

Hopf Categories

Eliezer Batista, Stefaan Caenepeel, Timmy Fieremans, Joost Vercruysse

Ponta Delgada, July 9, 2018

 $\mathcal{V} = (\mathcal{V}, \otimes, k)$ is a strict monoidal category, X is a class. New monoidal category $(\mathcal{V}(X), \bullet, J)$

• An object is a family of objects M in \mathcal{V} indexed by $X \times X$:

$$M=(M_{x,y})_{x,y\in X}.$$

morphism φ : M → N: family of morphisms φ_{x,y} : M_{x,y} → N_{x,y}
(M • N)_{x,y} = M_{x,y} ⊗ N_{x,y}, J_{x,y} = ke_{x,y}
functor (-)^{op} : V(X) → V(X): V^{op}_{y,x} = V_{x,y}, φ^{op}_{y,x} = φ_{x,y}.

$\mathcal{V}\text{-}\mathsf{category}\ A$

- class X
- ▶ multiplication morphisms $m = m_{x,y,z}$: $A_{x,y} \otimes A_{y,z} \rightarrow A_{x,z}$
- unit morphisms η_x : $J_{x,x} = ke_{x,x} \rightarrow A_{x,x}$

with unit and associativity conditions. J is a \mathcal{V} -category.

- $(\mathcal{V}, \otimes, k) = (\underline{Sets}, \times, \{*\})$: ordinary categories
- $(\mathcal{V}, \otimes, k) = (\mathcal{M}_k, \otimes, k)$: k-linear categories

- ► If V is braided: tensor product in V(X) of two V-categories is again a V-category.
- Fix a class X: V-X-categories; V-X-functor is functor that is the identity on objects.

Assume that \mathcal{V} is braided.

 $\underline{C}(\mathcal{V})$ is the category of coalgebras in \mathcal{V} .

We consider $\underline{\mathcal{C}}(\mathcal{V})\text{-categories},$ aka semi-Hopf $\mathcal{V}\text{-categories}.$ Description

Coalgebra in $\mathcal{V}(X)$ is a family of coalgebras $(C_{x,y})$. Structure maps: $\Delta_{x,y}$: $C_{x,y} \rightarrow C_{x,y} \otimes C_{x,y}$ and $\varepsilon_{x,y}$: $C_{x,y} \rightarrow J_{x,y} = ke_{x,y}$

Proposition

A semi-Hopf V-category with underlying class X consists of $A \in \mathcal{V}(X)$ which is

- ► a V-category
- a coalgebra in $\mathcal{V}(X)$
- the morphisms Δ_{x,y} and ε_{x,y} define V-X-functors Δ: A → A • A and ε: A → J.

 $\underline{\mathcal{C}}(\mathcal{V})$ -categories with one object correspond to bialgebras in \mathcal{V}

op and cop

ор

If A is a V-category, then $A^{\rm op}$ is also a V-category: multiplication morphisms

$$m_{x,y,z}^{\mathrm{op}} = m_{z,y,x} \circ c_{\mathcal{A}_{y,x},\mathcal{A}_{x,y}} : A_{x,y}^{\mathrm{op}} \otimes A_{y,z}^{\mathrm{op}} = \mathcal{A}_{y,x} \otimes \mathcal{A}_{z,y} \to \mathcal{A}_{x,z}^{\mathrm{op}} = \mathcal{A}_{z,x}$$

and unit morphisms $\eta_x^{\text{op}} = \eta_x$. If A is a $\underline{C}(\mathcal{V})$ -category, then A^{op} is also a $\underline{C}(\mathcal{V})$ -category, with coalgebra structure maps $\Delta_{x,y}^{\text{op}} = \Delta_{y,x}$ and $\varepsilon_{x,y}^{\text{op}} = \varepsilon_{y,x}$. \underline{cop}

Let C be a coalgebra in $\mathcal{V}(X)$. The coopposite coalgebra C^{cop} is equal to C as an object of $\mathcal{V}(X)$, with comultiplication maps

$$\Delta^{\mathrm{cop}}_{x,y} = c_{C_{x,y},C_{x,y}} \circ \Delta_{x,y}: \ C_{x,y} \to C_{x,y} \otimes C_{x,y},$$

and counit maps $\varepsilon_{x,y}$.

If A is a $\underline{C}(\mathcal{V})$ -category, then A^{cop} is also a $\underline{C}(\mathcal{V})$ -category; the \mathcal{V} -category structures on A and A^{cop} coincide.

Definition

A Hopf \mathcal{V} -category is a semi-Hopf \mathcal{V} -category A together with a morphism $S : A \to A^{\mathrm{op}}$ in $\mathcal{V}(X)$ $(S_{x,y} : A_{x,y} \to A_{y,x})$ such that

$$\begin{split} m_{x,y,x} \circ (A_{x,y} \otimes S_{x,y}) \circ \Delta_{x,y} &= \eta_x \circ \varepsilon_{x,y} : A_{x,y} \to A_{x,x}; \\ m_{y,x,y} \circ (S_{x,y} \otimes A_{x,y}) \circ \Delta_{x,y} &= \eta_y \circ \varepsilon_{x,y} : A_{x,y} \to A_{y,y}, \end{split}$$

for all $x, y \in X$.

Over \mathcal{M}_k : for $h \in A_{x,y}$:

$$h_{(1)}S_{x,y}(h_{(2)}) = \varepsilon_{x,y}(h)1_x$$
; $S_{x,y}(h_{(1)})h_{(2)} = \varepsilon_{x,y}(h)1_y$.

A Hopf \mathcal{V} -category with one object is a Hopf algebra in \mathcal{V} .

$$\mathcal{V} = (\underline{\text{Sets}}, \times, \{*\}).$$

Every set is in a unique way a coalgebra in Sets.
 $\mathcal{C}(\underline{\text{Sets}}) = \underline{\text{Sets}}. \ \mathcal{C}(\underline{\text{Sets}})$ -categories = categories.

Proposition

A Hopf <u>Sets</u>-category is the same thing as a groupoid (i.e. a category in which all morphisms are isomorphisms).

Theorem

Let A be a Hopf \mathcal{V} -category. The antipode S is a morphism of $\underline{C}(\mathcal{V})$ -categories $H \to H^{\mathrm{opcop}}$.

Proposition

Let A be a k-linear Hopf category. For $x, y \in X$, the following assertions are equivalent.

1.
$$S_{x,y}(h_{(2)})h_{(1)} = \varepsilon_{x,y}(h)1_y$$
, for all $h \in A_{x,y}$;
2. $h_{(2)}S_{x,y}(h_{(1)}) = \varepsilon_{x,y}(h)1_x$, for all $h \in A_{x,y}$;
3. $S_{y,x} \circ S_{x,y} = A_{x,y}$.

Let A and B be Hopf V-categories. A $\underline{C}(V)$ -functor $f : A \to B$ is called a Hopf V-functor if

$$S^{B}_{f(x),f(y)} \circ f_{x,y} = f_{y,x} \circ S^{A}_{x,y},$$
(1)

for all $x, y \in X$.

Proposition

Let A and B be Hopf \mathcal{V} -categories. If $f : A \to B$ is a $\underline{C}(\mathcal{V})$ -functor, then it is also a Hopf \mathcal{V} -functor.

Let A be a V-category. A left A-module is an object M in $\mathcal{V}(X)$ together with a family of morphisms in \mathcal{V}

$$\psi = \psi_{x,y,z} : A_{x,y} \otimes M_{y,z} \to M_{x,z}$$

+ associativity and unit conditions.

A morphism $\varphi: M \to N$ in $\mathcal{V}(X)$ between left A-modules is called left A-linear if

$$\varphi_{\mathsf{x},\mathsf{z}} \circ \psi_{\mathsf{x},\mathsf{y},\mathsf{z}} = \psi_{\mathsf{x},\mathsf{y},\mathsf{z}} \circ (\mathsf{A}_{\mathsf{x},\mathsf{y}} \otimes \varphi_{\mathsf{y},\mathsf{z}})$$

Category: $_{A}\mathcal{V}(X)$

Proposition

Let A be a $\mathcal{C}(\mathcal{V})$ -category. Then there is a monoidal structure on $_A\mathcal{V}(X)$ such that the forgetful functor $_A\mathcal{V}(X) \to \mathcal{V}(X)$ is monoidal.

Bewijs.

(in case $\mathcal{V} = \mathcal{M}_k$). We need actions

$$A_{x,y}\otimes M_{y,z}\otimes N_{y,z} o M_{x,z}\otimes N_{x,z} \ \, ext{and} \ \, A_{x,y}\otimes ke_{y,z} o ke_{x,z}.$$

Take

$$a \cdot (m \otimes n) = a_{(1)}m \otimes a_{(2)}n$$
 and $a \cdot 1 = \varepsilon(a)$

Duality: \mathcal{V} -opcategories

Hopf categories and Hopf group (co)algebras

Hopf categories and weak Hopf algebras

Proposition

Let A be a k-linear Hopf category, with |A| = X a finite set. Then $A = \bigoplus_{x,y \in X} A_{x,y}$ is a weak Hopf algebra.

Example

Take a groupoid with finitely many objects; apply the linearization functor to obtain a *k*-linear Hopf category; in packed form it becomes the groupoid algebra, which is well-known to be a weak Hopf algebra.

Proposition

Let C be a k-linear Hopf opcategory, with |C| = X a finite set. Then $C = \bigoplus_{x,y \in X} C_{x,y}$ is a weak Hopf algebra.

Hopf categories and duoidal categories

- M. Aguiar, S. Mahajan, "Monoidal functors, species and Hopf algebras", CRM Monogr. ser. 29, Amer. Math. Soc. Providence, RI, (2010).
- G. Böhm, Y. Chen, L. Zhang, "On Hopf monoids in duoidal categories", J. Algebra 394 (2013), 139-172.

Definition

A duoidal category is a category ${\mathcal M}$ with

- ▶ monoidal structure (⊙, I)
- monoidal structure (\bullet, J)
- $\blacktriangleright \ \delta: \ I \to I \bullet I$
- $\blacktriangleright \ \varpi: \ J \odot J \to J$
- $\blacktriangleright \ \tau: I \to J$
- $\blacktriangleright \zeta_{A,B,C,D} : (A \bullet B) \odot (C \bullet D) \to (A \odot C) \bullet (B \odot D)$
- (J, ϖ, τ) is an algebra in (\mathcal{M}, \odot, I)
- (I, δ, τ) is a coalgebra in $(\mathcal{M}, \bullet, J)$
- 6 more commutative diagrams (2 associativity and 4 unit)

Hopf categories and duoidal categories

Let X be a set. $(\mathcal{M}_k(X), \bullet, J)$ is a monoidal category. Second monomial structure:

$$M \odot N)_{x,z} = \bigoplus_{y \in X} M_{x,y} \otimes N_{y,z}$$
$$I_{x,y} = \begin{cases} ke_{x,x} & \text{if } x = y\\ 0 & \text{if } x \neq y \end{cases}$$

• τ : $I \rightarrow J$: natural inclusion

• $\delta: I \rightarrow I \bullet I = I$: identity map

$$\begin{array}{l} \blacktriangleright (J \odot J)_{x,y} = \bigoplus_{z \in X} ke_{x,z} \otimes ke_{z,y} = \bigoplus_{z \in X} kze_{x,y} = kXe_{x,y}.\\ \varpi : \ J \odot J \rightarrow J\\ \varpi_{x,y} : \ \bigoplus_{z \in X} kze_{x,y} \rightarrow ke_{x,y}\\ \varpi_{x,y} (\sum_{z \in X} \alpha_z ze_{x,y}) = \sum_{z \in X} \alpha_z e_{x,y}. \end{array}$$

$$((M \bullet N) \odot (P \bullet Q))_{x,y} = \bigoplus_{z \in X} M_{x,z} \otimes N_{x,z} \otimes P_{z,y} \otimes Q_{z,y};$$
$$((M \odot P) \bullet (N \odot Q))_{x,y} = \bigoplus_{u,v \in X} M_{x,u} \otimes P_{u,y} \otimes N_{x,v} \otimes Q_{v,y},$$

 $\zeta_{M,N,P,Q,\mathbf{x},y}$ is the map switching the second and third tensor factor, followed by the natural inclusion.

Theorem

Let X be a set. $(\mathcal{M}_k(X), \odot, I, \bullet, J, \delta, \varpi, \tau, \zeta)$ is a duoidal category.

Definition

Let $(\mathcal{M}, \odot, I, \bullet, J, \delta, \varpi, \tau, \zeta)$ be a duoidal category. A bimonoid is an object A, together with an algebra structure (μ, η) in (\mathcal{M}, \odot, I) and a coalgebra structure (Δ, ε) in $(\mathcal{M}, \bullet, J)$ subject to the compatibility conditions

$$\begin{split} \Delta \circ \mu &= (\mu \bullet \mu) \circ \zeta \circ (\Delta \odot \Delta); \\ \varpi \circ (\varepsilon \odot \varepsilon) &= \varepsilon \circ \mu; \\ (\eta \bullet \eta) \circ \delta &= \Delta \circ \eta; \\ \varepsilon \circ \eta &= \tau. \end{split}$$

Theorem

Let X be a set, and let $A \in \mathcal{M}_k(X)$. We have a bijective correspondence between bimonoid structures on A over the duoidal category $(\mathcal{M}_k(X), \odot, I, \bullet, J, \delta, \varpi, \tau, \zeta)$ from and k-linear semi-Hopf category structures on A.

Definition

A is a k-linear semi-Hopf category. A Hopf module over A is $M \in \mathcal{M}_k(X)$ such that

- $M \in \mathcal{M}_k(X)_A$, with structure maps $\psi_{x,y,z}$
- M ∈ M_k(X)^A : M is a right comodule over A as a coalgebra in M_k(X), with structure maps ρ_{x,y}

•
$$\rho_{x,z}(ma) = m_{[0]}a_{(1)} \otimes m_{[1]}a_{(2)}$$

Category of Hopf modules: $\mathcal{M}_k(X)^A_A$. New category: $\mathcal{D}(X)$ consisting of families of *k*-modules $N = (N_x)_{x \in X}$ indexed by *X*.

An adjoint pair of functors

Proposition

We have a pair of adjoint functors (F, G) between the categories $\mathcal{D}(X)$ and $\mathcal{M}_k(X)^A_A$.

Bewijs.

 $F(N)_{x,y} = N_x \otimes A_{x,y}, \text{ with}$ $(n \otimes a)b = n \otimes ab \; ; \; \rho_{x,y}(n \otimes a) = n \otimes a_{(1)} \otimes a_{(2)},$ $G(M) = M^{coA} \in \mathcal{D}(X) \text{ is given by the formula}$ $M_x^{coA} = M_{x,x}^{coA_{x,x}} = \{m \in M_{x,x} \mid \rho_{x,x}(m) = m \otimes 1_x\}.$

Canonical maps:

$$\operatorname{can}_{x,y}^{z}:\ A_{z,x}\otimes A_{x,y}\to A_{z,y}\otimes A_{x,y},\ \operatorname{can}_{x,y}^{z}(a\otimes b)=ab_{(1)}\otimes b_{(2)}.$$

Theorem

For a k-linear semi-Hopf category A with underlying class X, the following assertions are equivalent.

- 1. A is a k-linear Hopf category;
- 2. the pair of adjoint functors (F, G) is a pair of inverse equivalences between the categories $\mathcal{D}(X)$ and $\mathcal{M}_k(X)_A^A$;
- 3. the functor G is fully faithful;
- 4. $\operatorname{can}_{x,y}^{z}$ is an isomorphism, for all $x, y, z \in X$;
- 5. $\operatorname{can}_{x,y}^{x}$ and $\operatorname{can}_{x,y}^{y}$ are isomorphisms, for all $x, y \in X$.

Proposition

Let A be a Hopf category in $\mathcal{M}_{k}^{\mathrm{f}}(X)$. Then A^{*} is a Hopf module. $\rho_{x,y}: A_{x,y}^{*} \to A_{x,y}^{*} \otimes A_{x,y}$:

$$ho_{\mathsf{x},\mathsf{y}}(\mathsf{a}^*) = \sum_i \mathsf{a}^* \mathsf{a}^*_i \otimes \mathsf{a}_i$$

 $\psi_{x,y,z}: A^*_{x,y} \otimes A_{y,z} \to A^*_{x,z}:$

$$\langle a^* - a, b \rangle = \langle a^*, bS_{y,z}(a) \rangle$$

 $\begin{aligned} A_x^{*coA} &= (A_{x,x}^*)^{coA_{x,x}} = \int_{A_{x,x}^*}^{I} \\ &= \{\varphi \in A_{x,x}^* \mid \varphi a^* = \langle a^*, 1_x \rangle \varphi, \text{ for all } a^* \in A_{x,x}^* \} \\ \text{is the space of left integrals on } A_{x,x}. \end{aligned}$

Corollary

For a semi-Hopf category in $\mathcal{M}_k^{\mathrm{f}}(X)$,

$$\alpha_{x,y} = \varepsilon_{x,y}^{A^*}: \ \int_{A^*_{x,x}}^{I} \otimes A_{x,y} \to A^*_{x,y}, \ \ \varepsilon_{x,y}^{A^*}(\varphi \otimes a) = \varphi - a.$$

is an isomorphism, for all x, y.

Proposition

Let A be a Hopf category in $\mathcal{M}_k^{\mathrm{f}}(X)$. The antipode maps $S_{x,y}: A_{x,y} \to A_{y,x}$ are bijective, for all $x, y \in X$.

Let H be k-linear Hopf category. A right H-comodule category consists of

- k-linear category A
- A_{xy} is a right H_{xy} -comodule

•
$$\rho_{xz}(ab) = a_{[0]}b_{[0]} \otimes a_{[1]}b_{[1]}$$
, for $a \in A_{xy}$ and $b \in A_{yz}$
• $\rho_{xx}(1^A_x) = 1^A_x \otimes 1^H_x$

$$B = A^{\mathrm{co}H}$$

Canonical maps:

$$\operatorname{can}_{xy}^{z}:\ A_{zx}\otimes_{B_{x}}A_{xy}\to A_{zy}\otimes H_{xy},\quad \operatorname{can}_{xy}^{z}(a\otimes a')=aa'_{[0]}\otimes a'_{[1]}.$$

If these are isomorphisms: A is H-Galois extension of B.

Hopf-Galois theory: further observations

- Under appropriate flatness assumptions: H-Galois condition gives structure theorem for relative Hopf modules
- Our theory involves coactions by Hopf category (as in Chase-Sweedler); in finite case, one passes to the dual, to get actions by the dual Hopf opcategory. This works
- Paques and Tamusianas (A Galois-Grothendieck-type correspondence for groupoid actions, Algebra Discr. Math. 17 (2014), 80-97) develop Galois theory for actions by groupoids. It does not fit into our picture

Theorem

A finite dimensional Hopf algebra over a field is a Frobenius algebra.

Buckley, Fieremans, Vasilkaopoulou and Vercruysse bring the appropriate generalization to Hopf \mathcal{V} -categories.

Definition

A Frobenius $\mathcal V\text{-}category$ is a $\mathcal V\text{-}category$ that is also a $\mathcal V\text{-}opcategory$ such that

commutes.

- E. Batista, SC, J. Vercruysse, Hopf categories, Algebras Represent. Theory 19 (2016), 1173–1216
- SC, T. Fieremans, Descent and Galois theory for Hopf categories, J. Algebra Appl. 17 (2018) (7), 1850120, 39 p.
- ► M. Buckley, T. Fieremans, C. Vasilakopoulou, J. Vercruysse, A Larson-Sweedler Theorem for Hopf *V*-categories, in progress.