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Quantum examples

B bialgebra in a braided monoidal category V.
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“Warped” tensor product X ∗ Y := B ⊗ X ⊗ Y with same unit
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In Vect, can characterize bialgebras in terms of closed skew
monoidal structures
And closed skew monoidal structures on ModR correspond to
bialgebroids with base algebra R.
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2-categorical example
FProds is the 2-category consisting of

I categories with chosen finite products

I functors strictly preserving these

I natural transformations

Write [A,B] ∈ FProds for the category of finite-product-preserving
functors.
Morphisms A1 → [A2,B] in FProds correpond to functors
A1 × A2 → B which preserve finite products in each variable, but
strictly in the first variable.
Such “bilinear maps” correspond to maps A1 ⊗ A2 → B in FProds
for a suitable choice of tensor product.
Let I = Sop for a skeletal category of finite sets. This is free on 1
in FProds, so have

FProds(I ⊗ A,B) ∼= FProds(I , [A,B]) ∼= [A,B]

FProds becomes skew monoidal (2-category)
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2-categorical examples

More generally, if T is an accessible pseudocommutative 2-monad
on Cat, then there is a skew monoidal structure on the 2-category
of T -algebras (with strict morphisms).
The unit is T1. Tensoring on the left with T1 classifies weak
morphisms.

I symmetric monoidal categories

I permutative categories

I braided monoidal categories categories equipped with an
action by a fixed symmetric monoidal category

I categories with chosen limits (or colimits) of some given type.

Corollary

The 2-category of T -algebras with pseudo morphisms is a
monoidal bicategory.
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A symmetry for FProds

(A1 ⊗ A2)⊗ A3 → B in FProds ⇔ “trilinear” A1 × A2 × A3 → B
(strict in first variable)

Permuting 2nd and 3rd variables gives a new trilinear map
This induces isomorphisms

s : (A1 ⊗ A2)⊗ A3 → (A1 ⊗ A3)⊗ A2

On the other hand A1 ⊗ A2 is not isomorphic to A2 ⊗ A1.

More generally, if A1A2 . . .An is left-bracketed, have an action by
all π ∈ Sn which fix first element
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Braided skew monoidal categories

A braiding on a skew monoidal category consists of natural
isomorphisms

s : (XA)B → (XB)A

subject to 4 coherence conditions including

((XA)B)C

((XB)A)C

((XB)C )A

(XA)(BC )

(X (BC ))A

s1

s

a1

a

s

((XA)B)C

(X (AB))C

X ((AB)C )

((XA)C )B

(X (AC ))B

X ((AC )B)

a1

a

1s

s

a1

a

(others are Yang-Baxter, and first of these for s−1)

If s ◦ s = 1 then s is a symmetry.



Related structures

There are analogous notions of:

I skew closed category (Street)

I skew multicategory — involves tight and loose multimaps

(A1A2)A3 B ((IA1)A2)A3 B
“tight” “loose”

Braidings make sense for these as well.

I [X , [Y ,Z ]] ∼= [Y , [X ,Z ]]

I permuting inputs of multimaps

The fact that a braided skew monoidal category gives rise to a
braided skew multicategory is a sort of coherence result.
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Boring examples

Proposition

For an actual monoidal category, the two notions of braiding are
equivalent.

Proof.

(IA)B (IB)A

AB BA

`1`1

s

c

Proposition

A braided skew monoidal category for which the left unit map is
invertible is monoidal.
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Quantum examples

For bialgebra B in braided monoidal V, recall that braidings on
ComodB correspond to cobraidings (coquasitriangular structures)
on B.

Let V[B] be the warped skew monoidal structure with
X ∗ Y = B ⊗ X ⊗ Y .

Theorem

V[B] has a braiding if and only if B has a cobraiding.
For good V this is part of a bijection.

(Good: the maps b ⊗ 1: I ⊗ X → B ⊗ X are jointly epi.)

There are also results for more general skew warpings (not arising
from a bialgebra).
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2-categorical examples

All of them are symmetric.

[from earlier slide] More generally, if T is an accessible
pseudocommutative 2-monad on Cat, then there is a skew
monoidal structure on the 2-category of T -algebras (with strict
morphisms).

I symmetric monoidal categories

I permutative categories

I braided monoidal categories categoires equipped with an
action by a fixed symmetric monoidal category

I categories with chosen limits (or colimits) of some given type.
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Braided monoidal bicategories

Theorem

Let C be a braided skew monoidal 2-category, for which the
structure maps a, `, and r are pointwise equivalences. Then C is a
braided monoidal bicategory.

Theorem

Let C be a symmetric skew monoidal 2-category, for which the
structure maps a, `, and r are pointwise equivalences. Then C is a
symmetric monoidal bicategory.

Corollary

Our 2-categorical examples are symmetric monoidal bicategories.


