathscr{QA}\simeq \mathscr{QB}$

The Theorem implies that a DG-module M : 𝒴 → 𝒴 is Cauchy if and only if the additive module Σ_{*}M : 𝒴 → Σ_{*}𝒷 is a retract of a finite direct sum of representables in the additive presheaf category on Σ_{*}𝒷.

3

< □ > < □ > < □ > < □ > < □ > < □ >

 Our previous Theorems are instances of a theorem pertaining to the tricategory Caten of [Kelly-Labella-Schmitt-St JPAA 168(1) (2002)].

э

- Our previous Theorems are instances of a theorem pertaining to the tricategory Caten of [Kelly-Labella-Schmitt-St JPAA 168(1) (2002)].
- Objects of Caten are bicategories, morphisms are categories enriched on two sides. These morphisms include lax functors while

 $\operatorname{Caten}(1, \mathscr{V}) = \mathscr{V}\operatorname{-Cat}$.

- Our previous Theorems are instances of a theorem pertaining to the tricategory Caten of [Kelly-Labella-Schmitt-St JPAA 168(1) (2002)].
- Objects of Caten are bicategories, morphisms are categories enriched on two sides. These morphisms include lax functors while

$$\operatorname{Caten}(1, \mathscr{V}) = \mathscr{V}\operatorname{-Cat}$$
.

We show that Caten admits the Eilenberg-Moore construction 𝒞^𝔅 for comonads with underlying 𝔐: 𝒱^𝔅 → 𝒱 actually a pseudofunctor. So

$$\mathscr{U}_* \colon \mathscr{V}^{\mathscr{G}}\text{-}\mathrm{Cat} \to \mathscr{V}\text{-}\mathrm{Cat}$$

is comonadic.

- Our previous Theorems are instances of a theorem pertaining to the tricategory Caten of [Kelly-Labella-Schmitt-St JPAA 168(1) (2002)].
- Objects of Caten are bicategories, morphisms are categories enriched on two sides. These morphisms include lax functors while

$$\operatorname{Caten}(1, \mathscr{V}) = \mathscr{V}\operatorname{-Cat}$$
 .

We show that Caten admits the Eilenberg-Moore construction 𝒞^𝔅 for comonads with underlying 𝔐: 𝒱^𝔅 → 𝒱 actually a pseudofunctor. So

$$\mathscr{U}_* \colon \mathscr{V}^{\mathscr{G}}\text{-}\mathrm{Cat} \to \mathscr{V}\text{-}\mathrm{Cat}$$

is comonadic.

► We adapt the Beck Comonadicity Theorem internally to Caten.

- Our previous Theorems are instances of a theorem pertaining to the tricategory Caten of [Kelly-Labella-Schmitt-St JPAA 168(1) (2002)].
- Objects of Caten are bicategories, morphisms are categories enriched on two sides. These morphisms include lax functors while

$$\operatorname{Caten}(1,\mathscr{V}) = \mathscr{V}\operatorname{-Cat}$$
 .

We show that Caten admits the Eilenberg-Moore construction V^G for comonads with underlying U: V^G → V actually a pseudofunctor. So

$$\mathscr{U}_* \colon \mathscr{V}^{\mathscr{G}}\text{-}\mathrm{Cat} \to \mathscr{V}\text{-}\mathrm{Cat}$$

is comonadic.

- ► We adapt the Beck Comonadicity Theorem internally to Caten.
- ► We produce a fusion map v for any comonad (𝒴,𝒴) in Caten and define 𝒴 to be left Hopf when v is invertible. Indeed, if 𝒴 is Hopf so is the comonad generated by 𝒴_{*} and its right adjoint.

The general theorems

Theorem

If \mathscr{G} is a left Hopf comonad on the bicategory \mathscr{V} in Caten then the pseudofunctor $\mathscr{U}: \mathscr{V}^{\mathscr{G}} \to \mathscr{V}$ creates left extensions.

Theorem

If $\mathscr G$ is a comonad on the locally cocomplete bicategory $\mathscr V$ in Caten then the $\mathscr U$ -induced pseudofunctor

 $\widetilde{\mathscr{U}} \colon \mathscr{V}^{\mathscr{G}}\operatorname{\!-Mod} \to \mathscr{V}\operatorname{\!-Mod}$

is comonadic in CATEN via a comonad $\widetilde{\mathscr{G}}$ on \mathscr{V} -Mod. If \mathscr{G} is left Hopf comonad and the right adjoint to \mathscr{U} preserves local colimits then the comonad $\widetilde{\mathscr{G}}$ is also Hopf.

Thank You

 \odot

Ross Street (Macquarie University)

Extension creation

8-14 July 2018 15 / 15

æ

イロト イヨト イヨト イヨト