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Enriched category theory

V = (V,⊗, k) is a strict monoidal category, X is a class.
New monoidal category (V(X ), •, J)

I An object is a family of objects M in V indexed by X × X :

M = (Mx ,y )x ,y∈X .

I morphism ϕ : M → N: family of morphisms
ϕx ,y : Mx ,y → Nx ,y

I (M • N)x ,y = Mx ,y ⊗ Nx ,y , Jx ,y = kex ,y

functor (−)op : V(X )→ V(X ): V op
y ,x = Vx ,y , ϕop

y ,x = ϕx ,y .



Enriched category theory

V-category A

I class X

I multiplication morphisms m = mx ,y ,z : Ax ,y ⊗ Ay ,z → Ax ,z

I unit morphisms ηx : Jx ,x = kex ,x → Ax ,x

with unit and associativity conditions. J is a V-category.

I (V,⊗, k) = (Sets,×, {∗}): ordinary categories

I (V,⊗, k) = (Mk ,⊗, k): k-linear categories



Enriched category theory

I If V is braided: tensor product in V(X ) of two V-categories is
again a V-category.

I Fix a class X : V-X -categories; V-X -functor is functor that is
the identity on objects.



Semi-Hopf categories

Assume that V is braided.
C(V) is the category of coalgebras in V.
We consider C(V)-categories, aka semi-Hopf V-categories.
Description
Coalgebra in V(X ) is a family of coalgebras (Cx ,y ).
Structure maps: ∆x ,y : Cx ,y → Cx ,y ⊗ Cx ,y and
εx ,y : Cx ,y → Jx ,y = kex ,y



Semi-Hopf categories

Proposition

A semi-Hopf V-category with underlying class X consists of
A ∈ V(X ) which is

I a V-category

I a coalgebra in V(X )

I the morphisms ∆x ,y and εx ,y define V-X -functors
∆ : A→ A • A and ε : A→ J.

C(V)-categories with one object correspond to bialgebras in V



op and cop

op
If A is a V-category, then Aop is also a V-category: multiplication
morphisms

mop
x ,y ,z = mz,y ,x◦cAy,x ,Ax,y : Aop

x ,y⊗Aop
y ,z = Ay ,x⊗Az,y → Aop

x ,z = Az,x

and unit morphisms ηopx = ηx .
If A is a C(V)-category, then Aop is also a C(V)-category, with
coalgebra structure maps ∆op

x ,y = ∆y ,x and εopx ,y = εy ,x .
cop
Let C be a coalgebra in V(X ). The coopposite coalgebra C cop is
equal to C as an object of V(X ), with comultiplication maps

∆cop
x ,y = cCx,y ,Cx,y ◦∆x ,y : Cx ,y → Cx ,y ⊗ Cx ,y ,

and counit maps εx ,y .
If A is a C(V)-category, then Acop is also a C(V)-category; the
V-category structures on A and Acop coincide.



Hopf categories

Definition

A Hopf V-category is a semi-Hopf V-category A together with a
morphism S : A→ Aop in V(X ) (Sx ,y : Ax ,y → Ay ,x) such that

mx ,y ,x ◦ (Ax ,y ⊗ Sx ,y ) ◦∆x ,y = ηx ◦ εx ,y : Ax ,y → Ax ,x ;

my ,x ,y ◦ (Sx ,y ⊗ Ax ,y ) ◦∆x ,y = ηy ◦ εx ,y : Ax ,y → Ay ,y ,

for all x , y ∈ X .

Over Mk : for h ∈ Ax ,y :

h(1)Sx ,y (h(2)) = εx ,y (h)1x ; Sx ,y (h(1))h(2) = εx ,y (h)1y .

A Hopf V-category with one object is a Hopf algebra in V.



Hopf-categories and groupoids

V = (Sets,×, {∗}).
Every set is in a unique way a coalgebra in Sets.
C(Sets) = Sets. C(Sets)-categories = categories.

Proposition

A Hopf Sets-category is the same thing as a groupoid (i.e. a
category in which all morphisms are isomorphisms).



Hopf-categories: first properties

Theorem

Let A be a Hopf V-category. The antipode S is a morphism of
C(V)-categories H → Hopcop.

Proposition

Let A be a k-linear Hopf category. For x , y ∈ X , the following
assertions are equivalent.

1. Sx ,y (h(2))h(1) = εx ,y (h)1y , for all h ∈ Ax ,y ;

2. h(2)Sx ,y (h(1)) = εx ,y (h)1x , for all h ∈ Ax ,y ;

3. Sy ,x ◦ Sx ,y = Ax ,y .



Hopf-categories: first properties

Let A and B be Hopf V-categories. A C(V)-functor f : A→ B is
called a Hopf V-functor if

SB
f (x),f (y) ◦ fx ,y = fy ,x ◦ SA

x ,y , (1)

for all x , y ∈ X .

Proposition

Let A and B be Hopf V-categories. If f : A→ B is a
C(V)-functor, then it is also a Hopf V-functor.



The representation category

Let A be a V-category. A left A-module is an object M in V(X )
together with a family of morphisms in V

ψ = ψx ,y ,z : Ax ,y ⊗My ,z → Mx ,z

+ associativity and unit conditions.
A morphism ϕ : M → N in V(X ) between left A-modules is called
left A-linear if

ϕx ,z ◦ ψx ,y ,z = ψx ,y ,z ◦ (Ax ,y ⊗ ϕy ,z)

Category: AV(X )



The representation category

Proposition

Let A be a C(V)-category. Then there is a monoidal structure on

AV(X ) such that the forgetful functor AV(X )→ V(X ) is monoidal.

Bewijs.

(in case V =Mk). We need actions

Ax ,y ⊗My ,z ⊗ Ny ,z → Mx ,z ⊗ Nx ,z and Ax ,y ⊗ key ,z → kex ,z .

Take
a · (m ⊗ n) = a(1)m ⊗ a(2)n and a · 1 = ε(a).



Duality: V-opcategories



Hopf categories and Hopf group (co)algebras



Hopf categories and weak Hopf algebras

Proposition

Let A be a k-linear Hopf category, with |A| = X a finite set. Then
A = ⊕x ,y∈XAx ,y is a weak Hopf algebra.

Example

Take a groupoid with finitely many objects; apply the linearization
functor to obtain a k-linear Hopf category; in packed form it
becomes the groupoid algebra, which is well-known to be a weak
Hopf algebra.

Proposition

Let C be a k-linear Hopf opcategory, with |C | = X a finite set.
Then C = ⊕x ,y∈XCx ,y is a weak Hopf algebra.



Hopf categories and duoidal categories

I M. Aguiar, S. Mahajan, “Monoidal functors, species and Hopf
algebras”, CRM Monogr. ser. 29, Amer. Math. Soc.
Providence, RI, (2010).

I G. Böhm, Y. Chen, L. Zhang, “On Hopf monoids in duoidal
categories”, J. Algebra 394 (2013), 139-172.



Hopf categories and duoidal categories

Definition

A duoidal category is a category M with

I monoidal structure (�, I )
I monoidal structure (•, J)

I δ : I → I • I
I $ : J � J → J

I τ : I → J

I ζA,B,C ,D : (A • B)� (C • D)→ (A� C ) • (B � D)

I (J, $, τ) is an algebra in (M,�, I )
I (I , δ, τ) is a coalgebra in (M, •, J)

I 6 more commutative diagrams (2 associativity and 4 unit)



Hopf categories and duoidal categories

Let X be a set. (Mk(X ), •, J) is a monoidal category.
Second monomial structure:

(M � N)x ,z = ⊕y∈XMx ,y ⊗ Ny ,z .

Ix ,y =

{
kex ,x if x = y

0 if x 6= y

I τ : I → J: natural inclusion

I δ : I → I • I = I : identity map

I (J � J)x ,y = ⊕z∈Xkex ,z ⊗ kez,y = ⊕z∈Xkzex ,y = kXex ,y .
$ : J � J → J
$x ,y : ⊕z∈Xkzex ,y → kex ,y
$x ,y (

∑
z∈X αzzex ,y ) =

∑
z∈X αzex ,y .



Hopf categories and duoidal categories

((M • N)� (P • Q))x ,y =
⊕
z∈X

Mx ,z ⊗ Nx ,z ⊗ Pz,y ⊗ Qz,y ;

((M � P) • (N � Q))x ,y =
⊕
u,v∈X

Mx ,u ⊗ Pu,y ⊗ Nx ,v ⊗ Qv ,y ,

ζM,N,P,Q,x ,y is the map switching the second and third tensor
factor, followed by the natural inclusion.

Theorem

Let X be a set. (Mk(X ),�, I , •, J, δ,$, τ, ζ) is a duoidal category.



Hopf categories and duoidal categories

Definition

Let (M,�, I , •, J, δ,$, τ, ζ) be a duoidal category. A bimonoid is
an object A, together with an algebra structure (µ, η) in (M,�, I )
and a coalgebra structure (∆, ε) in (M, •, J) subject to the
compatibility conditions

∆ ◦ µ = (µ • µ) ◦ ζ ◦ (∆�∆);

$ ◦ (ε� ε) = ε ◦ µ;

(η • η) ◦ δ = ∆ ◦ η;

ε ◦ η = τ.



Hopf categories and duoidal categories

Theorem

Let X be a set, and let A ∈Mk(X ). We have a bijective
correspondence between bimonoid structures on A over the duoidal
category (Mk(X ),�, I , •, J, δ,$, τ, ζ) from and k-linear semi-Hopf
category structures on A.



Hopf modules

Definition

A is a k-linear semi-Hopf category. A Hopf module over A is
M ∈Mk(X ) such that

I M ∈Mk(X )A, with structure maps ψx ,y ,z

I M ∈Mk(X )A : M is a right comodule over A as a coalgebra
in Mk(X ), with structure maps ρx ,y

I ρx ,z(ma) = m[0]a(1) ⊗m[1]a(2)

Category of Hopf modules: Mk(X )AA.
New category: D(X ) consisting of families of k-modules
N = (Nx)x∈X indexed by X .



An adjoint pair of functors

Proposition

We have a pair of adjoint functors (F ,G ) between the categories
D(X ) and Mk(X )AA.

Bewijs.

F (N)x ,y = Nx ⊗ Ax ,y , with

(n ⊗ a)b = n ⊗ ab ; ρx ,y (n ⊗ a) = n ⊗ a(1) ⊗ a(2),

G (M) = McoA ∈ D(X ) is given by the formula

McoA
x = M

coAx,x
x ,x = {m ∈ Mx ,x | ρx ,x(m) = m ⊗ 1x}.



The fundamental theorem

Canonical maps:

canzx ,y : Az,x ⊗ Ax ,y → Az,y ⊗ Ax ,y , canzx ,y (a⊗ b) = ab(1) ⊗ b(2).

Theorem

For a k-linear semi-Hopf category A with underlying class X , the
following assertions are equivalent.

1. A is a k-linear Hopf category;

2. the pair of adjoint functors (F ,G ) is a pair of inverse
equivalences between the categories D(X ) and Mk(X )AA;

3. the functor G is fully faithful;

4. canzx ,y is an isomorphism, for all x , y , z ∈ X ;

5. canxx ,y and canyx ,y are isomorphisms, for all x , y ∈ X .



Applications

Proposition

Let A be a Hopf category in Mf
k(X ). Then A∗ is a Hopf module.

ρx ,y : A∗x ,y → A∗x ,y ⊗ Ax ,y :

ρx ,y (a∗) =
∑
i

a∗a∗i ⊗ ai

ψx ,y ,z : A∗x ,y ⊗ Ay ,z → A∗x ,z :

〈a∗↼a, b〉 = 〈a∗, bSy ,z(a)〉

A∗coAx = (A∗x ,x)coAx,x =
∫ l
A∗
x,x

= {ϕ ∈ A∗x ,x | ϕa∗ = 〈a∗, 1x〉ϕ, for all a∗ ∈ A∗x ,x}
is the space of left integrals on Ax ,x .



Applications

Corollary

For a semi-Hopf category in Mf
k(X ),

αx ,y = εA
∗

x ,y :

∫ l

A∗
x,x

⊗Ax ,y → A∗x ,y , εA
∗

x ,y (ϕ⊗ a) = ϕ↼a.

is an isomorphism, for all x , y .

Proposition

Let A be a Hopf category in Mf
k(X ). The antipode maps

Sx ,y : Ax ,y → Ay ,x are bijective, for all x , y ∈ X .



Hopf-Galois theory

Let H be k-linear Hopf category. A right H-comodule category
consists of

I k-linear category A

I Axy is a right Hxy -comodule

I ρxz(ab) = a[0]b[0] ⊗ a[1]b[1], for a ∈ Axy and b ∈ Ayz

I ρxx(1Ax ) = 1Ax ⊗ 1Hx

B = AcoH

Canonical maps:

canzxy : Azx ⊗Bx Axy → Azy ⊗ Hxy , canzxy (a⊗ a′) = aa′[0] ⊗ a′[1].

If these are isomorphisms: A is H-Galois extension of B.



Hopf-Galois theory: further observations

I Under appropriate flatness assumptions: H-Galois condition
gives structure theorem for relative Hopf modules

I Our theory involves coactions by Hopf category (as in
Chase-Sweedler); in finite case, one passes to the dual, to get
actions by the dual Hopf opcategory. This works

I Paques and Tamusianas (A Galois-Grothendieck-type
correspondence for groupoid actions, Algebra Discr. Math. 17
(2014), 80-97) develop Galois theory for actions by
groupoids. It does not fit into our picture



Larson-Sweedler Theorem

Theorem

A finite dimensional Hopf algebra over a field is a Frobenius
algebra.

Buckley, Fieremans, Vasilkaopoulou and Vercruysse bring the
appropriate generalization to Hopf V-categories.



Larson-Sweedler Theorem

Definition

A Frobenius V-category is a V-category that is also a V-opcategory
such that

Ax ,y ⊗ Ay ,z
dx,w,y⊗1 //

mx,y,z

''
1⊗dy,w,z

��

Ax ,w ⊗ Aw ,y ⊗ Ay ,z

1⊗mw,y,z

��

Ax ,z

dx,w,z

''
Ax ,y ⊗ Ay ,w ⊗ Aw ,z mx,y,w⊗1

// Ax .w ⊗ Aw ,z

commutes.
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