The Simpson conjecture (for regular compositions)

Simon Henry

(Masaryk University, Brno)
CT2018, Ponta Delgada, July 11th, 2018

I'm presenting a very recent proof of a form of the Simpson conjecture.

I'm presenting a very recent proof of a form of the Simpson conjecture.
It involve the following three papers:

- "Non-unital polygraphs are a presheaves category" (H. ArXiv 1711.00744) From last Octobre.

I'm presenting a very recent proof of a form of the Simpson conjecture.
It involve the following three papers:

- "Non-unital polygraphs are a presheaves category" (H. ArXiv 1711.00744) From last Octobre.
- "Weak model categories in classical and constructive mathematics" (H. ArXiv 1807.02650) From Yesterday.

I'm presenting a very recent proof of a form of the Simpson conjecture.
It involve the following three papers:

- "Non-unital polygraphs are a presheaves category" (H. ArXiv 1711.00744) From last Octobre.
- "Weak model categories in classical and constructive mathematics" (H. ArXiv 1807.02650) From Yesterday.
- "Regular polygraphs and the Simpson conjecture" (H. ArXiv 1807.02627) From Yesterday.

I'm presenting a very recent proof of a form of the Simpson conjecture.
It involve the following three papers:

- "Non-unital polygraphs are a presheaves category" (H. ArXiv 1711.00744) From last Octobre.
- "Weak model categories in classical and constructive mathematics" (H. ArXiv 1807.02650) From Yesterday.
- "Regular polygraphs and the Simpson conjecture" (H. ArXiv 1807.02627) From Yesterday.
... approximately 220 pages in total.
M.Kapranov and V.Voevodsky (1991):

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories whose } \\
\text { arrows are weakly invertible }
\end{array}\right\}
$$

M.Kapranov and V.Voevodsky (1991):

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories whose } \\
\text { arrows are weakly invertible }
\end{array}\right\}
$$

C.Simpson (1998): it cannot be true.
M.Kapranov and V.Voevodsky (1991):

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories whose } \\
\text { arrows are weakly invertible }
\end{array}\right\}
$$

C.Simpson (1998): it cannot be true.

Eckmann-Hilton argument: " π_{2} " is abelian.
M.Kapranov and V.Voevodsky (1991):

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories whose } \\
\text { arrows are weakly invertible }
\end{array}\right\}
$$

C.Simpson (1998): it cannot be true.

Eckmann-Hilton argument: " π_{2} " is abelian.

- In "weak" ∞-groupoids this commutativity is given by a braiding.
M.Kapranov and V.Voevodsky (1991):

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories whose } \\
\text { arrows are weakly invertible }
\end{array}\right\}
$$

C.Simpson (1998): it cannot be true.

Eckmann-Hilton argument: " π_{2} " is abelian.

- In "weak" ∞-groupoids this commutativity is given by a braiding.
- In strict ∞-category it is a strict commutativity. (i.e. trivial braiding, which corresponds to a vanishing of the Whitehead product $\pi_{2} \times \pi_{2} \rightarrow \pi_{3}$).
M.Kapranov and V.Voevodsky (1991):

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories whose } \\
\text { arrows are weakly invertible }
\end{array}\right\}
$$

C.Simpson (1998): it cannot be true.

Eckmann-Hilton argument: " π_{2} " is abelian.

- In "weak" ∞-groupoids this commutativity is given by a braiding.
- In strict ∞-category it is a strict commutativity. (i.e. trivial braiding, which corresponds to a vanishing of the Whitehead product $\pi_{2} \times \pi_{2} \rightarrow \pi_{3}$).

Simpson conjecture:

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories with weak } \\
\text { units and weak inverses }
\end{array}\right\}
$$

M.Kapranov and V.Voevodsky (1991):

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories whose } \\
\text { arrows are weakly invertible }
\end{array}\right\}
$$

C.Simpson (1998): it cannot be true.

Eckmann-Hilton argument: " π_{2} " is abelian.

- In "weak" ∞-groupoids this commutativity is given by a braiding.
- In strict ∞-category it is a strict commutativity. (i.e. trivial braiding, which corresponds to a vanishing of the Whitehead product $\pi_{2} \times \pi_{2} \rightarrow \pi_{3}$).

Simpson conjecture:

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories with weak } \\
\text { units and weak inverses }
\end{array}\right\}
$$

Simpson's suggestion:
M.Kapranov and V.Voevodsky (1991):

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories whose } \\
\text { arrows are weakly invertible }
\end{array}\right\}
$$

C.Simpson (1998): it cannot be true.

Eckmann-Hilton argument: " π_{2} " is abelian.

- In "weak" ∞-groupoids this commutativity is given by a braiding.
- In strict ∞-category it is a strict commutativity. (i.e. trivial braiding, which corresponds to a vanishing of the Whitehead product $\pi_{2} \times \pi_{2} \rightarrow \pi_{3}$).

Simpson conjecture:

$$
H o(\text { Spaces }) \simeq_{\pi_{n}} H o\left\{\begin{array}{l}
\text { Strict } \infty \text {-categories with weak } \\
\text { units and weak inverses }
\end{array}\right\}
$$

Simpson's suggestion: just follow Kapranov and Voevodsky's strategy.

Kapranov and Voevodsky strategy:

Kapranov and Voevodsky strategy:

Construct the ∞-groupoid $\pi_{\infty}(X)$ using "Generalized Moore paths" in X to make composition strict.

Kapranov and Voevodsky strategy:

Construct the ∞-groupoid $\pi_{\infty}(X)$ using "Generalized Moore paths" in X to make composition strict.

- Moore paths = One make composition of path strictly associative by allowing path of variable length.

Kapranov and Voevodsky strategy:

Construct the ∞-groupoid $\pi_{\infty}(X)$ using "Generalized Moore paths" in X to make composition strict.

- Moore paths = One make composition of path strictly associative by allowing path of variable length.
- One can also see this as taking a "formal" composition:

Kapranov and Voevodsky strategy:

Construct the ∞-groupoid $\pi_{\infty}(X)$ using "Generalized Moore paths" in X to make composition strict.

- Moore paths = One make composition of path strictly associative by allowing path of variable length.
- One can also see this as taking a "formal" composition:

- One wants to generalize this to higher dimension.
- A 2-arrow in $\pi_{\infty}(X)$ should look like:

- A 2-arrow in $\pi_{\infty}(X)$ should look like:

- A 3-arrow in $\pi_{\infty}(X)$ could look like:

- A 2-arrow in $\pi_{\infty}(X)$ should look like:

- A 3-arrow in $\pi_{\infty}(X)$ could look like:

- More generally:

$$
\pi_{\infty}(X):=\{K \text { a "pasting diagram", } \gamma:|K| \rightarrow X\}
$$

- A 2-arrow in $\pi_{\infty}(X)$ should look like:

or

- A 3-arrow in $\pi_{\infty}(X)$ could look like:

- More generally:

$$
\pi_{\infty}(X):=\{K \text { a "pasting diagram", } \gamma:|K| \rightarrow X\}
$$

Kapranov and Voevodsky use M. Johnson's notion of pasting diagrams.

At least, that's what they explain in the introduction,

At least, that's what they explain in the introduction, but not quite what they do in the paper,

At least, that's what they explain in the introduction, but not quite what they do in the paper, roughly:

- They claim to construct something like a model category structure on the category of strict ∞-categories and on the category of presheaves over their category of diagrams.

At least, that's what they explain in the introduction, but not quite what they do in the paper, roughly:

- They claim to construct something like a model category structure on the category of strict ∞-categories and on the category of presheaves over their category of diagrams.
- Fibrant objects among ∞-categories are those where all arrows are invertible.

At least, that's what they explain in the introduction, but not quite what they do in the paper, roughly:

- They claim to construct something like a model category structure on the category of strict ∞-categories and on the category of presheaves over their category of diagrams.
- Fibrant objects among ∞-categories are those where all arrows are invertible.
- They prove that a natural adjonction $\operatorname{Psh}(\operatorname{Diag}) \rightleftarrows \infty$-cat is a Quillen equivalence.

They use the usual geometric realization of presheaves to construct a Quillen equivalence between $\operatorname{Psh}($ Diag $) \simeq$ Spaces. For each presheaf $X \in \operatorname{Psh}($ Diag $)$ on defines its geometric realization as:

$$
|X|=|N(E / t(X))|=|N(\operatorname{Diag} / X)|
$$

They use the usual geometric realization of presheaves to construct a Quillen equivalence between $\operatorname{Psh}(\operatorname{Diag}) \simeq$ Spaces. For each presheaf $X \in \operatorname{Psh}($ Diag $)$ on defines its geometric realization as:

$$
|X|=|N(E l t(X))|=|N(\operatorname{Diag} / X)|
$$

And they prove that this gives a Quillen equivalence:

They use the usual geometric realization of presheaves to construct a Quillen equivalence between $\operatorname{Psh}(\operatorname{Diag}) \simeq$ Spaces. For each presheaf $X \in \operatorname{Psh}($ Diag $)$ on defines its geometric realization as:

$$
|X|=|N(E l t(X))|=|N(\operatorname{Diag} / X)|
$$

And they prove that this gives a Quillen equivalence:

$$
\left.\right|_{-} \mid: P s h(\text { Diag }) \stackrel{\sim}{\rightleftarrows} \text { Spaces : } N_{\text {Diag }}
$$

They use the usual geometric realization of presheaves to construct a Quillen equivalence between $\operatorname{Psh}($ Diag $) \simeq$ Spaces. For each presheaf $X \in \operatorname{Psh}($ Diag $)$ on defines its geometric realization as:

$$
|X|=|N(E / t(X))|=|N(\operatorname{Diag} / X)|
$$

And they prove that this gives a Quillen equivalence:

$$
\left.\right|_{-} \mid: P s h(\text { Diag }) \stackrel{\sim}{\rightleftarrows} \text { Spaces }: N_{\text {Diag }}
$$

to put it another way "Diag" is a test category.

They use the usual geometric realization of presheaves to construct a Quillen equivalence between $\operatorname{Psh}($ Diag $) \simeq$ Spaces. For each presheaf $X \in \operatorname{Psh}($ Diag $)$ on defines its geometric realization as:

$$
|X|=|N(E l t(X))|=|N(\operatorname{Diag} / X)|
$$

And they prove that this gives a Quillen equivalence:

$$
\left.\right|_{-} \mid: P s h(D i a g) \stackrel{\sim}{\rightleftarrows} \text { Spaces }: N_{\text {Diag }}
$$

to put it another way "Diag" is a test category.

$$
\text { Spaces } \underset{\leftarrow}{\leftarrow} \operatorname{ssh}(\text { Diag }) \xrightarrow{\sim} \infty-C a t
$$

Main problem:

Main problem:
For the intuitive version of the argument to work, one wants "pasting diagrams" to have the following two properties:

Main problem:
For the intuitive version of the argument to work, one wants "pasting diagrams" to have the following two properties:
(A) One should be able to " k-compose" pasting diagrams whose k-source/ k-target are the same diagrams (so that one can compose cells of $\left.\pi_{\infty}(X)=\{K, \gamma:|K| \rightarrow X\}\right)$.

Main problem:
For the intuitive version of the argument to work, one wants "pasting diagrams" to have the following two properties:
(A) One should be able to "k-compose" pasting diagrams whose k-source/ k-target are the same diagrams (so that one can compose cells of $\left.\pi_{\infty}(X)=\{K, \gamma:|K| \rightarrow X\}\right)$.
(B) If K and K^{\prime} are two n-pasting diagrams whose $n-1$-source and target are the same diagram, their should exists a $n+1$-diagram Ω whose source and target are K and K^{\prime}. Ideally with Ω having just one top dimensional cell from K to K^{\prime}.

Main problem:
For the intuitive version of the argument to work, one wants "pasting diagrams" to have the following two properties:
(A) One should be able to " k-compose" pasting diagrams whose k-source/ k-target are the same diagrams (so that one can compose cells of $\left.\pi_{\infty}(X)=\{K, \gamma:|K| \rightarrow X\}\right)$.
(B) If K and K^{\prime} are two n-pasting diagrams whose $n-1$-source and target are the same diagram, their should exists a $n+1$-diagram Ω whose source and target are K and K^{\prime}. Ideally with Ω having just one top dimensional cell from K to K^{\prime}.
M.Johnson's diagrams are not stable by any of these two constructions !

Main problem:
For the intuitive version of the argument to work, one wants "pasting diagrams" to have the following two properties:
(A) One should be able to " k-compose" pasting diagrams whose k-source/ k-target are the same diagrams (so that one can compose cells of $\left.\pi_{\infty}(X)=\{K, \gamma:|K| \rightarrow X\}\right)$.
(B) If K and K^{\prime} are two n-pasting diagrams whose n - 1 -source and target are the same diagram, their should exists a $n+1$-diagram Ω whose source and target are K and K^{\prime}. Ideally with Ω having just one top dimensional cell from K to K^{\prime}.
M.Johnson's diagrams are not stable by any of these two constructions !

One can try to see this two constructions as an inductive definition of the correct notion of diagram.

Main problem:
For the intuitive version of the argument to work, one wants "pasting diagrams" to have the following two properties:
(A) One should be able to " k-compose" pasting diagrams whose k-source/ k-target are the same diagrams (so that one can compose cells of $\left.\pi_{\infty}(X)=\{K, \gamma:|K| \rightarrow X\}\right)$.
(B) If K and K^{\prime} are two n-pasting diagrams whose n - 1 -source and target are the same diagram, their should exists a $n+1$-diagram Ω whose source and target are K and K^{\prime}. Ideally with Ω having just one top dimensional cell from K to K^{\prime}.
M.Johnson's diagrams are not stable by any of these two constructions !

One can try to see this two constructions as an inductive definition of the correct notion of diagram.

But it does not work: it is not possible to produce a notion of diagram constructed this way in general (because of the Eckmann-Hilton argument).

Theorem (H. 1711.00744)

Such a notion of diagrams exists if one restrict to "non-unital ∞-category". i.e. one only consider diagram where each arrow of dimension n has source and targets of dimension $n-1$ exactly.

One call "positive polyplexes" these diagrams.

Theorem (H. 1711.00744)

Such a notion of diagrams exists if one restrict to "non-unital ∞-category". i.e. one only consider diagram where each arrow of dimension n has source and targets of dimension $n-1$ exactly.

One call "positive polyplexes" these diagrams. Positive "plexes" are those arising from rule (B) (they only have one top dimensional cell)

Theorem (H. 1711.00744)
The category of "positive" or "non-unital" polygraphs is equivalent to the category Psh(Plex).

One obtains:

Space $\stackrel{\mid}{\leftrightarrows} \operatorname{Psh}($ Plex $) \rightleftarrows($ Non-unital ∞-Cat $)$

One obtains:

$$
\text { Space } \stackrel{|-|}{\leftrightarrows} \operatorname{Psh}(\text { Plex }) \rightleftarrows(\text { Non-unital } \infty \text {-Cat })
$$

- The composite of the right adjoint followed by the left adjoint: Space \rightarrow (non-unital ∞-cat) is this times exactly the informal description of the π_{∞} given earlier.

One obtains:

$$
\text { Space } \stackrel{|-|}{\leftrightarrows} \operatorname{Psh}(\text { Plex }) \rightleftarrows(\text { Non-unital } \infty \text {-Cat })
$$

- The composite of the right adjoint followed by the left adjoint: Space \rightarrow (non-unital ∞-cat) is this times exactly the informal description of the π_{∞} given earlier.
- In "Weak model categories..." one introduces a weakening of the notion of Quillen Model structure including both left and right semi-model structures, which we call "weak model categories", and some tools to construct them.

One obtains:

$$
\text { Space } \stackrel{|-|}{\leftrightarrows} \operatorname{Psh}(P l e x) \rightleftarrows(\text { Non-unital } \infty-\text { Cat })
$$

- The composite of the right adjoint followed by the left adjoint: Space \rightarrow (non-unital ∞-cat) is this times exactly the informal description of the π_{∞} given earlier.
- In "Weak model categories..." one introduces a weakening of the notion of Quillen Model structure including both left and right semi-model structures, which we call "weak model categories", and some tools to construct them.
- One construct such weak model structures on Psh(Plex) and on (Non-unital ∞-Cat) which makes them Quillen equivalent.
Question:

$$
\operatorname{Psh}(\text { Plex }) \stackrel{? ?}{\sim} \text { Space }
$$

No!

No!

or at least, not by using the functor $|X|=\mid N($ Plex $/ X) \mid$.

No!

or at least, not by using the functor $|X|=\mid N($ Plex $/ X) \mid$.
Indeed this functor send every plex to a contractible space.

No!

or at least, not by using the functor $|X|=\mid N($ Plex $/ X) \mid$.
Indeed this functor send every plex to a contractible space. But it appears that plexes can be very complicated,

No!

or at least, not by using the functor $|X|=\mid N($ Plex $/ X) \mid$.
Indeed this functor send every plex to a contractible space. But it appears that plexes can be very complicated, and some of them are not contractible.

No!

or at least, not by using the functor $|X|=\mid N($ Plex $/ X) \mid$.
Indeed this functor send every plex to a contractible space. But it appears that plexes can be very complicated, and some of them are not contractible.

Conjecture: There exists a Quillen equivalence Psh(Plex) \simeq Space.

No!

or at least, not by using the functor $|X|=\mid N($ Plex $/ X) \mid$.
Indeed this functor send every plex to a contractible space. But it appears that plexes can be very complicated, and some of them are not contractible.

Conjecture: There exists a Quillen equivalence $P s h(P l e x) \simeq$ Space .
Conjecture: the inclusion of Semi-simplicial sets into Psh(Plex) induces such a Quillen equivalence.

No!

or at least, not by using the functor $|X|=\mid N($ Plex $/ X) \mid$.
Indeed this functor send every plex to a contractible space. But it appears that plexes can be very complicated, and some of them are not contractible.

Conjecture: There exists a Quillen equivalence $P s h(P l e x) \simeq$ Space .
Conjecture: the inclusion of Semi-simplicial sets into Psh(Plex) induces such a Quillen equivalence.

Note: up to a technical conjecture, "Plex" is also itself a weak test category.

No!

or at least, not by using the functor $|X|=\mid N($ Plex $/ X) \mid$.
Indeed this functor send every plex to a contractible space. But it appears that plexes can be very complicated, and some of them are not contractible.

Conjecture: There exists a Quillen equivalence $P s h(P l e x) \simeq$ Space .
Conjecture: the inclusion of Semi-simplicial sets into Psh(Plex) induces such a Quillen equivalence.

Note: up to a technical conjecture, "Plex" is also itself a weak test category. But this does not give the correct notion of weak equivalences in Psh(Plex) for the equivalence with ∞-Cat.

In the meantime, one can restricts the shape of the pasting diagram that one considers to "regular ones".

In the meantime, one can restricts the shape of the pasting diagram that one considers to "regular ones".

Are not regular.

In the meantime, one can restricts the shape of the pasting diagram that one considers to "regular ones".

Are not regular.

Are regular.

One defines "Regular ∞-categories" as "Globular sets where all regular compositions are defined and compatible/associative".

One defines "Regular ∞-categories" as "Globular sets where all regular compositions are defined and compatible/associative".

In the regular framework, this problem of "non-contractible plexes" disapear, and one can finish the proof to get two Quillen equivalences:

$$
\text { Spaces } \stackrel{\sim}{\leftrightarrows} P s h(\text { Regular - Plex }) \stackrel{\sim}{\rightleftarrows} \text { ("Regular" } \infty \text {-categories })
$$

