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The idea

For many types of mathematical object, there is a canonical notion of size.

• Sets have cardinality. It satisfies

|S ∪ T | = |S |+ |T | − |S ∩ T |
|S × T | = |S | × |T | .

• Subsets of Rn have volume. It satisfies

vol(S ∪ T ) = vol(S) + vol(T )− vol(S ∩ T )

vol(S × T ) = vol(S)× vol(T ).

• Topological spaces have Euler characteristic. It satisfies

χ(S ∪ T ) = χ(S) + χ(T )− χ(S ∩ T ) (under hypotheses)

χ(S × T ) = χ(S)× χ(T ).
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Stephen Schanuel:
Euler characteristic is the topological analogue of cardinality.
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examples.
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1. The cardinality of a colimit



The problem

Some familiar formulas for cardinalities of finite sets:

• Inclusion-exclusion formula:

|S ∪ T | = |S |+ |T | − |S ∩ T |

• Orbits of a group acting freely:

|S/G | = |S | / |G | .

Problem Given a finite category A, are there ‘weights’
(
w(a)

)
a∈A such that

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet?

Obviously not for an arbitrary X , but maybe under restrictions on X . . .



The problem
Some familiar formulas for cardinalities of finite sets:

• Inclusion-exclusion formula:

|S ∪ T | = |S |+ |T | − |S ∩ T |

• Orbits of a group acting freely:

|S/G | = |S | / |G | .

Problem Given a finite category A, are there ‘weights’
(
w(a)

)
a∈A such that

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet?

Obviously not for an arbitrary X , but maybe under restrictions on X . . .



The problem
Some familiar formulas for cardinalities of finite sets:

• Inclusion-exclusion formula:

|S ∪ T | = |S |+ |T | − |S ∩ T |

• Orbits of a group acting freely:

|S/G | = |S | / |G | .

Problem Given a finite category A, are there ‘weights’
(
w(a)

)
a∈A such that

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet?

Obviously not for an arbitrary X , but maybe under restrictions on X . . .



The problem
Some familiar formulas for cardinalities of finite sets:

• Inclusion-exclusion formula:

|S ∪ T | = |S |+ |T | − |S ∩ T |

• Orbits of a group acting freely:

|S/G | = |S | / |G | .

Problem Given a finite category A, are there ‘weights’
(
w(a)

)
a∈A such that

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet?

Obviously not for an arbitrary X , but maybe under restrictions on X . . .



The problem
Some familiar formulas for cardinalities of finite sets:

• Inclusion-exclusion formula:

|S ∪ T | = |S |+ |T | − |S ∩ T |

• Orbits of a group acting freely:

|S/G | = |S | / |G | .

Problem Given a finite category A, are there ‘weights’
(
w(a)

)
a∈A such that

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet?

Obviously not for an arbitrary X , but maybe under restrictions on X . . .



The problem
Some familiar formulas for cardinalities of finite sets:

• Inclusion-exclusion formula:

|S ∪ T | = |S |+ |T | − |S ∩ T |

• Orbits of a group acting freely:

|S/G | = |S | / |G | .

Problem Given a finite category A, are there ‘weights’
(
w(a)

)
a∈A such that

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet?

Obviously not for an arbitrary X , but maybe under restrictions on X . . .



A solution

Given a finite category A, write ZA for the obA× obA matrix with entries

ZA(a, b) = |A(a, b)| .

Definition Let Z be a matrix. A weighting on Z is a column vector w such

that Zw =

1
...
1

.

E.g. A weighting on ZA is a family
(
w(a)

)
a∈A in Q such that∑

b

|A(a, b)|w(b) = 1

for all a ∈ A.

Theorem Let A be a finite category and w a weighting on ZA. Then

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet that is a coproduct of representables.
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Examples
Theorem Let A be a finite category and w a weighting on ZA. Then

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet that is a coproduct of representables.

Examples

• A discrete: unique weighting is w(a) ≡ 1, and Theorem gives
|
∐

a X (a)| =
∑

a |X (a)|.

• A =

• //

��

•

•
: unique weighting is

− 1 1

1

, and Theorem gives

the inclusion-exclusion formula.

• A = G (one-object category): unique weighting is 1/order(G ), and
Theorem gives cardinality formula for free group action.

Remarks The theory connects to Möbius–Rota inversion for posets.

Ponto and Shulman have a more sophisticated version of the theorem.
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What if . . . ?
Theorem Let A be a finite category and w a weighting on ZA. Then

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet that is a coproduct of representables.

Question What if we put the constant functor X = ∆1 into the formula?

Usually ∆1 is not a coproduct of representables, and equality fails.

But the right-hand side still calculates something. It’s a number associated
with the category A: ∑

a∈A
w(a).

E.g. If A is discrete then w(a) ≡ 1, so
∑

w(a) is the number of objects.

What does
∑

w(a) mean in general?



What if . . . ?
Theorem Let A be a finite category and w a weighting on ZA. Then

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet that is a coproduct of representables.

Question What if we put the constant functor X = ∆1 into the formula?

Usually ∆1 is not a coproduct of representables, and equality fails.

But the right-hand side still calculates something. It’s a number associated
with the category A: ∑

a∈A
w(a).

E.g. If A is discrete then w(a) ≡ 1, so
∑

w(a) is the number of objects.

What does
∑

w(a) mean in general?



What if . . . ?
Theorem Let A be a finite category and w a weighting on ZA. Then

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet that is a coproduct of representables.

Question What if we put the constant functor X = ∆1 into the formula?

Usually ∆1 is not a coproduct of representables, and equality fails.

But the right-hand side still calculates something. It’s a number associated
with the category A: ∑

a∈A
w(a).

E.g. If A is discrete then w(a) ≡ 1, so
∑

w(a) is the number of objects.

What does
∑

w(a) mean in general?



What if . . . ?
Theorem Let A be a finite category and w a weighting on ZA. Then

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet that is a coproduct of representables.

Question What if we put the constant functor X = ∆1 into the formula?

Usually ∆1 is not a coproduct of representables, and equality fails.

But the right-hand side still calculates something. It’s a number associated
with the category A: ∑

a∈A
w(a).

E.g. If A is discrete then w(a) ≡ 1, so
∑

w(a) is the number of objects.

What does
∑

w(a) mean in general?



What if . . . ?
Theorem Let A be a finite category and w a weighting on ZA. Then

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet that is a coproduct of representables.

Question What if we put the constant functor X = ∆1 into the formula?

Usually ∆1 is not a coproduct of representables, and equality fails.

But the right-hand side still calculates something. It’s a number associated
with the category A: ∑

a∈A
w(a).

E.g. If A is discrete then w(a) ≡ 1, so
∑

w(a) is the number of objects.

What does
∑

w(a) mean in general?



What if . . . ?
Theorem Let A be a finite category and w a weighting on ZA. Then

|colim X | =
∑
a∈A

w(a) |X (a)|

for any functor X : A→ FinSet that is a coproduct of representables.

Question What if we put the constant functor X = ∆1 into the formula?

Usually ∆1 is not a coproduct of representables, and equality fails.

But the right-hand side still calculates something. It’s a number associated
with the category A: ∑

a∈A
w(a).

E.g. If A is discrete then w(a) ≡ 1, so
∑

w(a) is the number of objects.

What does
∑

w(a) mean in general?



2. The magnitude of a category



The magnitude of a matrix

Definition Let Z be a matrix. Suppose both Z and ZT admit a weighting.
The magnitude of Z is the total weight

|Z | =
∑
i

wi ,

where w = (wi ) is any weighting on Z .

(Easy lemma: this is independent of the weighting chosen.)

Important special case If Z is invertible then it has a unique weighting, and

|Z | =
∑
i ,j

(
Z−1

)
ij
.
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The magnitude of a category

Let A be a finite category. The magnitude (or Euler characteristic) of A is

|A| = |ZA| ∈ Q.

It is defined as long as ZA and ZT
A both admit weightings over Q.

Examples

• If A is discrete then |A| = cardinality(obA).
• If A is a monoid M (as one-object category) then |A| = 1/order(M).
• If A is a groupoid then

|A| =
∑
a

1/order(Aut(a)),

where the sum is over representatives of iso classes: the groupoid
cardinality. (‘E.g.’ |finite sets & bijections| = e = 2.718 . . ..)

• If A =
(
•⇒ •

)
then

ZA =

(
1 2
0 1

)
, Z−1A =

(
1 −2
0 1

)
,

and |A| = 1 + (−2) + 0 + 1 = 0.
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Relation to topological Euler characteristic

Recall Every small category A has a classifying space BA ∈ Top.

Theorem Let A be a category whose nerve has only finitely many
nondegenerate simplices. Then

χ(BA) = |A| .

E.g. If A =

(
• ^

�
•
)

then BA = S1 and χ(S1) = 0 = |A|.

Other theorems connect magnitude of categories to Euler characteristic of
manifolds — and more generally, orbifolds (whose Euler characteristics are
usually 6∈ Z).
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Theorems on magnitude of categories

• If A
//

⊥ Boo and each has well-defined magnitude then |A| = |B|.

• Corollary: if A has an initial or terminal object then |A| = 1.

• |
∏

i Ai | =
∏

i |Ai | and |
∐

i Ai | =
∑

i |Ai | (plus similar, more
sophisticated, results).
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3. The magnitude of an enriched
category



The idea

To define the magnitude of a finite category A, we used the matrix ZA with
entries

ZA(a, b) = |A(a, b)| .

The right-hand side is the cardinality of a finite set.

So:

starting from the notion of the size of an object of FinSet,

we obtained a notion of the size of a category enriched in FinSet.

Idea: Do the same with an arbitrary monoidal
category in place of FinSet.
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The definition

Let V be a monoidal category and k a (semi)ring.

Let

| · | :
ob V
∼=
→ k

be a monoid homomorphism (so |x ⊗ y | = |x | |y | and |I | = 1).

Given a V -category A with finitely many objects, write ZA for the
obA× obA matrix with entries

ZA(a, b) = |A(a, b)| .

The magnitude of A is |A| = |ZA| ∈ k (if defined).

E.g. Take V = FinSet, k = Q, and | · | = card: then we recover the
definition of the magnitude of a finite category.
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The magnitude of a linear category

Let F be a field and V = FDVectF . For X ∈ V , put |X | = dim X ∈ Q.

Get notion of the magnitude |A| ∈ Q of a finite linear category A.

Example Let E be an associative algebra over F .

An important linear category associated with E is

IP(E ) = (indecomposable projective E -modules) ⊆full E -Mod.

Theorem (with Chuang and King) Under finiteness hypotheses,

|IP(E )| =
∞∑
n=0

(−1)n dim ExtnE (S ,S),

where S is the direct sum of the simple E -modules.

(The matrix ZIP(E) is known as the ‘Cartan matrix’ of E .
The sum

∑
(−1)n · · · is known as the ‘Euler form’ of E at (S ,S).)
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Theorem (with Chuang and King) Under finiteness hypotheses,

|IP(E )| =

∞∑
n=0

(−1)n dim ExtnE (S , S),

where S is the direct sum of the simple E -modules.

(The matrix ZIP(E) is known as the ‘Cartan matrix’ of E .
The sum

∑
(−1)n · · · is known as the ‘Euler form’ of E at (S ,S).)
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The magnitude of a metric space

Let V = ([0,∞],≥,+, 0), so that metric spaces are V -categories.

Define | · | : [0,∞]→ R by |x | = e−x .

(Why? So that |x + y | = |x | |y | and |0| = 1.)

Get notion of the magnitude |A| ∈ R of a finite metric space A.

Explicitly: to compute the magnitude of a metric space A = {a1, . . . , an}:

• write down the n × n matrix with (i , j)-entry e−d(ai ,aj )

• invert it

• add up all n2 entries.
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The magnitude of a finite metric space: first examples

• |∅| = 0.

• |•| = 1.

•
∣∣•← `→•

∣∣ = sum of entries of

(
e−0 e−`

e−` e−0

)−1
=

2

1 + e−`

0

1

2

`

• If d(a, b) =∞ for all a 6= b then |A| = cardinality(A).

Slogan: Magnitude is the ‘effective number of points’
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Example: a 3-point space (Simon Willerton)

Take the 3-point space

A =

• When t is small, A looks like a 1-point space.
• When t is moderate, A looks like a 2-point space.
• When t is large, A looks like a 3-point space.
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Example: a 3-point space (Simon Willerton)
Take the 3-point space

A =

• When t is small, A looks like a 1-point space.
• When t is moderate, A looks like a 2-point space.
• When t is large, A looks like a 3-point space.

Indeed, the magnitude of A as a function of t is:



Magnitude functions

Magnitude assigns to each metric space not just a number, but a function.

For t > 0, write tA for A scaled up by a factor of t.

The magnitude function of a metric space A is the partial function

(0,∞) → R
t 7→ |tA| .

E.g.: the magnitude function of A = (•← `→•) is

0

1

2
|tA|

t

2/(1 + e−`t)

A magnitude function has only finitely many singularities (none if A ⊆ Rn).

It is increasing for t � 0, and lim
t→∞

|tA| = cardinality(A).
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The magnitude of a compact metric space

In principle, magnitude is only defined for enriched categories with finitely
many objects — here, finite metric spaces.

Can the definition be extended to, say, compact metric spaces?

Theorem (Mark Meckes)
All sensible ways of extending the definition of magnitude
from finite metric spaces to compact ‘positive definite’ spaces
are equivalent.

Proof Uses functional analysis.

Definition of ‘positive definite’ omitted here, but includes all subspaces of Rn

with Euclidean or `1 (taxicab) metric, and many other common spaces.

The magnitude of a compact positive definite space A is

|A| = sup{|B| : finite B ⊆ A}.
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Magnitude of a compact space: examples

E.g. Line segment: |t[0, `]| = 1 + 1
2` · t.

Sample theorem Let A ⊆ R2 be a convex body with the `1 (taxicab) metric.
Then

|tA| = χ(A) + 1
4perimeter(A) · t + 1

4area(A) · t2.

There’s a similar theorem in higher dimensions.
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Magnitude encodes geometric information

Let A be a compact subset of Rn, with Euclidean metric.

Theorem (Meckes) From the magnitude function of A, you can recover the
Minkowski dimension of A.

Proof Uses a deep theorem from potential analysis, plus the notion of
maximum diversity.

Theorem (Barceló and Carbery) From the magnitude
function of A, you can recover the volume of A.

Proof Uses PDEs and Fourier analysis.

Theorem (Gimperlein and Goffeng) From the magnitude
function of A, you can recover the surface area of A.

(Needs n odd and some regularity hypotheses.)

Proof Uses heat trace asymptotics (techniques related to the heat equation
proof of the Atiyah–Singer index theorem).
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Theorem (Gimperlein and Goffeng) Let A,B ⊆ Rn, subject to technical
hypotheses. Then
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as t →∞.

Magnitude of metric spaces doesn’t literally obey inclusion-exclusion, as that
would make it trivial.
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Digression: (bio)diversity

Conceptual question Given an ecological community, consisting of individuals
grouped into species, how can we reasonably quantify its ‘diversity’?

Simplest answer Count the number n of species present.

(Mathematically: cardinality of a finite set.)

Better answer Use the relative abundance distribution p = (p1, . . . , pn) of
species.

For any choice of parameter q ∈ R+, can quantify diversity as

Dq(p) =

(∑
i

pq
i

)1/(1−q)
.

(E.g. if p = (1/n, . . . , 1/n) then Dq(p) = n.)

(Mathematically: ∼entropy of a probability distribution on a finite set.)
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Even better answer Also use the matrix Z of similarities between species.

For any choice of parameter q ∈ R+, can quantify diversity as

DZ
q (p) =

(∑
i

pi (Zp)q−1i

)1/(1−q)
.

The formula is not important here. But. . .

Discovery (with Christina Cobbold) Most of the biodiversity
measures most commonly used in ecology are special cases of DZ

q .

(Mathematically: ∼entropy of a probability distribution on a finite metric
space.)
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Digression: (bio)diversity

The maximization problem
Fix a list of species, with known similarity matrix Z .

What is the maximum diversity that can be achieved by varying the species
abundances? I.e., what is supp DZ

q (p)?

In principle, the answer depends on the parameter q.

Theorem (with Mark Meckes) The answer is independent of q.

So, supp DZ
q (p) is a canonical number associated with the matrix Z

— the maximum diversity Dmax(Z ) of Z .

Fact Dmax(Z ) is the magnitude of some submatrix of Z .

Conclusion: Magnitude is closely related to
maximum diversity.
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End of digression

. . . back to magnitude of V -categories



The magnitude of a graph

Any graph A can be viewed as a metric space:

• points are vertices

• distances are shortest path-lengths (which are integers!).

The magnitude of the graph A is the magnitude of this metric space.

Fact The magnitude function t 7→ |tA| is a rational function over Z of the
formal variable x = e−t .

It can also be expanded as a power series in x over Z.
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The magnitude of a graph: examples and theorems

Examples∣∣∣∣ ∣∣∣∣ =

∣∣∣∣ ∣∣∣∣ =

∣∣∣∣ ∣∣∣∣ =
5 + 5x − 4x2

(1 + x)(1 + 2x)

= 5− 10x + 16x2 − 28x3 + · · ·

Sample theorems:

• |A⊗ B| = |A| · |B|, where ⊗ is a certain graph product

• |A ∪ B| = |A|+ |B| − |A ∩ B|, under quite strict hypotheses

• Graph magnitude has other invariance properties shared with the Tutte
polynomial.
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Magnitude of other enriched categories

Magnitude of n-categories

• Start with the notion of the size (cardinality) of a finite set.

• Taking V = FinSet, automatically get notion of the size (magnitude)
of a finite 1-category.

• Taking V = FinCat, automatically get notion of the size (magnitude)
of a finite 2-category.

• . . .

• Automatically get notion of the size (magnitude) of a finite n-category
(n <∞).

Almost nothing is known about this!

And what is the magnitude of an ∞-category?

Also What about other bases V of enrichment?
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4. Where’s the category theory?
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5. Magnitude homology:
a sketch



Two perspectives on Euler characteristic

So far: Euler characteristic has been treated as an analogue of cardinality.

Alternatively: Given any homology theory H∗ of any kind of object A,
can define

χ(A) =
∞∑
n=0

(−1)n rank Hn(A).

Note:

• χ(A) is a number

• H∗(A) is an algebraic structure, and functorial in A.

In this sense, homology is a categorification of Euler characteristic.
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The homology of an ordinary category

Let A be a small category.

Its nerve NA is a simplicial set.

Form the associated chain complex C∗(A) in the usual way.

The homology H∗(A) of A is the homology of C∗(A).

Theorem H∗(A) = H∗(BA).

Hence
∞∑
n=0

(−1)n rank Hn(A) =
∞∑
n=0

(−1)n rank Hn(BA) = χ(BA) = |A|.

Goal For a V -category A, define a ‘homology’ H∗(A) in such a way that

∞∑
n=0

(−1)n rank Hn(A) = |A| .

It can be done!
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The magnitude homology of a graph

Richard Hepworth and Simon Willerton defined the
magnitude homology of a graph A.

(Definition omitted here.)

Features:

• It’s a graded homology theory, i.e. each Hn(A) is a graded abelian group.

• Hence χ(A) =
∑

(−1)n rank Hn(A) is a sequence of integers.

• Viewing this sequence as a power series over Z, it is exactly the
magnitude of A.
So: magnitude homology categorifies magnitude.

• The formulas for |A⊗ B| and |A ∪ B| can be categorified to give
Künneth and Mayer–Vietoris theorems.

• Magnitude homology can distinguish between graphs that mere
magnitude cannot.
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Künneth and Mayer–Vietoris theorems.

• Magnitude homology can distinguish between graphs that mere
magnitude cannot.



The magnitude homology of a graph

Richard Hepworth and Simon Willerton defined the
magnitude homology of a graph A.

(Definition omitted here.)

Features:

• It’s a graded homology theory, i.e. each Hn(A) is a graded abelian group.

• Hence χ(A) =
∑

(−1)n rank Hn(A) is a sequence of integers.

• Viewing this sequence as a power series over Z, it is exactly the
magnitude of A.
So: magnitude homology categorifies magnitude.

• The formulas for |A⊗ B| and |A ∪ B| can be categorified to give
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The magnitude homology of an enriched category

Let V be a monoidal category.

Mike Shulman gave a general definition of the magnitude
homology H∗(A) of a V -category A.

(Definition omitted here.)

Features:

• It generalizes both homology of ordinary categories and magnitude
homology of graphs.

• The Euler characteristic of the magnitude homology H∗(A) is the
magnitude |A| (in a suitably formal sense).
So: magnitude homology categorifies magnitude.

• The general definition is a kind of Hochschild homology.

• There’s an accompanying cohomology theory.
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The magnitude homology of a metric space

In particular, the general definition gives a homology theory of metric spaces.

It’s a genuinely metric homology theory — not just topological.

Sample theorem For compact A ⊆ Rn,

H1(A) = 0 ⇐⇒ A is convex.

Very recent result of Nina Otter (arXiv paper last Wednesday):

magnitude homology is related to (but different from!)
persistent homology.
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