Stone Representation Theorem for Boolean Algebras in the Topos of (Pre)Sheaves on a Monoid

S. Sepahani M. Mahmoudi

Department of Mathematics Shahid Beheshti University Tehran

CT, 13 July 2018

S. Sepahani, M. Mahmoudi (Shahid BeheshtiStone Representation Theorem for Boolean A

CT, 13 July 2018 1 / 20

Boolean Algebras in a localic topos Banaschewski, Bhutani; 1986 Borceux, Peddicchio, Rossi; 1990

The Category **MSet**

- MSet \simeq Set^M
- Limits as in Set
- The subobject classifier $\Omega = \{K | K \text{ is a left ideal of } M\}$

• $mK = \{x \in M | xm \in K\}$

- Exponentiation $B^A = \{f | f : M \times A \rightarrow B : f \text{ is equivariant}\} = \{f | f = (f_s) : \forall s, t \in M, f_s : A \rightarrow B, tf_s = f_{ts}t\}$
- Free functor $F : \mathbf{Set} \to \mathbf{MSet}$: $F(X) = M \times X$ m(n, x) = (mn, x)
- Cofree functor *H* : Set → MSet: *H*(*X*) = {*f* : *M* → *X*} (*mf*)(*n*) = *f*(*nm*) *H*(2) = *P*(*M*), *mX* = {*x* ∈ *M*|*xm* ∈ *X*} *H* : Boo → MBoo
- Monomorphisms in MSet are equivariant one-one maps

1 = nar

A family $C = (C_X)_{X \in MSet}$, with $C_X : Sub(X) \to Sub(X)$ taking $Y \leq X$ to $C_X(Y)$, is called a closure operator on *M*Set if it satisfies the following:

- (Extension) $Y \leq C_X(Y)$
- $(\text{Monotonicity}) \ Y_1 \leq Y_2 \Rightarrow C_X(Y_1) \leq C_X(Y_2)$
- (Continuity) $f(C_X(Y)) \leq C_Z(f(X))$ for all morphisms $f: X \to Z$

and we say that C is idempotent if additionally we have $C_X(C_X(Y)) = Y$ for every $Y \leq X$

for $Y \leq X$, Y is said to be

- closed in X if $C_X(Y) = Y$
- dense in X if $C_X(Y) = X$

5 1 SQC

Let $A \hookrightarrow B$. $C^{I}(A) = \{b \in B | \forall s \in I, sb \in A\}$

• C¹ is idempotent iff I is idempotent

Let $A \hookrightarrow B$. $C^{I}(A) = \{ b \in B | \forall s \in I, sb \in A \}$

C^I is idempotent iff I is idempotent
 j^I(K) = {x ∈ M | ∀s ∈ I, sx ∈ K}

Let
$$A \hookrightarrow B$$
. $C^{I}(A) = \{b \in B | \forall s \in I, sb \in A\}$

- C¹ is idempotent iff I is idempotent
- $j'(K) = \{x \in M | \forall s \in I, sx \in K\}$
- $m: Y \rightarrow X$ is *I*-dense if $\forall s \in I, \forall x \in X, sx \in Y$

 $A \in \mathbf{MSet}$ is an *I*-separated object if for every dense monomorphism *m*, any two equivariant maps from *C* to *A* making the diagram commutative are equivalent. *A* is an *I*-sheaf if this map uniquely exists for every *I*-dense *m* and every *f*.

 $A \in \mathbf{MSet}$ is an *I*-separated object if for every dense monomorphism *m*, any two equivariant maps from *C* to *A* making the diagram commutative are equivalent. *A* is an *I*-sheaf if this map uniquely exists for every *I*-dense *m* and every *f*.

 $A \in \mathbf{MSet}$ is an *I*-separated object if for every dense monomorphism *m*, any two equivariant maps from *C* to *A* making the diagram commutative are equivalent. *A* is an *I*-sheaf if this map uniquely exists for every *I*-dense *m* and every *f*.

Remark

A is I-separated iff $\forall a, b \in A, (\forall s \in I, sa = sb \Rightarrow a = b)$

- Sh_i/**MSet** is closed under limits in **MSet**.
- Sh_{jl} **MSet** is closed under exponentiation in **MSet**.
- Ω_{j'} = Eq(j', id_Ω) is the subobject classifier of Sh_{j'} MSet
 Ω_{j'} ≤ im(j')

- Sh_i/**MSet** is closed under limits in **MSet**.
- Sh_j **MSet** is closed under exponentiation in **MSet**.
- Ω_{j'} = Eq(j', id_Ω) is the subobject classifier of Sh_{j'} MSet
 Ω_{j'} ≤ im(j')

Sh_j, **MSet** is a topos.

Theorem

(Adamek, Herrlich, Strecker) If \mathcal{E} is strongly complete and co-wellpowered, then the following conditions are equivalent for any functor $G : \mathcal{E} \to \mathcal{F}$:

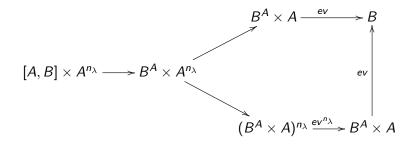
- G is adjoint
- G preserves small limits and is cowellpowered.

Proposition

(Johnstone) Let \mathcal{E} be a cartesian closed category, and \mathcal{L} be a reflective subcategory of \mathcal{E} , corresponding to a reflector L on \mathcal{E} . Then \mathcal{L} preserves finite products iff \mathcal{L} is an exponential ideal of \mathcal{E} .

- MBoo
- *Sh*_j**Boo**
- $H : \mathbf{Set} \to \mathbf{MSet}$ can be lifted to $H : \mathbf{Boo} \to \mathbf{MBoo}$
- An internal counterpart for Ult(A) for a Boolean algebra A.

Internal hom Object



In $BooSh_{j'}MSet$ we have the following explicit definition for [A, B] $[A, B] = \{(f_s)_{s \in M} | \text{for every } s \in M, f_s : A \rightarrow B$ is a Boolean homomorphism, $\forall s, t \in M, tf_s = f_{ts}t\}$

Example

 $f : A \to B$ Boolean homomorphism for $A, B \in MSet$. Let $f_e = f$ and for every $s \in M$, $f_s = sfs^{-1}$. Then $(f_s)_{s \in M} \in [A, B]$.

In Set

The initial Boolean algebra is 2, the two-element Boolean algebra.

In MSet

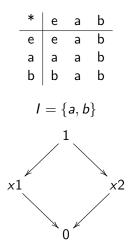
The initial Boolean algebra is $\mathbf{2}$. i.e. The two-element Boolean algebra with identity action of M.

in *BooSh_i* **MSet**

The initial Boolean algebra is the sheaf reflection of **2** which is the *I*-closure of **2** in $\Omega_{j'}^2$:

$$\mathbf{ar{2}} = \{f \in \Omega^{\mathbf{2}}_{i'} : orall s \in I, sf \in \mathbf{2}\}$$

Example



CT, 13 July 2018 13 / 2

三日 のへの

Lemma

If for the monoid M and its right ideal I we have that

 $\exists s \in I \forall t \in M, Ms \cap Mst \neq \emptyset$

then **2** is injective with respect to all *I*-dense monomorphisms and $ar{2}=2$

Lemma

If for the monoid M and its right ideal I we have that $2 = \overline{2}$ then

 $\forall t \in M, Mt \cap MI \neq \emptyset$

Lemma

The functor $\mathcal{U}lt(-)$: **Boo** \rightarrow **Set** is left adjoint to the functor $\mathcal{P}(-)$: **Set** \rightarrow **Boo**.

 $s: A \to \mathcal{P}(\mathcal{U}lt(A))$ is the unit of the adjunction at A. $s(a)(\alpha) = \alpha(a)$.

$$\mathcal{P}(\mathcal{U}|t(A)) \times \mathcal{U}|t(A) \longrightarrow \mathbf{2}$$

$$s(a) \times id_{\mathcal{U}|t(A)} \uparrow f$$

$$A \times \mathcal{U}|t(A)$$

$$f(a, \alpha) = \alpha(a)$$

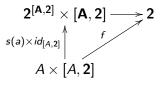
313 990

Stone Map in **MSet**

Lemma

The functor $[-,2]:MBoo \to MSet$ is left adjoint to the functor $2^{(-)}:MSet \to MBoo.$

Let $s : A \to \mathbf{2}^{[A,2]}$ be the unit of the adjunction at $A : A \to \mathbf{2}^{[A,2]}$. i.e. $s(a)(m, \alpha) = \alpha_e(ma)$.



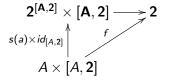
$$f(a, \alpha) = \alpha(e, a) = \alpha_e(a)$$

Stone Map in **MSet**

Lemma

The functor $[-,2]:MBoo \to MSet$ is left adjoint to the functor $2^{(-)}:MSet \to MBoo.$

Let $s : A \to \mathbf{2}^{[A,2]}$ be the unit of the adjunction at $A : A \to \mathbf{2}^{[A,2]}$. i.e. $s(a)(m, \alpha) = \alpha_e(ma)$.



$$f(a, \alpha) = \alpha(e, a) = \alpha_e(a)$$

s is an embedding iff $\forall a \neq b \in A, \exists (m, \alpha) \in M \times [A, 2]$ s.t. $s(a)(m, \alpha) \neq s(b)(m, \alpha)$ or equivalently $\alpha_e(ma) \neq \alpha_e(mb)$

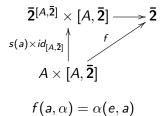
∃|= 𝒴𝔄

Stone Map in $Sh_{i'}$ **MSet**

Lemma

The functor $[-, \overline{2}]$: $BooSh_{j'}MSet \rightarrow Sh_{j'}MSet$ is left adjoint to the functor $\overline{2}^{(-)}$: $Sh_{j'}MSet \rightarrow BooSh_{j'}MSet$.

Let $s : A \to \overline{2}^{[A,\overline{2}]}$ be the unit of the adjucation at $A : A \to \overline{2}^{[A,\{\overline{2}]}$. i.e. $s(a)(m, \alpha) = \alpha_e(ma)$.



Theorem

For a monoid M T.F.A.E.

- s is an embedding for every $A \in MBoo$;
- s is an embedding for H(2);
- M is a group.

Summary

- The Stone Representation Theorem holds in **MBoo** iff **MSet** is Boolean.
- Still to be done
 - When is the Stone map an embedding in BooSh_i MSet?

Definition

```
(X, \mathcal{T}) a topological space object. X \in \mathbf{MSet}, \ \mathcal{T} \leq \Omega^X
• f_{\alpha} \in \mathcal{T}
```

- $f_M \in \mathcal{T}$
- for every index set I, if $\forall i \in I, f_i \in \mathcal{T}$ then $\bigvee_{i \in I} f_i \in \mathcal{T}$
- for every finite index set I, if $\forall i \in I, f_i \in \mathcal{T}$ then $\bigwedge_{i \in I} f_i \in \mathcal{T}$

so we have a compatible family of topologies.

Define a Stone space in MSet and in $Sh_{j^l}MSet$. (Neighborhood, zero-dimensionality, Hausdorffness,...)

Axiom of choice

References I

- B. Banaschewski, K. R. Bhutani, Boolean algebras in a localic topos, *Math. Proc. Cambridge Philos. Soc.*, 100 (1986) 43–55.
- F. Borceux, M. C. Pedicchio, F. Rossi, Boolean algebras in a localic topos, *J. Pure Appl. Algebra* 68 (1990) 55–65.
- M. M. Ebrahimi, Algebras in a topos of sheaves, Ph.D. Thesis, *McMaster University*, 1980.
- M. M. Ebrahimi, Internal completeness and injectivity of Boolean algebras in the topos of *M*-Sets, *Bull. Aust. Math. Soc.* 41 (1990) 323–332.
- M. M. Ebrahimi, On ideal closure operators of *M*-Sets, *Southeast Asian Bull. Math.* 30 (3) (2006) 439–444.
- P. T. Johnstone, Sketches of an Elephant: A Topos Theory Compendium, Oxford Logic Guides, *Clarendon Press*, 2002.

ELE NOR