Braided skew monoidal categories

Stephen Lack
Macquarie University

joint work with John Bourke

Skew monoidal categories

The idea Category with tensor product, unit I, and maps

$$
a:(X Y) Z \rightarrow X(Y Z), \quad \ell: I X \rightarrow X, \quad r: X \rightarrow X I
$$

Skew monoidal categories

The idea Category with tensor product, unit I, and maps

$$
a:(X Y) Z \rightarrow X(Y Z), \quad \ell: I X \rightarrow X, \quad r: X \rightarrow X I
$$

References

- Szlachanyi (2012): Skew monoidal categories and bialgebroids
- Street (2013): Skew-closed categories
- Lack-Street (2012-): 5 papers so far on skew monoidal categories
- Bourke (2017): Skew structures in 2-category theory and homotopy theory
- Bourke-Lack (2018-): 3 papers so far ...

Skew monoidal categories

The idea Category with tensor product, unit I, and maps

$$
a:(X Y) Z \rightarrow X(Y Z), \quad \ell: I X \rightarrow X, \quad r: X \rightarrow X I
$$

References

- Szlachanyi (2012): Skew monoidal categories and bialgebroids
- Street (2013): Skew-closed categories
- Lack-Street (2012-): 5 papers so far on skew monoidal categories
- Bourke (2017): Skew structures in 2-category theory and homotopy theory
- Bourke-Lack (2018-): 3 papers so far ...

Examples

- (CT2013) From quantum algebra (bialgebras, bialgebroids, ...)
- (CT2015) From 2-category theory (2-categories of categoriess with "commutative" algebraic structure)
- (CT2014) Other (operadic categories)

Quantum examples

B bialgebra in a braided monoidal category \mathcal{V}.

Quantum examples

B bialgebra in a braided monoidal category \mathcal{V}.

"Warped" tensor product $X * Y:=B \otimes X \otimes Y$ with same unit

Quantum examples

B bialgebra in a braided monoidal category \mathcal{V}.

"Warped" tensor product $X * Y:=B \otimes X \otimes Y$ with same unit

In Vect, can characterize bialgebras in terms of closed skew monoidal structures

Quantum examples

B bialgebra in a braided monoidal category \mathcal{V}.

"Warped" tensor product $X * Y:=B \otimes X \otimes Y$ with same unit

In Vect, can characterize bialgebras in terms of closed skew monoidal structures
And closed skew monoidal structures on ModR correspond to bialgebroids with base algebra R.

2-categorical example

FProd $_{\text {s }}$ is the 2-category consisting of

- categories with chosen finite products
- functors strictly preserving these
- natural transformations

2-categorical example

FProd $_{\text {s }}$ is the 2-category consisting of

- categories with chosen finite products
- functors strictly preserving these
- natural transformations

Write $[A, B] \in \mathbf{F P r o d}_{\mathbf{s}}$ for the category of finite-product-preserving functors.

2-categorical example

FProd $_{s}$ is the 2-category consisting of

- categories with chosen finite products
- functors strictly preserving these
- natural transformations

Write $[A, B] \in \mathbf{F P r o d}_{\mathbf{s}}$ for the category of finite-product-preserving functors.
Morphisms $A_{1} \rightarrow\left[A_{2}, B\right]$ in FProd $_{\mathbf{s}}$ correpond to functors $A_{1} \times A_{2} \rightarrow B$ which preserve finite products in each variable, but strictly in the first variable.

2-categorical example

FProd $_{s}$ is the 2-category consisting of

- categories with chosen finite products
- functors strictly preserving these
- natural transformations

Write $[A, B] \in \mathbf{F P r o d}_{\mathbf{s}}$ for the category of finite-product-preserving functors.
Morphisms $A_{1} \rightarrow\left[A_{2}, B\right]$ in FProd $_{\mathbf{s}}$ correpond to functors $A_{1} \times A_{2} \rightarrow B$ which preserve finite products in each variable, but strictly in the first variable.
Such "bilinear maps" correspond to maps $A_{1} \otimes A_{2} \rightarrow B$ in FProd $_{\mathbf{s}}$ for a suitable choice of tensor product.

2-categorical example

FProd $_{s}$ is the 2-category consisting of

- categories with chosen finite products
- functors strictly preserving these
- natural transformations

Write $[A, B] \in$ FProd $_{\mathbf{s}}$ for the category of finite-product-preserving functors.
Morphisms $A_{1} \rightarrow\left[A_{2}, B\right]$ in FProd $_{\text {s }}$ correpond to functors $A_{1} \times A_{2} \rightarrow B$ which preserve finite products in each variable, but strictly in the first variable.
Such "bilinear maps" correspond to maps $A_{1} \otimes A_{2} \rightarrow B$ in FProd $_{\mathbf{s}}$ for a suitable choice of tensor product.
Let $I=\mathcal{S}^{\mathrm{op}}$ for a skeletal category of finite sets. This is free on 1 in FProd $_{\text {s }}$, so have
$\operatorname{FProd}_{\mathbf{s}}(I \otimes A, B) \cong \operatorname{FProd}_{\mathbf{s}}(I,[A, B]) \cong[A, B]$

2-categorical example

FProd $_{s}$ is the 2-category consisting of

- categories with chosen finite products
- functors strictly preserving these
- natural transformations

Write $[A, B] \in$ FProd $_{\mathbf{s}}$ for the category of finite-product-preserving functors.
Morphisms $A_{1} \rightarrow\left[A_{2}, B\right]$ in FProd $_{\text {s }}$ correpond to functors $A_{1} \times A_{2} \rightarrow B$ which preserve finite products in each variable, but strictly in the first variable.
Such "bilinear maps" correspond to maps $A_{1} \otimes A_{2} \rightarrow B$ in FProd $_{\mathbf{s}}$ for a suitable choice of tensor product.
Let $I=\mathcal{S}^{\mathrm{op}}$ for a skeletal category of finite sets. This is free on 1 in FProds $_{\text {s }}$, so have

$$
\operatorname{FProd}_{\mathbf{s}}(I \otimes A, B) \cong \operatorname{FProd}_{\mathbf{s}}(I,[A, B]) \cong[A, B]
$$

FProd $_{\text {s }}$ becomes skew monoidal (2-category)

2-categorical examples

2-categorical examples

More generally, if T is an accessible pseudocommutative 2-monad on Cat, then there is a skew monoidal structure on the 2-category of T-algebras (with strict morphisms).
The unit is $T 1$. Tensoring on the left with $T 1$ classifies weak morphisms.

2-categorical examples

More generally, if T is an accessible pseudocommutative 2-monad on Cat, then there is a skew monoidal structure on the 2-category of T-algebras (with strict morphisms).
The unit is $T 1$. Tensoring on the left with $T 1$ classifies weak morphisms.

- symmetric monoidal categories
- permutative categories
- braided monoidal categories categories equipped with an action by a fixed symmetric monoidal category
- categories with chosen limits (or colimits) of some given type.

2-categorical examples

More generally, if T is an accessible pseudocommutative 2-monad on Cat, then there is a skew monoidal structure on the 2-category of T-algebras (with strict morphisms).
The unit is $T 1$. Tensoring on the left with $T 1$ classifies weak morphisms.

- symmetric monoidal categories
- permutative categories
- braided monoidal categories categories equipped with an action by a fixed symmetric monoidal category
- categories with chosen limits (or colimits) of some given type.

Corollary

The 2-category of T-algebras with pseudo morphisms is a monoidal bicategory.

A symmetry for FProd $_{\mathbf{s}}$

$\left(A_{1} \otimes A_{2}\right) \otimes A_{3} \rightarrow B$ in FProd $_{\mathbf{s}} \Leftrightarrow$ "trilinear" $A_{1} \times A_{2} \times A_{3} \rightarrow B$ (strict in first variable)
Permuting 2nd and 3rd variables gives a new trilinear map This induces isomorphisms

$$
s:\left(A_{1} \otimes A_{2}\right) \otimes A_{3} \rightarrow\left(A_{1} \otimes A_{3}\right) \otimes A_{2}
$$

A symmetry for FProd $_{\text {s }}$

$\left(A_{1} \otimes A_{2}\right) \otimes A_{3} \rightarrow B$ in FProd $_{\mathbf{s}} \Leftrightarrow$ "trilinear" $A_{1} \times A_{2} \times A_{3} \rightarrow B$ (strict in first variable)
Permuting 2nd and 3rd variables gives a new trilinear map This induces isomorphisms

$$
s:\left(A_{1} \otimes A_{2}\right) \otimes A_{3} \rightarrow\left(A_{1} \otimes A_{3}\right) \otimes A_{2}
$$

On the other hand $A_{1} \otimes A_{2}$ is not isomorphic to $A_{2} \otimes A_{1}$.

A symmetry for FProd $_{\text {s }}$

$\left(A_{1} \otimes A_{2}\right) \otimes A_{3} \rightarrow B$ in FProd $_{\mathbf{s}} \Leftrightarrow$ "trilinear" $A_{1} \times A_{2} \times A_{3} \rightarrow B$ (strict in first variable)
Permuting 2nd and 3rd variables gives a new trilinear map This induces isomorphisms

$$
s:\left(A_{1} \otimes A_{2}\right) \otimes A_{3} \rightarrow\left(A_{1} \otimes A_{3}\right) \otimes A_{2}
$$

On the other hand $A_{1} \otimes A_{2}$ is not isomorphic to $A_{2} \otimes A_{1}$.

More generally, if $A_{1} A_{2} \ldots A_{n}$ is left-bracketed, have an action by all $\pi \in S_{n}$ which fix first element

Braided skew monoidal categories

A braiding on a skew monoidal category consists of natural isomorphisms

$$
s:(X A) B \rightarrow(X B) A
$$

subject to 4 coherence conditions including

(others are Yang-Baxter, and first of these for s^{-1})
If $s \circ s=1$ then s is a symmetry.

Related structures

There are analogous notions of:

- skew closed category (Street)
- skew multicategory - involves tight and loose multimaps

$$
\left(A_{1} A_{2}\right) A_{3} \xrightarrow{\text { "tight" }} B \quad\left(\left(I A_{1}\right) A_{2}\right) A_{3} \xrightarrow{\text { "loose" }} B
$$

Related structures

There are analogous notions of:

- skew closed category (Street)
- skew multicategory - involves tight and loose multimaps

$$
\left(A_{1} A_{2}\right) A_{3} \xrightarrow{\text { "tight" }} B \quad\left(\left(I A_{1}\right) A_{2}\right) A_{3} \xrightarrow{\text { "loose" }} B
$$

Braidings make sense for these as well.

- $[X,[Y, Z]] \cong[Y,[X, Z]]$
- permuting inputs of multimaps

The fact that a braided skew monoidal category gives rise to a braided skew multicategory is a sort of coherence result.

Boring examples

Proposition

For an actual monoidal category, the two notions of braiding are equivalent.

Proof.
$(I A) B \xrightarrow{s}(I B) A$
$\ell 1 \downarrow \quad \downarrow 1$
$A B \longrightarrow B A$

Boring examples

Proposition

For an actual monoidal category, the two notions of braiding are equivalent.

Proof.
$(I A) B \xrightarrow{s}(I B) A$
$\stackrel{\ell 1 \downarrow}{ } \xrightarrow[c]{\downarrow} \stackrel{\downarrow 1}{ }{ }^{\downarrow}$

Proposition

A braided skew monoidal category for which the left unit map is invertible is monoidal.

Quantum examples

For bialgebra B in braided monoidal \mathcal{V}, recall that braidings on
Comod B correspond to cobraidings (coquasitriangular structures) on B.

Quantum examples

For bialgebra B in braided monoidal \mathcal{V}, recall that braidings on
Comod B correspond to cobraidings (coquasitriangular structures) on B.

Let $\mathcal{V}[B]$ be the warped skew monoidal structure with $X * Y=B \otimes X \otimes Y$.

Theorem
$\mathcal{V}[B]$ has a braiding if and only if B has a cobraiding.

Quantum examples

For bialgebra B in braided monoidal \mathcal{V}, recall that braidings on
Comod B correspond to cobraidings (coquasitriangular structures) on B.

Let $\mathcal{V}[B]$ be the warped skew monoidal structure with $X * Y=B \otimes X \otimes Y$.

Theorem

$\mathcal{V}[B]$ has a braiding if and only if B has a cobraiding. For good \mathcal{V} this is part of a bijection.

Quantum examples

For bialgebra B in braided monoidal \mathcal{V}, recall that braidings on
Comod B correspond to cobraidings (coquasitriangular structures) on B.

Let $\mathcal{V}[B]$ be the warped skew monoidal structure with $X * Y=B \otimes X \otimes Y$.

Theorem

$\mathcal{V}[B]$ has a braiding if and only if B has a cobraiding. For good \mathcal{V} this is part of a bijection.
(Good: the maps $b \otimes 1: I \otimes X \rightarrow B \otimes X$ are jointly epi.)

Quantum examples

For bialgebra B in braided monoidal \mathcal{V}, recall that braidings on
Comod B correspond to cobraidings (coquasitriangular structures) on B.

Let $\mathcal{V}[B]$ be the warped skew monoidal structure with $X * Y=B \otimes X \otimes Y$.

Theorem

$\mathcal{V}[B]$ has a braiding if and only if B has a cobraiding. For good \mathcal{V} this is part of a bijection.
(Good: the maps $b \otimes 1: I \otimes X \rightarrow B \otimes X$ are jointly epi.)
There are also results for more general skew warpings (not arising from a bialgebra).

2-categorical examples

All of them are symmetric.

2-categorical examples

All of them are symmetric.
[from earlier slide] More generally, if T is an accessible pseudocommutative 2-monad on Cat, then there is a skew monoidal structure on the 2-category of T-algebras (with strict morphisms).

- symmetric monoidal categories
- permutative categories
- braided monoidal categories categoires equipped with an action by a fixed symmetric monoidal category
- categories with chosen limits (or colimits) of some given type.

Braided monoidal bicategories

Theorem

Let \mathcal{C} be a braided skew monoidal 2-category, for which the structure maps a, ℓ, and r are pointwise equivalences. Then \mathcal{C} is a braided monoidal bicategory.

Theorem

Let \mathcal{C} be a symmetric skew monoidal 2-category, for which the structure maps a, ℓ, and r are pointwise equivalences. Then \mathcal{C} is a symmetric monoidal bicategory.

Corollary

Our 2-categorical examples are symmetric monoidal bicategories.

