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Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.

§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc
§ is semi-abelian;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian

;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian

;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian

;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Hopf algebras as a semi-abelian category

No big results in this talk, just a few curious observations.

§ Let K be an algebraically closed field of characteristic 0.

§ HopfAlgK,coc the category of cocommutative Hopf algebras over K.
§ [Gran, Kadjo & Vercruysse, 2016] show that HopfAlgK,coc

§ is semi-abelian;
§ contains T = LieK and F = Gp as a torsion theory (T ,F ).

§ In fact it is (LACC) in the sense of [Gray, 2010], which makes it
“as good as groups, Lie algebras and crossed modules”.

What can be done for Hopf algebras in general?

§ This is the subject of my talk.

§ Strategy: understand split extensions, which give us protomodularity.

§ We first sketch the context where we shall be working.



Bialgebras and Hopf algebras

A K-coalgebra is a comonoid in (VectK,b,K), so a triple (X,∆X : X Ñ X b X, εX : X Ñ K)
where the comultiplication ∆X and the counit εX make the obvious diagrams commute.

The tensor product extends from VectK to the category CoAlgK, making it monoidal.
A bialgebra is a monoid (X,∆X, εX,mX, ηX) in (CoAlgK,b,K):
a vector space with compatible algebra and coalgebra structures.
A Hopf algebra comes with S : X Ñ X such thatmX˝(1X b S)˝∆X = ηX˝εX = mX˝(Sb1X)˝∆X.

Roughly, Hopf algebras are to bialgebras what groups are to monoids.
This becomes literally true in the cocommutative case:
A coalgebra (X,∆X, εX) is cocommutative when ∆X is a morphism of coalgebras.

In CoAlgK,coc we have ˆ = b and 1 = K, so that
§ a cocommutative bialgebra is an internal monoid in CoAlgK,coc
§ a cocommutative Hopf algebra is an internal group in CoAlgK,coc.

In [Montoli, Rodelo & VdL, 2018] a characterisation was obtained
of groups amongst monoids as the so-called protomodular objects.

Does this extend to Hopf algebras and bialgebras? Yes!
…in the cocommutative case [García-Martínez & VdL, 2017]
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Protomodularity

A Barr-exact category is semi-abelian when it is pointed, has binary sums
and is protomodular: the Split Short Five Lemma holds [Bourn, 1991].

This definition [Janelidze, Márki & Tholen, 2002] unifies “old” approaches towards
an axiomatisation of categories “close to Gp” such as [Higgins, 1956] and [Huq, 1968]

with “new” categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity.

Examples: Gp, varieties of Ω-groups, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C
˚-Alg, Setop˚ .

A point (f, s) over Y is a split epimorphism f : X Ñ Y
with a chosen splitting s : Y Ñ X.

PtY(X ) = (1Y Ó (X Ó Y)) is
the category of points over Y in X .

Y

1Y ��

s ,2 X

f��
Y

The Split Short Five Lemma is precisely the condition that the
pullback functor PtY(X ) Ñ Pt0(X ) – X reflects isomorphisms.

L � ,2 ,2

z�

��

Z

z�

����

K � ,2 k ,2

��

X

f

����

0

LR

,2 Y
LR

LR

0

LR

,2 Y
LR
s

LR

For the sake of this talk, a split extension (f, s, k) is a point (f, s) with k = ker(f).
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More on the Split Short Five Lemma

Proposition [Gran, Kadjo & Vercruysse, 2017]

In a morphism of split short exact sequences in HopfAlgK such as

0 ,2 K � ,2ker(g) ,2 Z

h
��

g
� ,2 Y ,2lrtlr 0

0 ,2 K � ,2
ker(f)

,2 X
f

� ,2 Y ,2lrslr 0,

the middle arrow h is always an isomorphism.

Sketch of proof. By [Molnar, 1977] we have X – K ¸ξ Y and Z – K ¸ξ1 Y for some actions ξ and ξ1.

In particular, h(k b y) = h(k b 1)h(1 b y) = (k b 1)(1 b y) = k b y, and h is a bijection. □
Does this mean that HopfAlgK is protomodular? No!
This result is strictly weaker than the Split Short Five Lemma, where f and g
are a priori not assumed to be cokernels of ker(f) and ker(g).

However, protomodularity does imply that f = coker(ker(f)) for every split epimorphism f.
So in a protomodular category, we can’t see the difference. Is HopfAlgK protomodular?
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Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y

§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X)

: split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f

� ,2 Ylr
slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.

§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong

,
so that split extensions » split short exact sequences.



Split extensions and strong points
Given a split extension 0 ,2 K � ,2 k ,2 X

f
,2,2 Ylr

slr ,2 0

§ in an abelian category, X – K ‘ Y
§ in the category of groups, X – K ¸ξ Y for some action ξ

§ in a semi-abelian category, X – K ¸ξ Y for some internal action ξ.

In either case, X = k(K) _ s(Y) in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

M
��
m
��

K k ,2

9D

X Yslr

Zd

A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

In a pointed finitely complete category C,
a point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.
§ C protomodular ô all points in C are strong,
so that split extensions » split short exact sequences.



Two proofs
M
��
m
��

K k ,2

9D

X Yslr

Zd
A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

A point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.

Proof. Consider a strong point (f, s) and g such that

g˝k = 0. k and s are jointly epic, so g˝s˝f˝k = 0 = g˝k

and g˝s˝f˝s = g˝s together imply g˝s˝f = g. □

0 ,2 K � ,2 k ,2 X

g
�$

f
,2,2 Y

g˝s

��

lrslr

Z

§ C protomodular ñ all points in C are strong.

Proof. The arrow L Ñ K is both a monomorphism
and a split epimorphism, hence it is an isomorphism.

m is then iso by the Split Short Five Lemma. □

K ,2 L � ,2 ,2

z�

��

M
z�m

z�

f˝m

����

K � ,2 ,2

��

X

f

����

0

LR

,2 Y
LR

LR

0

LR

,2 Y
LR

LR



Two proofs
M
��
m
��

K k ,2

9D

X Yslr

Zd
A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

A point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.

Proof. Consider a strong point (f, s) and g such that

g˝k = 0. k and s are jointly epic, so g˝s˝f˝k = 0 = g˝k

and g˝s˝f˝s = g˝s together imply g˝s˝f = g. □

0 ,2 K � ,2 k ,2 X

g
�$

f
,2,2 Y

g˝s

��

lrslr

Z

§ C protomodular ñ all points in C are strong.

Proof. The arrow L Ñ K is both a monomorphism
and a split epimorphism, hence it is an isomorphism.

m is then iso by the Split Short Five Lemma. □

K ,2 L � ,2 ,2

z�

��

M
z�m

z�

f˝m

����

K � ,2 ,2

��

X

f

����

0

LR

,2 Y
LR

LR

0

LR

,2 Y
LR

LR



Two proofs
M
��
m
��

K k ,2

9D

X Yslr

Zd
A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

A point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.

Proof. Consider a strong point (f, s) and g such that

g˝k = 0. k and s are jointly epic, so g˝s˝f˝k = 0 = g˝k

and g˝s˝f˝s = g˝s together imply g˝s˝f = g. □

0 ,2 K � ,2 k ,2 X

g
�$

f
,2,2 Y

g˝s

��

lrslr

Z

§ C protomodular ñ all points in C are strong.

Proof. The arrow L Ñ K is both a monomorphism
and a split epimorphism, hence it is an isomorphism.

m is then iso by the Split Short Five Lemma. □

K ,2 L � ,2 ,2

z�

��

M
z�m

z�

f˝m

����

K � ,2 ,2

��

X

f

����

0

LR

,2 Y
LR

LR

0

LR

,2 Y
LR

LR



Two proofs
M
��
m
��

K k ,2

9D

X Yslr

Zd
A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

A point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.

Proof. Consider a strong point (f, s) and g such that

g˝k = 0. k and s are jointly epic, so g˝s˝f˝k = 0 = g˝k

and g˝s˝f˝s = g˝s together imply g˝s˝f = g. □

0 ,2 K � ,2 k ,2 X

g
�$

f
,2,2 Y

g˝s

��

lrslr

Z

§ C protomodular ñ all points in C are strong.

Proof. The arrow L Ñ K is both a monomorphism
and a split epimorphism, hence it is an isomorphism.

m is then iso by the Split Short Five Lemma. □

K ,2 L � ,2 ,2

z�

��

M
z�m

z�

f˝m

����

K � ,2 ,2

��

X

f

����

0

LR

,2 Y
LR

LR

0

LR

,2 Y
LR

LR



Two proofs
M
��
m
��

K k ,2

9D

X Yslr

Zd
A pair (k, s) as on the left is jointly extremally epimorphic
when m mono implies m iso.

A point (f, s) is strong when for k = ker(f),
the pair (k, s) is jointly extremally epimorphic.

§ The split epimorphism in a strong point is always the cokernel of its kernel.

Proof. Consider a strong point (f, s) and g such that

g˝k = 0. k and s are jointly epic, so g˝s˝f˝k = 0 = g˝k

and g˝s˝f˝s = g˝s together imply g˝s˝f = g. □

0 ,2 K � ,2 k ,2 X

g
�$

f
,2,2 Y

g˝s

��

lrslr

Z

§ C protomodular ñ all points in C are strong.

Proof. The arrow L Ñ K is both a monomorphism
and a split epimorphism, hence it is an isomorphism.

m is then iso by the Split Short Five Lemma. □

K ,2 L � ,2 ,2

z�

��

M
z�m

z�

f˝m

����

K � ,2 ,2

��

X

f

����

0

LR

,2 Y
LR

LR

0

LR

,2 Y
LR

LR



Protomodular objects in BiAlgK,coc

§ A protomodular object is an object Y
for which each point

0 ,2 K � ,2 k ,2 X
f

,2,2 Ylr
slr

is stably strong.

§ A (pointed) category is protomodular
iff all of its objects are protomodular.

Theorem [García-Martínez & VdL, 2017]

K an algebraically closed field.
For a cocommutative K-bialgebra B, TFAE:
(i) B is a Hopf algebra;

(ii) all points over B are strong;

(iii) all points over B are stably strong.

Proof. A reduction to monoids/groups, where we

can use [Montoli, Rodelo & VdL, 2018]. □

BiAlgK,coc BiAlgK,c

HopfAlgK

BiAlgK

Does this extend to all Hopf algebras?
…to the commutative ones?
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Beyond cocommutativity: when is a bialgebra protomodular?

Never!

§ An object Y is unital when all

0 ,2 X � ,2x1X,0y ,2 X ˆ Y
πY

,2,2 Ylr
x0,1Yylr

are strong.

§ Much weaker than protomodularity,
common for “classical” algebraic
structures [Borceux & Bourn, 2004]:

§ A pointed variety of algebras is unital
iff there is a binary “Jónsson–Tarski”
operation + satisfying x+0 = x = 0+ x.

§ BiAlgK,coc is unital, as the category
of internal monoids in CoAlgK,coc.

Proposition
Y unital in BiAlgK ñ X ˆ Y – X b Y for all X

§ Hence Y is cocommutative, since
∆Y : Y Ñ Y b Y is the morphism of
bialgebras x1Y, 1Yy : Y Ñ Y ˆ Y.

§ K is protomodular in BiAlgK
iff all objects of BiAlgK are unital.

Proof. The upper point is strong

0 ,2 X � ,2 x1X,0y ,2 X ˆ Y

πX

��

πY

,2,2 Y

εY

��

lrx0,1Yylr

0 ,2 X X
εX

,2,2 Klr
ηXlr

iff the lower one is stably strong. □
§ Hence K is not protomodular.

§ Closure under retracts of the class
of protomodular objects now implies:

There are no protomodular objects in BiAlgK.
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Proof of the proposition

For any bialgebra X we may consider

X X b K
ρX

–
lr

1XbηY
,2 X b Y

1XbεYlr εXb1Y,2 K b Y
λY

–
,2

ηXb1Y
lr Y.

The comparison morphism

m = xρX˝(1X b εY), λY˝(εX b 1Y)y

makes the diagram

X b Y

m

��
X

x1X,0y
,2

(1XbηY)˝ρ
´1
X

5?

X ˆ Y Y
x0,1Yy

lr

(ηXb1Y)˝λ
´1
Y

_i

commute.

We prove that m is mono:
then Y unital implies that m is an isomorphism.

For h : Z Ñ X b Y in BiAlgK, we write

f = ρX˝(1X b εY)˝h : Z Ñ X

g = λY˝(εX b 1Y)˝h : Z Ñ Y

so that xf, gy = m˝h, and we prove
that h = (f b g)˝∆Z in VectK:

(f b g)˝∆Z

= (ρX b λY)˝(1X b εY b εX b 1Y)˝(h b h)˝∆Z

= (ρX b λY)˝(1X b εY b εX b 1Y)˝∆XbY˝h

= (ρX b λY)˝(1X b εY b εX b 1Y)˝(1X b τX,Y b 1Y)˝(∆X b ∆Y)˝h

= (ρX b λY)˝(1X b εX b εY b 1Y)˝(∆X b ∆Y)˝h

= (ρX b λY)˝(ρ´1
X b λ´1

Y )˝h = h.

Here ∆XbY˝h = (h b h)˝∆Z

since h is a coalgebra morphism.

Hence m˝h = m˝h1 ñ h = h1. □
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m = xρX˝(1X b εY), λY˝(εX b 1Y)y

makes the diagram

X b Y

m

��
X

x1X,0y
,2

(1XbηY)˝ρ
´1
X

5?

X ˆ Y Y
x0,1Yy

lr

(ηXb1Y)˝λ
´1
Y

_i

commute.

We prove that m is mono:
then Y unital implies that m is an isomorphism.

For h : Z Ñ X b Y in BiAlgK, we write

f = ρX˝(1X b εY)˝h : Z Ñ X

g = λY˝(εX b 1Y)˝h : Z Ñ Y

so that xf, gy = m˝h, and we prove
that h = (f b g)˝∆Z in VectK:

(f b g)˝∆Z

= (ρX b λY)˝(1X b εY b εX b 1Y)˝(h b h)˝∆Z

= (ρX b λY)˝(1X b εY b εX b 1Y)˝∆XbY˝h

= (ρX b λY)˝(1X b εY b εX b 1Y)˝(1X b τX,Y b 1Y)˝(∆X b ∆Y)˝h

= (ρX b λY)˝(1X b εX b εY b 1Y)˝(∆X b ∆Y)˝h

= (ρX b λY)˝(ρ´1
X b λ´1

Y )˝h = h.

Here ∆XbY˝h = (h b h)˝∆Z

since h is a coalgebra morphism.

Hence m˝h = m˝h1 ñ h = h1. □



The commutative case

BiAlgK,coc BiAlgK,c

HopfAlgK

BiAlgK Protomodular objects are

§ in BiAlgK,coc: the Hopf algebras;

§ in BiAlgK: none;

§ in BiAlgK,c: ?

In AlgK,c we have+ = b and 0 = K so

§ (BiAlgK,c)
op » Mon((AlgK,c)

op)

§ (HopfAlgK,c)
op » Gp((AlgK,c)

op).

Via the Yoneda embedding, we see:

§ commutative Hopf algebras are
protomodular in (BiAlgK,c)

op

§ HopfAlgK,c is coprotomodular.

A consequence of this is that BiAlgK,coc X BiAlgK,c X HopfAlgK is an abelian category,
as a semi-abelian category which is coprotomodular [Janelidze, Márki & Tholen, 2002].
We regain a result of [Takeuchi, 1972] (and [Grothendieck], in the finite-dimensional case).
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Conclusion

The category HopfAlgK is not protomodular,
even though something like the Split Short Five Lemma holds.

We need to restrict to (co)commutative Hopf algebras.

§ What about a categorical framework which captures all situations simultaneously?
§ The Split Short Five Lemma “for normal epis” looks like

an instance of relative protomodularity in the sense of [T. Janelidze, 2006].
§ However, this doesn’t seem to take into account the “twist”

which happens between commutative and cocommutative Hopf algebras.

§ The commutative case is not sufficiently well understood:
§ Do the protomodular objects characterise the Hopf algebras?
§ What about regularity or Barr-exactness?
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Thank you!


