On split extensions of bialgebras¹

Tim Van der Linden

Fonds de la Recherche Scientifique-FNRS Université catholique de Louvain

11 July 2018 | Ponta Delgada | CT2018

¹Joint work with Xabier García-Martínez.

No big results in this talk, just a few curious observations.

• Let \mathbb{K} be an algebraically closed field of characteristic 0.

- Let \mathbb{K} be an algebraically closed field of characteristic 0.
- $HopfAlg_{\mathbb{K},coc}$ the category of *cocommutative Hopf algebras* over \mathbb{K} .

- Let \mathbb{K} be an algebraically closed field of characteristic 0.
- ► $HopfAlg_{\mathbb{K},coc}$ the category of *cocommutative Hopf algebras* over \mathbb{K} .
- [Gran, Kadjo & Vercruysse, 2016] show that $HopfAlg_{\mathbb{K},coc}$
 - is semi-abelian

- Let \mathbb{K} be an algebraically closed field of characteristic 0.
- $HopfAlg_{\mathbb{K},coc}$ the category of *cocommutative Hopf algebras* over \mathbb{K} .
- [Gran, Kadjo & Vercruysse, 2016] show that $HopfAlg_{\mathbb{K},coc}$
 - is semi-abelian

- Let \mathbb{K} be an algebraically closed field of characteristic 0.
- ► $HopfAlg_{\mathbb{K},coc}$ the category of *cocommutative Hopf algebras* over \mathbb{K} .
- [Gran, Kadjo & Vercruysse, 2016] show that $HopfAlg_{\mathbb{K},coc}$
 - is semi-abelian

- Let \mathbb{K} be an algebraically closed field of characteristic 0.
- ► $HopfAlg_{\mathbb{K},coc}$ the category of *cocommutative Hopf algebras* over \mathbb{K} .
- [Gran, Kadjo & Vercruysse, 2016] show that $HopfAlg_{\mathbb{K},coc}$
 - is semi-abelian;
 - contains $\mathscr{T} = Lie_{\mathbb{K}}$ and $\mathscr{F} = Gp$ as a torsion theory $(\mathscr{T}, \mathscr{F})$.

- Let \mathbb{K} be an algebraically closed field of characteristic 0.
- $HopfAlg_{\mathbb{K},coc}$ the category of *cocommutative Hopf algebras* over \mathbb{K} .
- [Gran, Kadjo & Vercruysse, 2016] show that $HopfAlg_{\mathbb{K},coc}$
 - is semi-abelian;
 - contains $\mathscr{T} = Lie_{\mathbb{K}}$ and $\mathscr{F} = Gp$ as a torsion theory $(\mathscr{T}, \mathscr{F})$.
- In fact it is (LACC) in the sense of [Gray, 2010], which makes it "as good as groups, Lie algebras and crossed modules".

No big results in this talk, just a few curious observations.

- Let \mathbb{K} be an algebraically closed field of characteristic 0.
- $HopfAlg_{\mathbb{K},coc}$ the category of *cocommutative Hopf algebras* over \mathbb{K} .
- [Gran, Kadjo & Vercruysse, 2016] show that $HopfAlg_{\mathbb{K},coc}$
 - is semi-abelian;
 - contains $\mathscr{T} = Lie_{\mathbb{K}}$ and $\mathscr{F} = Gp$ as a torsion theory $(\mathscr{T}, \mathscr{F})$.
- In fact it is (LACC) in the sense of [Gray, 2010], which makes it "as good as groups, Lie algebras and crossed modules".

What can be done for Hopf algebras in general?

No big results in this talk, just a few curious observations.

- Let \mathbb{K} be an algebraically closed field of characteristic 0.
- $HopfAlg_{\mathbb{K},coc}$ the category of *cocommutative Hopf algebras* over \mathbb{K} .
- [Gran, Kadjo & Vercruysse, 2016] show that $HopfAlg_{\mathbb{K},coc}$
 - is semi-abelian;
 - contains $\mathscr{T} = Lie_{\mathbb{K}}$ and $\mathscr{F} = Gp$ as a torsion theory $(\mathscr{T}, \mathscr{F})$.
- In fact it is (LACC) in the sense of [Gray, 2010], which makes it "as good as groups, Lie algebras and crossed modules".

What can be done for Hopf algebras in general?

• This is the subject of my talk.

No big results in this talk, just a few curious observations.

- Let \mathbb{K} be an algebraically closed field of characteristic 0.
- $HopfAlg_{\mathbb{K},coc}$ the category of *cocommutative Hopf algebras* over \mathbb{K} .
- [Gran, Kadjo & Vercruysse, 2016] show that $HopfAlg_{\mathbb{K},coc}$
 - is semi-abelian;
 - contains $\mathscr{T} = Lie_{\mathbb{K}}$ and $\mathscr{F} = Gp$ as a torsion theory $(\mathscr{T}, \mathscr{F})$.
- In fact it is (LACC) in the sense of [Gray, 2010], which makes it "as good as groups, Lie algebras and crossed modules".

What can be done for Hopf algebras in general?

- This is the subject of my talk.
- Strategy: understand *split extensions*, which give us *protomodularity*.

No big results in this talk, just a few curious observations.

- Let \mathbb{K} be an algebraically closed field of characteristic 0.
- $HopfAlg_{\mathbb{K},coc}$ the category of *cocommutative Hopf algebras* over \mathbb{K} .
- [Gran, Kadjo & Vercruysse, 2016] show that $HopfAlg_{\mathbb{K},coc}$
 - is semi-abelian;
 - contains $\mathscr{T} = Lie_{\mathbb{K}}$ and $\mathscr{F} = Gp$ as a torsion theory $(\mathscr{T}, \mathscr{F})$.
- In fact it is (LACC) in the sense of [Gray, 2010], which makes it "as good as groups, Lie algebras and crossed modules".

What can be done for Hopf algebras in general?

- This is the subject of my talk.
- Strategy: understand *split extensions*, which give us *protomodularity*.
- We first sketch the context where we shall be working.

A \mathbb{K} -coalgebra is a comonoid in (*Vect*_{\mathbb{K}}, \otimes , \mathbb{K})

A K-coalgebra is a comonoid in ($Vect_{\mathbb{K}}, \otimes, \mathbb{K}$), so a triple ($X, \Delta_X \colon X \to X \otimes X, \varepsilon_X \colon X \to \mathbb{K}$) where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute.

A K-coalgebra is a comonoid in $(Vect_{\mathbb{K}}, \otimes, \mathbb{K})$, so a triple $(X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K})$ where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute. The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal.

A K-coalgebra is a comonoid in $(Vect_{\mathbb{K}}, \otimes, \mathbb{K})$, so a triple $(X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K})$ where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute. The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal. A **bialgebra** is a monoid $(X, \Delta_X, \varepsilon_X, m_X, \eta_X)$ in $(CoAlg_{\mathbb{K}}, \otimes, \mathbb{K})$: a vector space with compatible algebra and coalgebra structures.

A K-coalgebra is a comonoid in $(Vect_{\mathbb{K}}, \otimes, \mathbb{K})$, so a triple $(X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K})$ where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute. The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal. A **bialgebra** is a monoid $(X, \Delta_X, \varepsilon_X, m_X, \eta_X)$ in $(CoAlg_{\mathbb{K}}, \otimes, \mathbb{K})$: a vector space with compatible algebra and coalgebra structures. A **Hopf algebra** comes with $S : X \to X$ such that $m_X \circ (1_X \otimes S) \circ \Delta_X = \eta_X \circ \varepsilon_X = m_X \circ (S \otimes 1_X) \circ \Delta_X$. Roughly, *Hopf algebras are to bialgebras what groups are to monoids*.

A K-coalgebra is a comonoid in $(Vect_{\mathbb{K}}, \otimes, \mathbb{K})$, so a triple $(X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K})$ where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute. The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal. A **bialgebra** is a monoid $(X, \Delta_X, \varepsilon_X, m_X, \eta_X)$ in $(CoAlg_{\mathbb{K}}, \otimes, \mathbb{K})$: a vector space with compatible algebra and coalgebra structures. A **Hopf algebra** comes with $S : X \to X$ such that $m_X \circ (1_X \otimes S) \circ \Delta_X = \eta_X \circ \varepsilon_X = m_X \circ (S \otimes 1_X) \circ \Delta_X$. Roughly, *Hopf algebras are to bialgebras what groups are to monoids*. This becomes literally true in the cocommutative case:

A K-coalgebra is a comonoid in $(Vect_{\mathbb{K}}, \otimes, \mathbb{K})$, so a triple $(X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K})$ where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute. The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal.

A **bialgebra** is a monoid $(X, \Delta_X, \varepsilon_X, m_X, \eta_X)$ in $(CoAlg_{\mathbb{W}}, \otimes, \mathbb{K})$:

a vector space with compatible algebra and coalgebra structures.

A Hopf algebra comes with $S: X \to X$ such that $m_X \circ (1_X \otimes S) \circ \Delta_X = \eta_X \circ \varepsilon_X = m_X \circ (S \otimes 1_X) \circ \Delta_X$.

Roughly, Hopf algebras are to bialgebras what groups are to monoids.

This becomes literally true in the cocommutative case:

A coalgebra $(X, \Delta_X, \varepsilon_X)$ is **cocommutative** when Δ_X is a morphism of coalgebras.

A K-**coalgebra** is a comonoid in ($Vect_{\mathbb{K}}, \otimes, \mathbb{K}$), so a triple ($X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K}$) where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute.

The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal.

A **bialgebra** is a monoid $(X, \Delta_X, \varepsilon_X, m_X, \eta_X)$ in $(CoAlg_{\mathbb{K}}, \otimes, \mathbb{K})$:

a vector space with compatible algebra and coalgebra structures.

A Hopf algebra comes with $S: X \to X$ such that $m_X \circ (1_X \otimes S) \circ \Delta_X = \eta_X \circ \varepsilon_X = m_X \circ (S \otimes 1_X) \circ \Delta_X$.

Roughly, Hopf algebras are to bialgebras what groups are to monoids.

This becomes literally true in the cocommutative case:

A coalgebra $(X, \Delta_X, \varepsilon_X)$ is **cocommutative** when Δ_X is a morphism of coalgebras.

In $CoAlg_{\mathbb{K},coc}$ we have $\times = \otimes$ and $1 = \mathbb{K}$, so that

▶ a cocommutative bialgebra is an internal monoid in $CoAlg_{K,coc}$

A K-**coalgebra** is a comonoid in ($Vect_{\mathbb{K}}, \otimes, \mathbb{K}$), so a triple ($X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K}$) where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute.

The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal.

A **bialgebra** is a monoid $(X, \Delta_X, \varepsilon_X, m_X, \eta_X)$ in $(CoAlg_{\mathbb{K}}, \otimes, \mathbb{K})$:

a vector space with compatible algebra and coalgebra structures.

A Hopf algebra comes with $S: X \to X$ such that $m_X \circ (1_X \otimes S) \circ \Delta_X = \eta_X \circ \varepsilon_X = m_X \circ (S \otimes 1_X) \circ \Delta_X$.

Roughly, Hopf algebras are to bialgebras what groups are to monoids.

This becomes literally true in the cocommutative case:

A coalgebra $(X, \Delta_X, \varepsilon_X)$ is **cocommutative** when Δ_X is a morphism of coalgebras.

In $CoAlg_{\mathbb{K},coc}$ we have $\times = \otimes$ and $1 = \mathbb{K}$, so that

- ▶ a cocommutative bialgebra is an internal monoid in *CoAlg*_{K,coc}
- a cocommutative Hopf algebra is an internal group in $CoAlg_{\mathbb{K},coc}$.

A K-**coalgebra** is a comonoid in ($Vect_{\mathbb{K}}, \otimes, \mathbb{K}$), so a triple ($X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K}$) where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute.

The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal.

A **bialgebra** is a monoid $(X, \Delta_X, \varepsilon_X, m_X, \eta_X)$ in $(CoAlg_{\mathbb{K}}, \otimes, \mathbb{K})$:

a vector space with compatible algebra and coalgebra structures.

A **Hopf algebra** comes with $S: X \to X$ such that $m_X \circ (1_X \otimes S) \circ \Delta_X = \eta_X \circ \varepsilon_X = m_X \circ (S \otimes 1_X) \circ \Delta_X$.

Roughly, Hopf algebras are to bialgebras what groups are to monoids.

This becomes literally true in the cocommutative case:

A coalgebra $(X, \Delta_X, \varepsilon_X)$ is **cocommutative** when Δ_X is a morphism of coalgebras.

In $CoAlg_{\mathbb{K},coc}$ we have $\times = \otimes$ and $1 = \mathbb{K}$, so that

- ▶ a cocommutative bialgebra is an internal monoid in *CoAlg*_{K,coc}
- a cocommutative Hopf algebra is an internal group in $CoAlg_{\mathbb{K},coc}$.

In [Montoli, Rodelo & VdL, 2018] a characterisation was obtained of groups amongst monoids as the so-called *protomodular objects*.

A K-**coalgebra** is a comonoid in ($Vect_{\mathbb{K}}, \otimes, \mathbb{K}$), so a triple ($X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K}$) where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute.

The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal.

A **bialgebra** is a monoid $(X, \Delta_X, \varepsilon_X, m_X, \eta_X)$ in $(CoAlg_{\mathbb{K}}, \otimes, \mathbb{K})$:

a vector space with compatible algebra and coalgebra structures.

A **Hopf algebra** comes with $S: X \to X$ such that $m_X \circ (1_X \otimes S) \circ \Delta_X = \eta_X \circ \varepsilon_X = m_X \circ (S \otimes 1_X) \circ \Delta_X$.

Roughly, Hopf algebras are to bialgebras what groups are to monoids.

This becomes literally true in the cocommutative case:

A coalgebra $(X, \Delta_X, \varepsilon_X)$ is **cocommutative** when Δ_X is a morphism of coalgebras.

In $CoAlg_{\mathbb{K},coc}$ we have $\times = \otimes$ and $1 = \mathbb{K}$, so that

- ▶ a cocommutative bialgebra is an internal monoid in *CoAlg*_{K,coc}
- a cocommutative Hopf algebra is an internal group in $CoAlg_{\mathbb{K},coc}$.

In [Montoli, Rodelo & VdL, 2018] a characterisation was obtained of groups amongst monoids as the so-called *protomodular objects*. Does this extend to Hopf algebras and bialgebras?

A K-**coalgebra** is a comonoid in ($Vect_{\mathbb{K}}, \otimes, \mathbb{K}$), so a triple ($X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K}$) where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute.

The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal.

A **bialgebra** is a monoid $(X, \Delta_X, \varepsilon_X, m_X, \eta_X)$ in $(CoAlg_{\mathbb{K}}, \otimes, \mathbb{K})$:

a vector space with compatible algebra and coalgebra structures.

A **Hopf algebra** comes with $S: X \to X$ such that $m_X \circ (1_X \otimes S) \circ \Delta_X = \eta_X \circ \varepsilon_X = m_X \circ (S \otimes 1_X) \circ \Delta_X$.

Roughly, Hopf algebras are to bialgebras what groups are to monoids.

This becomes literally true in the cocommutative case:

A coalgebra $(X, \Delta_X, \varepsilon_X)$ is **cocommutative** when Δ_X is a morphism of coalgebras.

In $CoAlg_{\mathbb{K},coc}$ we have $\times = \otimes$ and $1 = \mathbb{K}$, so that

- ▶ a cocommutative bialgebra is an internal monoid in *CoAlg*_{K,coc}
- a cocommutative Hopf algebra is an internal group in $CoAlg_{\mathbb{K},coc}$.

In [Montoli, Rodelo & VdL, 2018] a characterisation was obtained of groups amongst monoids as the so-called *protomodular objects*. Does this extend to Hopf algebras and bialgebras? Yes!

A K-**coalgebra** is a comonoid in ($Vect_{\mathbb{K}}, \otimes, \mathbb{K}$), so a triple ($X, \Delta_X : X \to X \otimes X, \varepsilon_X : X \to \mathbb{K}$) where the comultiplication Δ_X and the counit ε_X make the obvious diagrams commute.

The tensor product extends from $Vect_{\mathbb{K}}$ to the category $CoAlg_{\mathbb{K}}$, making it monoidal.

A **bialgebra** is a monoid $(X, \Delta_X, \varepsilon_X, m_X, \eta_X)$ in $(CoAlg_{\mathbb{K}}, \otimes, \mathbb{K})$:

a vector space with compatible algebra and coalgebra structures.

A **Hopf algebra** comes with $S: X \to X$ such that $m_X \circ (1_X \otimes S) \circ \Delta_X = \eta_X \circ \varepsilon_X = m_X \circ (S \otimes 1_X) \circ \Delta_X$.

Roughly, Hopf algebras are to bialgebras what groups are to monoids.

This becomes literally true in the cocommutative case:

A coalgebra $(X, \Delta_X, \varepsilon_X)$ is **cocommutative** when Δ_X is a morphism of coalgebras.

In $CoAlg_{\mathbb{K},coc}$ we have $\times = \otimes$ and $1 = \mathbb{K}$, so that

- ▶ a cocommutative bialgebra is an internal monoid in *CoAlg*_{K,coc}
- a cocommutative Hopf algebra is an internal group in $CoAlg_{\mathbb{K},coc}$.

In [Montoli, Rodelo & VdL, 2018] a characterisation was obtained of groups amongst monoids as the so-called *protomodular objects*. Does this extend to Hopf algebras and bialgebras? Yes! ...in the cocommutative case [García-Martínez & VdL, 2017]

A Barr-exact category is **semi-abelian** when it is pointed, has binary sums and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991].

A Barr-exact category is **semi-abelian** when it is pointed, has binary sums and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991]. This definition [Janelidze, Márki & Tholen, 2002] unifies "old" approaches towards an axiomatisation of categories "close to *Gp*" such as [Higgins, 1956] and [Huq, 1968] with "new" categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity.

A Barr-exact category is **semi-abelian** when it is pointed, has binary sums and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991]. This definition [Janelidze, Márki & Tholen, 2002] unifies "old" approaches towards an axiomatisation of categories "close to Gp" such as [Higgins, 1956] and [Huq, 1968] with "new" categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity. Examples: Gp, varieties of Ω -groups, $Lie_{\mathbb{K}}$, $Alg_{\mathbb{K}}$, XMod, Loop, HopfAlg_{K-coc}, C*-Alg, Set*

A Barr-exact category is **semi-abelian** when it is pointed, has binary sums and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991]. This definition [Janelidze, Márki & Tholen, 2002] unifies "old" approaches towards an axiomatisation of categories "close to Gp" such as [Higgins, 1956] and [Huq, 1968] with "new" categorical algebra—the concepts of Barr-exactness and **Bourn-protomodularity**. Examples: Gp, varieties of Ω -groups, $Lie_{\mathbb{K}}$, $Alg_{\mathbb{K}}$, XMod, Loop, $HopfAlg_{\mathbb{K},coc}$, C^* -Alg, Set^{op}_* .

A **point** (f, s) **over** *Y* is a split epimorphism $f: X \to Y$ with a chosen splitting $s: Y \to X$.

A Barr-exact category is **semi-abelian** when it is pointed, has binary sums and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991].

This definition [Janelidze, Márki & Tholen, 2002] unifies "old" approaches towards an axiomatisation of categories "close to Gp" such as [Higgins, 1956] and [Huq, 1968] with "new" categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity. Examples: Gp, varieties of Ω -groups, $Lie_{\mathbb{K}}$, $Alg_{\mathbb{K}}$, XMod, Loop, HopfAlg_{K,coc}, C*-Alg, Set^{op}_{*}.

A **point** (f, s) **over** *Y* is a split epimorphism $f: X \to Y$ with a chosen splitting $s: Y \to X$.

 $Pt_{Y}(\mathscr{X}) = (1_{Y} \downarrow (\mathscr{X} \downarrow Y)) \text{ is }$ the **category of points** over *Y* in \mathscr{X} .

$$Y \xrightarrow{s} X$$

$$1_Y \bigvee_{f} f$$

A Barr-exact category is **semi-abelian** when it is pointed, has binary sums and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991].

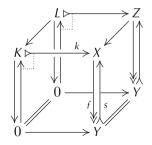
This definition [Janelidze, Márki & Tholen, 2002] unifies "old" approaches towards an axiomatisation of categories "close to Gp" such as [Higgins, 1956] and [Huq, 1968] with "new" categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity. Examples: Gp, varieties of Ω -groups, $Lie_{\mathbb{K}}$, $Alg_{\mathbb{K}}$, XMod, Loop, HopfAlg_{K-coc}, C*-Alg, Set*

 1_Y f

A **point** (f, s) **over** *Y* is a split epimorphism $f: X \to Y$ with a chosen splitting $s: Y \to X$.

 $Pt_Y(\mathscr{X}) = (1_Y \downarrow (\mathscr{X} \downarrow Y))$ is the **category of points** over *Y* in \mathscr{X} .

The **Split Short Five Lemma** is precisely the condition that the pullback functor $Pt_Y(\mathscr{X}) \to Pt_0(\mathscr{X}) \cong \mathscr{X}$ reflects isomorphisms.



A Barr-exact category is **semi-abelian** when it is pointed, has binary sums and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991].

This definition [Janelidze, Márki & Tholen, 2002] unifies "old" approaches towards an axiomatisation of categories "close to Gp" such as [Higgins, 1956] and [Huq, 1968] with "new" categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity. Examples: Gp, varieties of Ω -groups, $Lie_{\mathbb{K}}$, $Alg_{\mathbb{K}}$, XMod, Loop, HopfAlg_{K-coc}, C*-Alg, Set*

 1_Y f

A **point** (f, s) **over** *Y* is a split epimorphism $f: X \to Y$ with a chosen splitting $s: Y \to X$.

 $Pt_Y(\mathscr{X}) = (1_Y \downarrow (\mathscr{X} \downarrow Y))$ is the **category of points** over *Y* in \mathscr{X} .

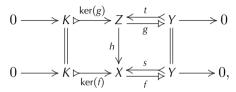
The **Split Short Five Lemma** is precisely the condition that the pullback functor $Pt_Y(\mathscr{X}) \to Pt_0(\mathscr{X}) \cong \mathscr{X}$ reflects isomorphisms.

For the sake of this talk, a **split extension** (f, s, k) is a point (f, s) with k = ker(f).

More on the Split Short Five Lemma

Proposition [Gran, Kadjo & Vercruysse, 2017]

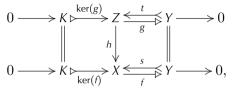
In a morphism of split short exact sequences in $HopfAlg_{\mathbb{K}}$ such as



the middle arrow *h* is always an isomorphism.

```
Proposition [Gran, Kadjo & Vercruysse, 2017]
```

In a morphism of split short exact sequences in $HopfAlg_{\mathbb{K}}$ such as

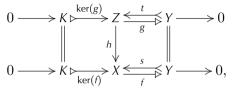


the middle arrow *h* is always an isomorphism.

Sketch of proof. By [Molnar, 1977] we have $X \cong K \rtimes_{\xi} Y$ and $Z \cong K \rtimes_{\xi'} Y$ for some actions ξ and ξ' . In particular, $h(k \otimes y) = h(k \otimes 1)h(1 \otimes y) = (k \otimes 1)(1 \otimes y) = k \otimes y$, and h is a bijection.

```
Proposition [Gran, Kadjo & Vercruysse, 2017]
```

In a morphism of split short exact sequences in $\mathit{HopfAlg}_{\mathbb{K}}$ such as



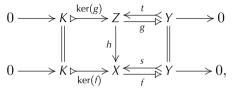
the middle arrow h is always an isomorphism.

Sketch of proof. By [Molnar, 1977] we have $X \cong K \rtimes_{\xi} Y$ and $Z \cong K \rtimes_{\xi'} Y$ for some actions ξ and ξ' . In particular, $h(k \otimes y) = h(k \otimes 1)h(1 \otimes y) = (k \otimes 1)(1 \otimes y) = k \otimes y$, and h is a bijection.

Does this mean that $HopfAlg_{\mathbb{K}}$ is protomodular?

```
Proposition [Gran, Kadjo & Vercruysse, 2017]
```

In a morphism of split short exact sequences in $HopfAlg_{\mathbb{K}}$ such as



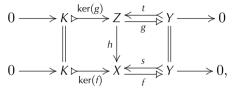
the middle arrow *h* is always an isomorphism.

Sketch of proof. By [Molnar, 1977] we have $X \cong K \rtimes_{\xi} Y$ and $Z \cong K \rtimes_{\xi'} Y$ for some actions ξ and ξ' . In particular, $h(k \otimes y) = h(k \otimes 1)h(1 \otimes y) = (k \otimes 1)(1 \otimes y) = k \otimes y$, and h is a bijection.

Does this mean that $HopfAlg_{\mathbb{K}}$ is protomodular? No!

```
Proposition [Gran, Kadjo & Vercruysse, 2017]
```

In a morphism of split short exact sequences in $HopfAlg_{\mathbb{K}}$ such as



the middle arrow h is always an isomorphism.

Sketch of proof. By [Molnar, 1977] we have $X \cong K \rtimes_{\xi} Y$ and $Z \cong K \rtimes_{\xi'} Y$ for some actions ξ and ξ' . In particular, $h(k \otimes y) = h(k \otimes 1)h(1 \otimes y) = (k \otimes 1)(1 \otimes y) = k \otimes y$, and h is a bijection.

Does this mean that $HopfAlg_{\mathbb{K}}$ is protomodular? **No!** This result is *strictly weaker* than the Split Short Five Lemma, where *f* and *g* are *a priori* not assumed to be cokernels of ker(*f*) and ker(*g*).

Protomodularity

A Barr-exact category is **semi-abelian** when it is pointed, has binary sums and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991].

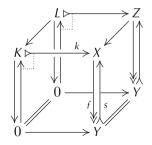
This definition [Janelidze, Márki & Tholen, 2002] unifies "old" approaches towards an axiomatisation of categories "close to Gp" such as [Higgins, 1956] and [Huq, 1968] with "new" categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity. Examples: Gp, varieties of Ω -groups, $Lie_{\mathbb{K}}$, $Alg_{\mathbb{K}}$, XMod, Loop, HopfAlg_{K-coc}, C*-Alg, Set*

 1_Y f

A **point** (f, s) **over** *Y* is a split epimorphism $f: X \to Y$ with a chosen splitting $s: Y \to X$.

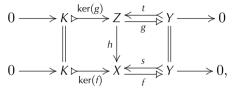
 $Pt_Y(\mathscr{X}) = (1_Y \downarrow (\mathscr{X} \downarrow Y))$ is the **category of points** over *Y* in \mathscr{X} .

The **Split Short Five Lemma** is precisely the condition that the pullback functor $Pt_Y(\mathscr{X}) \to Pt_0(\mathscr{X}) \cong \mathscr{X}$ reflects isomorphisms.



```
Proposition [Gran, Kadjo & Vercruysse, 2017]
```

In a morphism of split short exact sequences in $HopfAlg_{\mathbb{K}}$ such as



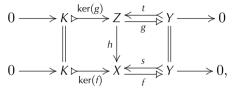
the middle arrow h is always an isomorphism.

Sketch of proof. By [Molnar, 1977] we have $X \cong K \rtimes_{\xi} Y$ and $Z \cong K \rtimes_{\xi'} Y$ for some actions ξ and ξ' . In particular, $h(k \otimes y) = h(k \otimes 1)h(1 \otimes y) = (k \otimes 1)(1 \otimes y) = k \otimes y$, and h is a bijection.

Does this mean that $HopfAlg_{\mathbb{K}}$ is protomodular? **No!** This result is *strictly weaker* than the Split Short Five Lemma, where *f* and *g* are *a priori* not assumed to be cokernels of ker(*f*) and ker(*g*).

```
Proposition [Gran, Kadjo & Vercruysse, 2017]
```

In a morphism of split short exact sequences in $HopfAlg_{\mathbb{K}}$ such as



the middle arrow h is always an isomorphism.

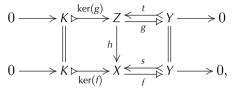
Sketch of proof. By [Molnar, 1977] we have $X \cong K \rtimes_{\xi} Y$ and $Z \cong K \rtimes_{\xi'} Y$ for some actions ξ and ξ' . In particular, $h(k \otimes y) = h(k \otimes 1)h(1 \otimes y) = (k \otimes 1)(1 \otimes y) = k \otimes y$, and h is a bijection.

Does this mean that $HopfAlg_{\mathbb{K}}$ is protomodular? **No!** This result is *strictly weaker* than the Split Short Five Lemma, where *f* and *g* are *a priori* not assumed to be cokernels of ker(*f*) and ker(*g*).

However, protomodularity *does* imply that f = coker(ker(f)) for every split epimorphism *f*.

```
Proposition [Gran, Kadjo & Vercruysse, 2017]
```

In a morphism of split short exact sequences in $HopfAlg_{\mathbb{K}}$ such as



the middle arrow h is always an isomorphism.

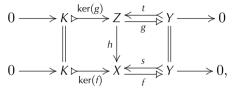
Sketch of proof. By [Molnar, 1977] we have $X \cong K \rtimes_{\xi} Y$ and $Z \cong K \rtimes_{\xi'} Y$ for some actions ξ and ξ' . In particular, $h(k \otimes y) = h(k \otimes 1)h(1 \otimes y) = (k \otimes 1)(1 \otimes y) = k \otimes y$, and h is a bijection.

Does this mean that $HopfAlg_{\mathbb{K}}$ is protomodular? **No!** This result is *strictly weaker* than the Split Short Five Lemma, where *f* and *g* are *a priori* not assumed to be cokernels of ker(*f*) and ker(*g*).

However, protomodularity *does* imply that f = coker(ker(f)) for every split epimorphism *f*. So in a protomodular category, we can't see the difference.

```
Proposition [Gran, Kadjo & Vercruysse, 2017]
```

In a morphism of split short exact sequences in $HopfAlg_{\mathbb{K}}$ such as



the middle arrow h is always an isomorphism.

Sketch of proof. By [Molnar, 1977] we have $X \cong K \rtimes_{\xi} Y$ and $Z \cong K \rtimes_{\xi'} Y$ for some actions ξ and ξ' . In particular, $h(k \otimes y) = h(k \otimes 1)h(1 \otimes y) = (k \otimes 1)(1 \otimes y) = k \otimes y$, and h is a bijection.

Does this mean that $HopfAlg_{\mathbb{K}}$ is protomodular? **No!** This result is *strictly weaker* than the Split Short Five Lemma, where *f* and *g* are *a priori* not assumed to be cokernels of ker(*f*) and ker(*g*).

However, protomodularity *does* imply that f = coker(ker(f)) for every split epimorphism *f*. So in a protomodular category, we can't see the difference. Is $HopfAlg_{\mathbb{K}}$ protomodular?

Given a split extension
$$0 \longrightarrow K \models k \xrightarrow{s} X \xleftarrow{s} f$$

• in an abelian category, $X \cong K \oplus Y$

Given a split extension $0 \longrightarrow K \triangleright \stackrel{k}{\longrightarrow} X \xleftarrow{s}{f} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ

Given a split extension $0 \longrightarrow K \triangleright \overset{k}{\longrightarrow} X \xrightarrow[f]{\underset{f}{\longleftarrow}} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

Given a split extension $0 \longrightarrow K \triangleright \overset{k}{\longrightarrow} X \xrightarrow{s} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

In either case, $X = k(K) \lor s(Y)$ in Sub(X)

Given a split extension $0 \longrightarrow K \triangleright \overset{k}{\longrightarrow} X \xleftarrow{s}{\longleftarrow} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

In either case, $X = k(K) \lor s(Y)$ in Sub(X): split extensions admit a join decomposition.

Given a split extension $0 \longrightarrow K \triangleright \overset{k}{\longrightarrow} X \xleftarrow{s} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

In either case, $X = k(K) \lor s(Y)$ in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

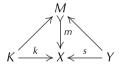
Given a split extension $0 \longrightarrow K \triangleright \overset{k}{\longrightarrow} X \xleftarrow{s} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

In either case, $X = k(K) \lor s(Y)$ in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.

A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso.

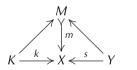


Given a split extension $0 \longrightarrow K \triangleright \overset{k}{\longrightarrow} X \xleftarrow{s} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

In either case, $X = k(K) \lor s(Y)$ in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.



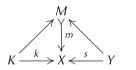
A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso.

Given a split extension $0 \longrightarrow K \triangleright \overset{k}{\longrightarrow} X \xleftarrow{s} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

In either case, $X = k(K) \lor s(Y)$ in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.



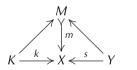
A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso.

Given a split extension $0 \longrightarrow K \triangleright \overset{k}{\longrightarrow} X \xleftarrow{s} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

In either case, $X = k(K) \lor s(Y)$ in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.



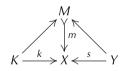
A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso.

Given a split extension $0 \longrightarrow K \triangleright \stackrel{k}{\longrightarrow} X \xleftarrow{s}{\longleftarrow} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

In either case, $X = k(K) \lor s(Y)$ in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.



A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso.

In a pointed finitely complete category \mathbb{C} , a point (f, s) is **strong** when for k = ker(f), the pair (k, s) is jointly extremally epimorphic.

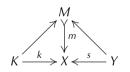
▶ The split epimorphism in a strong point is always the cokernel of its kernel.

Given a split extension $0 \longrightarrow K \triangleright \overset{k}{\longrightarrow} X \xleftarrow{s} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

In either case, $X = k(K) \lor s(Y)$ in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.



A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso.

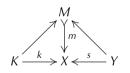
- ▶ The split epimorphism in a strong point is always the cokernel of its kernel.
- \mathbb{C} protomodular \Leftrightarrow all points in \mathbb{C} are strong

Given a split extension $0 \longrightarrow K \triangleright \overset{k}{\longrightarrow} X \xleftarrow{s} Y \longrightarrow 0$

- in an abelian category, $X \cong K \oplus Y$
- in the category of groups, $X \cong K \rtimes_{\xi} Y$ for some action ξ
- in a semi-abelian category, $X \cong K \rtimes_{\xi} Y$ for some internal action ξ .

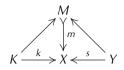
In either case, $X = k(K) \lor s(Y)$ in Sub(X): split extensions admit a join decomposition.

Protomodularity is equivalent to this condition.



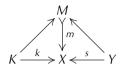
A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso.

- ▶ The split epimorphism in a strong point is always the cokernel of its kernel.
- C protomodular ⇔ all points in C are strong, so that split extensions ≃ split short exact sequences.



A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso.

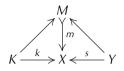
A point (f, s) is **strong** when for k = ker(f), the pair (k, s) is jointly extremally epimorphic.



A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso. A point (f, s) is **strong** when for k = ker(f),

the pair (k, s) is jointly extremally epimorphic.

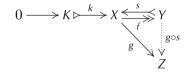
• The split epimorphism in a strong point is always the cokernel of its kernel.

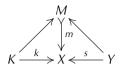


A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso. A point (f, s) is **strong** when for k = ker(f),

- the pair (k, s) is jointly extremally epimorphic.
- ▶ The split epimorphism in a strong point is always the cokernel of its kernel.

Proof. Consider a strong point (f, s) and g such that $g \circ k = 0$. k and s are jointly epic, so $g \circ s \circ f \circ k = 0 = g \circ k$ and $g \circ s \circ f \circ s = g \circ s$ together imply $g \circ s \circ f = g$.

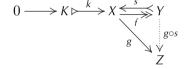




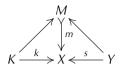
A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso. A point (f, s) is **strong** when for k = ker(f),

- the pair (k, s) is jointly extremally epimorphic.
- ▶ The split epimorphism in a strong point is always the cokernel of its kernel.

Proof. Consider a strong point (f, s) and g such that $g \circ k = 0$. k and s are jointly epic, so $g \circ s \circ f \circ k = 0 = g \circ k$ and $g \circ s \circ f \circ s = g \circ s$ together imply $g \circ s \circ f = g$.



• \mathbb{C} protomodular \Rightarrow all points in \mathbb{C} are strong.



A pair (k, s) as on the left is **jointly extremally epimorphic** when *m* mono implies *m* iso. A point (f, s) is **strong** when for k = ker(f),

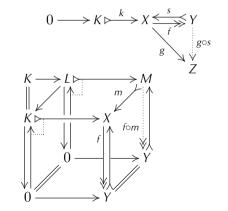
the pair (k, s) is jointly extremally epimorphic.

▶ The split epimorphism in a strong point is always the cokernel of its kernel.

Proof. Consider a strong point (f, s) and g such that $g \circ k = 0$. k and s are jointly epic, so $g \circ s \circ f \circ k = 0 = g \circ k$ and $g \circ s \circ f \circ s = g \circ s$ together imply $g \circ s \circ f = g$.

• \mathbb{C} protomodular \Rightarrow all points in \mathbb{C} are strong.

Proof. The arrow $L \rightarrow K$ is both a monomorphism and a split epimorphism, hence it is an isomorphism. *m* is then iso by the Split Short Five Lemma.



Protomodular objects in $BiAlg_{\mathbb{K},coc}$

A protomodular object is an object Y for which each point

$$0 \longrightarrow K \triangleright \stackrel{k}{\longrightarrow} X \stackrel{s}{\underset{f}{\longleftrightarrow}} Y$$

is stably strong.

A protomodular object is an object Y for which each point

$$0 \longrightarrow K \models \stackrel{k}{\longrightarrow} X \xleftarrow{s}{f} Y$$

is stably strong.

 A (pointed) category is protomodular iff all of its objects are protomodular.

A protomodular object is an object Y for which each point

$$0 \longrightarrow K \models \overset{k}{\longrightarrow} X \xleftarrow{s} Y$$

is stably strong.

 A (pointed) category is protomodular iff all of its objects are protomodular.

Theorem [García-Martínez & VdL, 2017]

 ${\mathbb K}$ an algebraically closed field.

For a cocommutative \mathbb{K} -bialgebra *B*, TFAE:

- (i) *B* is a Hopf algebra;
- (ii) all points over *B* are strong;
- (iii) all points over *B* are stably strong.

A protomodular object is an object Y for which each point

$$0 \longrightarrow K \triangleright \stackrel{k}{\longrightarrow} X \stackrel{s}{\underset{f}{\longleftrightarrow}} Y$$

is stably strong.

 A (pointed) category is protomodular iff all of its objects are protomodular.

Theorem [García-Martínez & VdL, 2017]

 \mathbb{K} an algebraically closed field. For a cocommutative \mathbb{K} -bialgebra *B*, TFAE:

- (i) *B* is a Hopf algebra;
- (ii) all points over *B* are strong;
- (iii) all points over *B* are stably strong.

Proof. A reduction to monoids/groups, where we can use [Montoli, Rodelo & VdL, 2018].

A protomodular object is an object Y for which each point

$$0 \longrightarrow K \triangleright \stackrel{k}{\longrightarrow} X \xleftarrow{s} Y$$
 is stably strong.

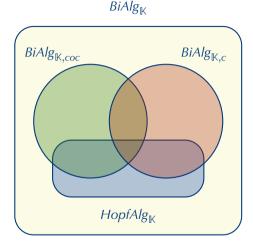
 A (pointed) category is protomodular iff all of its objects are protomodular.

Theorem [García-Martínez & VdL, 2017]

 \mathbb{K} an algebraically closed field. For a cocommutative \mathbb{K} -bialgebra *B*, TFAE:

- (i) *B* is a Hopf algebra;
- (ii) all points over *B* are strong;
- (iii) all points over *B* are stably strong.

Proof. A reduction to monoids/groups, where we can use [Montoli, Rodelo & VdL, 2018].



A protomodular object is an object Y for which each point

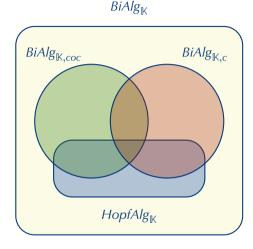
$$0 \longrightarrow K \triangleright \stackrel{k}{\longrightarrow} X \xleftarrow{s} Y$$
 is stably strong.

• A (pointed) category is protomodular iff all of its objects are protomodular.

For a cocommutative \mathbb{K} -bialgebra *B*, TFAE:

- (i) *B* is a Hopf algebra;
- (ii) all points over *B* are strong;
- (iii) all points over *B* are stably strong.

Proof. A reduction to monoids/groups, where we can use [Montoli, Rodelo & VdL, 2018].



Does this extend to all Hopf algebras?

A protomodular object is an object Y for which each point

$$0 \longrightarrow K \triangleright \stackrel{k}{\longrightarrow} X \xleftarrow{s} Y$$
 is stably strong.

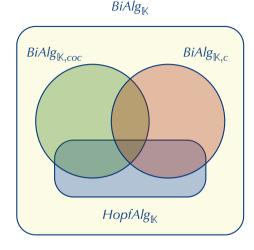
 A (pointed) category is protomodular iff all of its objects are protomodular.

Theorem [García-Martínez & VdL, 2017] K an algebraically closed field.

For a cocommutative \mathbb{K} -bialgebra *B*, TFAE:

- (i) *B* is a Hopf algebra;
- (ii) all points over *B* are strong;
- (iii) all points over *B* are stably strong.

Proof. A reduction to monoids/groups, where we can use [Montoli, Rodelo & VdL, 2018].



Does this extend to all Hopf algebras? ...to the commutative ones?

Beyond cocommutativity: when is a bialgebra protomodular?

• An object *Y* is **unital** when all

$$0 \longrightarrow X \triangleright^{\langle 1_X, 0 \rangle} X \times Y \xrightarrow{\langle 0, 1_Y \rangle}_{\pi_Y} Y$$

are strong.

• An object *Y* is **unital** when all

$$0 \longrightarrow X \triangleright^{\langle 1_X, 0 \rangle} X \times Y \xrightarrow{\langle 0, 1_Y \rangle} Y$$

are strong.

 Much weaker than protomodularity, common for "classical" algebraic structures [Borceux & Bourn, 2004]

• An object *Y* is **unital** when all

$$0 \longrightarrow X \triangleright \xrightarrow{\langle 1_X, 0 \rangle} X \times Y \xrightarrow{\langle 0, 1_Y \rangle} Y$$

are strong.

- Much weaker than protomodularity, common for "classical" algebraic structures [Borceux & Bourn, 2004]:
- A pointed variety of algebras is unital iff there is a binary "Jónsson–Tarski" operation + satisfying x + 0 = x = 0 + x.

• An object *Y* is **unital** when all

$$0 \longrightarrow X \triangleright^{\langle 1_{X}, 0 \rangle} X \times Y \xrightarrow{\langle 0, 1_{Y} \rangle}_{\pi_{Y}} Y$$

are strong.

- Much weaker than protomodularity, common for "classical" algebraic structures [Borceux & Bourn, 2004]:
- A pointed variety of algebras is unital iff there is a binary "Jónsson–Tarski" operation + satisfying x + 0 = x = 0 + x.
- ► $BiAlg_{\mathbb{K},coc}$ is unital, as the category of internal monoids in $CoAlg_{\mathbb{K},coc}$.

An object *Y* is **unital** when all

$$0 \longrightarrow X \triangleright \xrightarrow{\langle 1_X, 0 \rangle} X \times Y \xrightarrow{\langle 0, 1_Y \rangle} Y$$

are strong.

- Much weaker than protomodularity, common for "classical" algebraic structures [Borceux & Bourn, 2004]:
- A pointed variety of algebras is unital iff there is a binary "Jónsson–Tarski" operation + satisfying x + 0 = x = 0 + x.
- BiAlg_{K,coc} is unital, as the category of internal monoids in CoAlg_{K,coc}.

Proposition

Y unital in $BiAlg_{\mathbb{K}} \Rightarrow X \times Y \cong X \otimes Y$ for all *X*

Never!

An object Y is **unital** when all

$$0 \longrightarrow X \triangleright^{\langle 1_X, 0 \rangle} X \times Y \xrightarrow[\pi_{\gamma}]{\langle 0, 1_{\gamma} \rangle} Y$$

are strong.

- Much weaker than protomodularity, common for "classical" algebraic structures [Borceux & Bourn, 2004]:
- A pointed variety of algebras is unital iff there is a binary "Jónsson–Tarski" operation + satisfying x + 0 = x = 0 + x.
- ► BiAlg_{K,coc} is unital, as the category of internal monoids in CoAlg_{K,coc}.

Proposition

Y unital in $BiAlg_{\mathbb{K}} \Rightarrow X \times Y \cong X \otimes Y$ for all *X*

• Hence *Y* is cocommutative, since $\Delta_Y \colon Y \to Y \otimes Y$ is the morphism of bialgebras $\langle 1_Y, 1_Y \rangle \colon Y \to Y \times Y$.

Never!

• An object Y is **unital** when all

$$0 \longrightarrow X \stackrel{\langle 1_X, 0 \rangle}{\longrightarrow} X \times Y \stackrel{\langle 0, 1_Y \rangle}{\xrightarrow{}} Y$$

are strong.

- Much weaker than protomodularity, common for "classical" algebraic structures [Borceux & Bourn, 2004]:
- A pointed variety of algebras is unital iff there is a binary "Jónsson–Tarski" operation + satisfying x + 0 = x = 0 + x.
- ► BiAlg_{K,coc} is unital, as the category of internal monoids in CoAlg_{K,coc}.

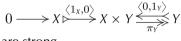
Proposition

Y unital in $BiAlg_{\mathbb{K}} \Rightarrow X \times Y \cong X \otimes Y$ for all *X*

- Hence *Y* is cocommutative, since $\Delta_Y: Y \to Y \otimes Y$ is the morphism of bialgebras $\langle 1_Y, 1_Y \rangle: Y \to Y \times Y$.
- ► K is protomodular in $BiAlg_{K}$ iff all objects of $BiAlg_{K}$ are unital.

Never!

• An object Y is **unital** when all



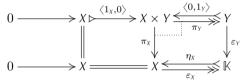
are strong.

- Much weaker than protomodularity, common for "classical" algebraic structures [Borceux & Bourn, 2004]:
- A pointed variety of algebras is unital iff there is a binary "Jónsson–Tarski" operation + satisfying x + 0 = x = 0 + x.
- ► BiAlg_{K,coc} is unital, as the category of internal monoids in CoAlg_{K,coc}.

Proposition

Y unital in $BiAlg_{\mathbb{K}} \Rightarrow X \times Y \cong X \otimes Y$ for all *X*

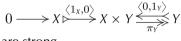
- Hence *Y* is cocommutative, since $\Delta_Y \colon Y \to Y \otimes Y$ is the morphism of bialgebras $\langle 1_Y, 1_Y \rangle \colon Y \to Y \times Y$.
- \mathbb{K} is protomodular in $BiAlg_{\mathbb{K}}$ iff all objects of $BiAlg_{\mathbb{K}}$ are unital. Proof. The upper point is strong



iff the lower one is stably strong.

Never!

An object Y is **unital** when all



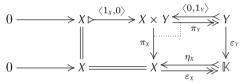
are strong.

- Much weaker than protomodularity, common for "classical" algebraic structures [Borceux & Bourn, 2004]:
- A pointed variety of algebras is unital iff there is a binary "Jónsson–Tarski" operation + satisfying x + 0 = x = 0 + x.
- BiAlg_{K,coc} is unital, as the category of internal monoids in CoAlg_{K,coc}.

Proposition

Y unital in $BiAlg_{\mathbb{K}} \Rightarrow X \times Y \cong X \otimes Y$ for all *X*

- Hence *Y* is cocommutative, since $\Delta_Y \colon Y \to Y \otimes Y$ is the morphism of bialgebras $\langle 1_Y, 1_Y \rangle \colon Y \to Y \times Y$.
- \mathbb{K} is protomodular in $BiAlg_{\mathbb{K}}$ iff all objects of $BiAlg_{\mathbb{K}}$ are unital. Proof. The upper point is strong

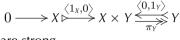


iff the lower one is stably strong.

• Hence \mathbb{K} is not protomodular.

Never!

• An object Y is **unital** when all



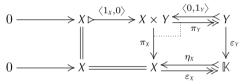
are strong.

- Much weaker than protomodularity, common for "classical" algebraic structures [Borceux & Bourn, 2004]:
- A pointed variety of algebras is unital iff there is a binary "Jónsson–Tarski" operation + satisfying x + 0 = x = 0 + x.
- ► $BiAlg_{\mathbb{K},coc}$ is unital, as the category of internal monoids in $CoAlg_{\mathbb{K},coc}$.

Proposition

Y unital in $BiAlg_{\mathbb{K}} \Rightarrow X \times Y \cong X \otimes Y$ for all *X*

- Hence *Y* is cocommutative, since $\Delta_Y \colon Y \to Y \otimes Y$ is the morphism of bialgebras $\langle 1_Y, 1_Y \rangle \colon Y \to Y \times Y$.
- \mathbb{K} is protomodular in $BiAlg_{\mathbb{K}}$ iff all objects of $BiAlg_{\mathbb{K}}$ are unital. Proof. The upper point is strong

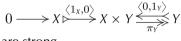


iff the lower one is stably strong.

- Hence \mathbb{K} is not protomodular.
- Closure under retracts of the class of protomodular objects now implies:

Never!

An object Y is **unital** when all



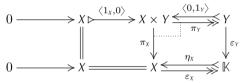
are strong.

- Much weaker than protomodularity, common for "classical" algebraic structures [Borceux & Bourn, 2004]:
- A pointed variety of algebras is unital iff there is a binary "Jónsson–Tarski" operation + satisfying x + 0 = x = 0 + x.
- ► $BiAlg_{\mathbb{K},coc}$ is unital, as the category of internal monoids in $CoAlg_{\mathbb{K},coc}$.

Proposition

Y unital in $BiAlg_{\mathbb{K}} \Rightarrow X \times Y \cong X \otimes Y$ for all *X*

- Hence *Y* is cocommutative, since $\Delta_Y: Y \to Y \otimes Y$ is the morphism of bialgebras $\langle 1_Y, 1_Y \rangle: Y \to Y \times Y$.
- \mathbb{K} is protomodular in $BiAlg_{\mathbb{K}}$ iff all objects of $BiAlg_{\mathbb{K}}$ are unital. Proof. The upper point is strong



iff the lower one is stably strong.

- Hence \mathbb{K} is not protomodular.
- Closure under retracts of the class of protomodular objects now implies:
 There are no protomodular objects in *BiAlg*.

For any bialgebra *X* we may consider

$$X \stackrel{\rho_X}{=} X \otimes \mathbb{K} \stackrel{1_X \otimes \varepsilon_Y}{\underset{1_X \otimes \eta_Y}{\overset{\epsilon_X \otimes 1_Y}{\longrightarrow}}} X \otimes Y \stackrel{\varepsilon_X \otimes 1_Y}{\underset{\eta_X \otimes 1_Y}{\overset{\epsilon_X \otimes 1_Y}{\longrightarrow}}} \mathbb{K} \otimes Y \stackrel{\lambda_Y}{\xrightarrow{\simeq}} Y.$$

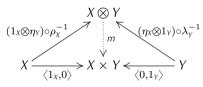
For any bialgebra *X* we may consider

$$X \stackrel{\rho_X}{\underset{\cong}{\leftarrow}} X \otimes \mathbb{K} \stackrel{1_X \otimes \varepsilon_Y}{\underset{1_X \otimes \eta_Y}{\underset{\cong}{\leftarrow}}} X \otimes Y \stackrel{\varepsilon_X \otimes 1_Y}{\underset{\eta_X \otimes 1_Y}{\underset{\cong}{\leftarrow}}} \mathbb{K} \otimes Y \stackrel{\lambda_Y}{\underset{\cong}{\leftarrow}} Y.$$

The comparison morphism

$$m = \langle
ho_{X^{\circ}}(1_X \otimes arepsilon_Y), \ \lambda_{Y^{\circ}}(arepsilon_X \otimes 1_Y)
angle$$

makes the diagram



commute.

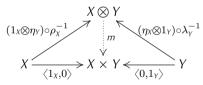
For any bialgebra X we may consider

$$X \stackrel{\rho_X}{\underset{\cong}{\leftarrow}} X \otimes \mathbb{K} \stackrel{1_X \otimes \varepsilon_Y}{\underset{1_X \otimes \eta_Y}{\underset{\cong}{\leftarrow}}} X \otimes Y \stackrel{\varepsilon_X \otimes 1_Y}{\underset{\eta_X \otimes 1_Y}{\underset{\cong}{\leftarrow}}} \mathbb{K} \otimes Y \stackrel{\lambda_Y}{\underset{\cong}{\leftarrow}} Y.$$

The comparison morphism

$$m = \langle
ho_{X^{\circ}}(1_X \otimes arepsilon_Y), \ \lambda_{Y^{\circ}}(arepsilon_X \otimes 1_Y)
angle$$

makes the diagram



commute.

We prove that *m* is mono: then *Y* unital implies that *m* is an isomorphism.

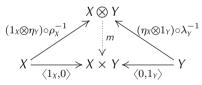
For any bialgebra X we may consider

$$X \stackrel{\rho_X}{\underset{\cong}{\leftarrow}} X \otimes \mathbb{K} \stackrel{I_X \otimes \varepsilon_Y}{\underset{I_X \otimes \eta_Y}{\underset{\cong}{\leftarrow}}} X \otimes Y \stackrel{\varepsilon_X \otimes I_Y}{\underset{\eta_X \otimes I_Y}{\underset{\cong}{\leftarrow}}} \mathbb{K} \otimes Y \stackrel{\lambda_Y}{\underset{\cong}{\leftarrow}} Y.$$

The comparison morphism

$$m = \langle
ho_{X^{\circ}}(1_X \otimes arepsilon_Y), \ \lambda_{Y^{\circ}}(arepsilon_X \otimes 1_Y)
angle$$

makes the diagram



commute.

We prove that *m* is mono: then *Y* unital implies that *m* is an isomorphism. For $h: Z \to X \otimes Y$ in $BiAlg_{\mathbb{K}}$, we write $f = \rho_X \circ (1_X \otimes \varepsilon_Y) \circ h: Z \to X$ $g = \lambda_Y \circ (\varepsilon_X \otimes 1_Y) \circ h: Z \to Y$

so that $\langle f, g \rangle = m \circ h$

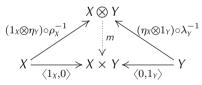
For any bialgebra X we may consider

$$X \stackrel{\rho_X}{\underset{\cong}{\leftarrow}} X \otimes \mathbb{K} \stackrel{I_X \otimes \varepsilon_Y}{\underset{I_X \otimes \eta_Y}{\underset{X \otimes \eta_Y}{\longleftarrow}}} X \otimes Y \stackrel{\varepsilon_X \otimes I_Y}{\underset{\eta_X \otimes I_Y}{\underset{X \otimes \eta_Y}{\longleftarrow}}} \mathbb{K} \otimes Y \stackrel{\lambda_Y}{\underset{\cong}{\longrightarrow}} Y.$$

The comparison morphism

$$m = \langle \rho_{X^{\circ}}(1_X \otimes \varepsilon_Y), \lambda_{Y^{\circ}}(\varepsilon_X \otimes 1_Y) \rangle$$

makes the diagram



commute.

We prove that *m* is mono: then *Y* unital implies that *m* is an isomorphism. For $h: Z \to X \otimes Y$ in $BiAlg_{\mathbb{K}}$, we write $f = \rho_X \circ (1_X \otimes \varepsilon_Y) \circ h: Z \to X$ $g = \lambda_Y \circ (\varepsilon_X \otimes 1_Y) \circ h: Z \to Y$

so that $\langle f, g \rangle = m \circ h$, and we prove that $h = (f \otimes g) \circ \Delta_Z$ in $Vect_{\mathbb{K}}$

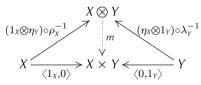
For any bialgebra X we may consider

$$X \stackrel{\rho_X}{\underset{\cong}{\leftarrow}} X \otimes \mathbb{K} \stackrel{I_X \otimes \varepsilon_Y}{\underset{I_X \otimes \eta_Y}{\longleftarrow}} X \otimes Y \stackrel{\varepsilon_X \otimes I_Y}{\underset{\eta_X \otimes I_Y}{\longleftarrow}} \mathbb{K} \otimes Y \stackrel{\lambda_Y}{\underset{\cong}{\leftarrow}} Y.$$

The comparison morphism

$$m = \langle
ho_{X^{\circ}}(1_X \otimes arepsilon_Y), \ \lambda_{Y^{\circ}}(arepsilon_X \otimes 1_Y)
angle$$

makes the diagram



commute.

We prove that m is mono: then Y unital implies that m is an isomorphism. For $h: Z \to X \otimes Y$ in $BiAlg_{\mathbb{K}}$, we write $f = \rho_{X^{\circ}}(1_X \otimes \varepsilon_Y) \circ h: Z \to X$ $g = \lambda_{Y^{\circ}}(\varepsilon_X \otimes 1_Y) \circ h: Z \to Y$

so that $\langle f, g \rangle = m \circ h$, and we prove that $h = (f \otimes g) \circ \Delta_Z$ in $Vect_{\mathbb{K}}$:

$$\begin{split} &(f\otimes g)\circ\Delta_{Z}\\ &=(\rho_{X}\otimes\lambda_{Y})\circ(1_{X}\otimes\varepsilon_{Y}\otimes\varepsilon_{X}\otimes1_{Y})\circ(h\otimes h)\circ\Delta_{Z}\\ &=(\rho_{X}\otimes\lambda_{Y})\circ(1_{X}\otimes\varepsilon_{Y}\otimes\varepsilon_{X}\otimes1_{Y})\circ\Delta_{X\otimes Y}\circ h\\ &=(\rho_{X}\otimes\lambda_{Y})\circ(1_{X}\otimes\varepsilon_{Y}\otimes\varepsilon_{X}\otimes1_{Y})\circ(1_{X}\otimes\tau_{X,Y}\otimes1_{Y})\circ(\Delta_{X}\otimes\Delta_{Y})\circ h\\ &=(\rho_{X}\otimes\lambda_{Y})\circ(1_{X}\otimes\varepsilon_{X}\otimes\varepsilon_{Y}\otimes1_{Y})\circ(\Delta_{X}\otimes\Delta_{Y})\circ h\\ &=(\rho_{X}\otimes\lambda_{Y})\circ(\rho_{X}^{-1}\otimes\lambda_{Y}^{-1})\circ h=h. \end{split}$$

Here $\Delta_{X \otimes Y^{\circ}} h = (h \otimes h) \circ \Delta_Z$ since *h* is a coalgebra morphism.

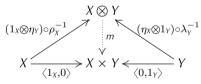
For any bialgebra X we may consider

$$X \stackrel{\rho_X}{\underset{\cong}{\leftarrow}} X \otimes \mathbb{K} \stackrel{I_X \otimes \varepsilon_Y}{\underset{I_X \otimes \eta_Y}{\longleftarrow}} X \otimes Y \stackrel{\varepsilon_X \otimes I_Y}{\underset{\eta_X \otimes I_Y}{\longleftarrow}} \mathbb{K} \otimes Y \stackrel{\lambda_Y}{\underset{\cong}{\leftarrow}} Y.$$

The comparison morphism

$$m = \langle \rho_{X^{\circ}}(1_X \otimes \varepsilon_Y), \ \lambda_{Y^{\circ}}(\varepsilon_X \otimes 1_Y) \rangle$$

makes the diagram



commute.

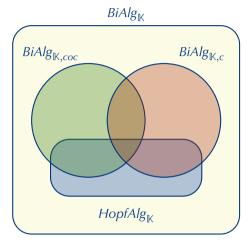
We prove that *m* is mono: then *Y* unital implies that *m* is an isomorphism. For $h: Z \to X \otimes Y$ in $BiAlg_{\mathbb{K}}$, we write $f = \rho_{X^{\circ}}(1_X \otimes \varepsilon_Y) \circ h: Z \to X$ $g = \lambda_{Y^{\circ}}(\varepsilon_X \otimes 1_Y) \circ h: Z \to Y$

so that $\langle f, g \rangle = m \circ h$, and we prove that $h = (f \otimes g) \circ \Delta_Z$ in $Vect_{\mathbb{K}}$:

$$\begin{split} &(f\otimes g)\circ\Delta_{Z}\\ &=(\rho_{X}\otimes\lambda_{Y})\circ(1_{X}\otimes\varepsilon_{Y}\otimes\varepsilon_{X}\otimes1_{Y})\circ(h\otimes h)\circ\Delta_{Z}\\ &=(\rho_{X}\otimes\lambda_{Y})\circ(1_{X}\otimes\varepsilon_{Y}\otimes\varepsilon_{X}\otimes1_{Y})\circ\Delta_{X\otimes Y}\circ h\\ &=(\rho_{X}\otimes\lambda_{Y})\circ(1_{X}\otimes\varepsilon_{Y}\otimes\varepsilon_{X}\otimes1_{Y})\circ(1_{X}\otimes\tau_{X,Y}\otimes1_{Y})\circ(\Delta_{X}\otimes\Delta_{Y})\circ h\\ &=(\rho_{X}\otimes\lambda_{Y})\circ(1_{X}\otimes\varepsilon_{X}\otimes\varepsilon_{Y}\otimes1_{Y})\circ(\Delta_{X}\otimes\Delta_{Y})\circ h\\ &=(\rho_{X}\otimes\lambda_{Y})\circ(\rho_{X}^{-1}\otimes\lambda_{Y}^{-1})\circ h=h. \end{split}$$

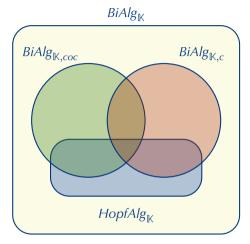
Here $\Delta_{X \otimes Y} \circ h = (h \otimes h) \circ \Delta_Z$ since *h* is a coalgebra morphism.

Hence $m \circ h = m \circ h' \Rightarrow h = h'$.



Protomodular objects are

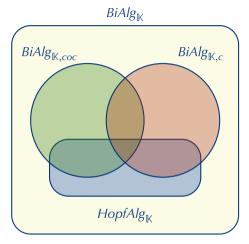
- in $BiAlg_{\mathbb{K},coc}$: the Hopf algebras;
- in $BiAlg_{\mathbb{K}}$: none;
- in $BiAlg_{\mathbb{K},c}$: ?



Protomodular objects are

- in $BiAlg_{\mathbb{K},coc}$: the Hopf algebras;
- in $BiAlg_{\mathbb{K}}$: none;
- in $BiAlg_{\mathbb{K},c}$: ?

 $\ln Alg_{\mathbb{K},c} \text{ we have } + = \otimes \text{ and } 0 = \mathbb{K}$

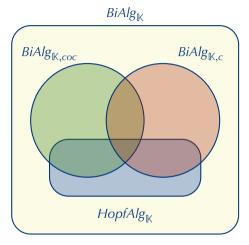


Protomodular objects are

- in $BiAlg_{\mathbb{K},coc}$: the Hopf algebras;
- in $BiAlg_{\mathbb{K}}$: none;
- in $BiAlg_{\mathbb{K},c}$: ?

In $Alg_{\mathbb{K},c}$ we have $+ = \otimes$ and $0 = \mathbb{K}$ so

•
$$(BiAlg_{\mathbb{K},c})^{\mathrm{op}} \simeq Mon((Alg_{\mathbb{K},c})^{\mathrm{op}})$$

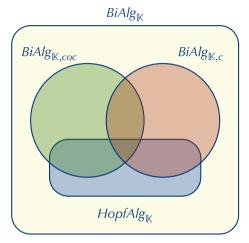


Protomodular objects are

- in $BiAlg_{\mathbb{K},coc}$: the Hopf algebras;
- in $BiAlg_{\mathbb{K}}$: none;
- in $BiAlg_{\mathbb{K},c}$: ?

In $Alg_{\mathbb{K},c}$ we have $+ = \otimes$ and $0 = \mathbb{K}$ so

- $(BiAlg_{\mathbb{K},c})^{\mathrm{op}} \simeq Mon((Alg_{\mathbb{K},c})^{\mathrm{op}})$
- $(HopfAlg_{\mathbb{K},c})^{\mathrm{op}} \simeq Gp((Alg_{\mathbb{K},c})^{\mathrm{op}}).$



Protomodular objects are

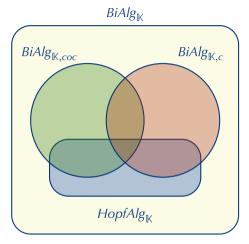
- in $BiAlg_{\mathbb{K},coc}$: the Hopf algebras;
- in $BiAlg_{\mathbb{K}}$: none;
- in $BiAlg_{\mathbb{K},c}$: ?

In $Alg_{\mathbb{K},c}$ we have $+ = \otimes$ and $0 = \mathbb{K}$ so

- $(BiAlg_{\mathbb{K},c})^{\mathrm{op}} \simeq Mon((Alg_{\mathbb{K},c})^{\mathrm{op}})$
- $(HopfAlg_{\mathbb{K},c})^{\mathrm{op}} \simeq Gp((Alg_{\mathbb{K},c})^{\mathrm{op}}).$

Via the Yoneda embedding, we see:

 commutative Hopf algebras are protomodular in (*BiAlg*_{K,c})^{op}



Protomodular objects are

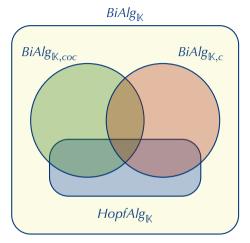
- in $BiAlg_{\mathbb{K},coc}$: the Hopf algebras;
- in $BiAlg_{\mathbb{K}}$: none;
- in $BiAlg_{\mathbb{K},c}$: ?

In $Alg_{\mathbb{K},c}$ we have $+ = \otimes$ and $0 = \mathbb{K}$ so

- $(BiAlg_{\mathbb{K},c})^{\mathrm{op}} \simeq Mon((Alg_{\mathbb{K},c})^{\mathrm{op}})$
- $(HopfAlg_{\mathbb{K},c})^{\mathrm{op}} \simeq Gp((Alg_{\mathbb{K},c})^{\mathrm{op}}).$

Via the Yoneda embedding, we see:

- commutative Hopf algebras are protomodular in (*BiAlg*_{K,c})^{op}
- $HopfAlg_{\mathbb{K},c}$ is **co**protomodular.



Protomodular objects are

- in $BiAlg_{\mathbb{K},coc}$: the Hopf algebras;
- in $BiAlg_{\mathbb{K}}$: none;
- in $BiAlg_{\mathbb{K},c}$: ?

In $Alg_{\mathbb{K},c}$ we have $+ = \otimes$ and $0 = \mathbb{K}$ so

- $(BiAlg_{\mathbb{K},c})^{\mathrm{op}} \simeq Mon((Alg_{\mathbb{K},c})^{\mathrm{op}})$
- $(HopfAlg_{\mathbb{K},c})^{\mathrm{op}} \simeq Gp((Alg_{\mathbb{K},c})^{\mathrm{op}}).$

Via the Yoneda embedding, we see:

- commutative Hopf algebras are protomodular in (*BiAlg*_{K,c})^{op}
- $HopfAlg_{\mathbb{K},c}$ is coprotomodular.

A consequence of this is that $BiAlg_{\mathbb{K},coc} \cap BiAlg_{\mathbb{K},c} \cap HopfAlg_{\mathbb{K}}$ is an abelian category, as a semi-abelian category which is coprotomodular [Janelidze, Márki & Tholen, 2002]. We regain a result of [Takeuchi, 1972] (and [Grothendieck], in the finite-dimensional case).

The category $HopfAlg_{\mathbb{K}}$ is not protomodular, even though something like the Split Short Five Lemma holds.

The category $HopfAlg_{\mathbb{K}}$ is not protomodular, even though something like the Split Short Five Lemma holds. We need to restrict to (co)commutative Hopf algebras.

The category $HopfAlg_{\mathbb{K}}$ is not protomodular, even though something like the Split Short Five Lemma holds.

We need to restrict to (co)commutative Hopf algebras.

What about a categorical framework which captures all situations simultaneously?

The category $HopfAlg_{\mathbb{K}}$ is not protomodular, even though something like the Split Short Five Lemma holds.

- What about a categorical framework which captures all situations simultaneously?
 - The Split Short Five Lemma "for normal epis" looks like an instance of relative protomodularity in the sense of [T. Janelidze, 2006].

The category $HopfAlg_{\mathbb{K}}$ is not protomodular, even though something like the Split Short Five Lemma holds.

- ▶ What about a categorical framework which captures all situations simultaneously?
 - The Split Short Five Lemma "for normal epis" looks like an instance of relative protomodularity in the sense of [T. Janelidze, 2006].
 - However, this doesn't seem to take into account the "twist" which happens between commutative and cocommutative Hopf algebras.

The category $HopfAlg_{\mathbb{K}}$ is not protomodular, even though something like the Split Short Five Lemma holds.

- ▶ What about a categorical framework which captures all situations simultaneously?
 - The Split Short Five Lemma "for normal epis" looks like an instance of relative protomodularity in the sense of [T. Janelidze, 2006].
 - However, this doesn't seem to take into account the "twist" which happens between commutative and cocommutative Hopf algebras.
- The commutative case is not sufficiently well understood:

The category $HopfAlg_{\mathbb{K}}$ is not protomodular, even though something like the Split Short Five Lemma holds.

- ▶ What about a categorical framework which captures all situations simultaneously?
 - The Split Short Five Lemma "for normal epis" looks like an instance of relative protomodularity in the sense of [T. Janelidze, 2006].
 - However, this doesn't seem to take into account the "twist" which happens between commutative and cocommutative Hopf algebras.
- The commutative case is not sufficiently well understood:
 - Do the protomodular objects characterise the Hopf algebras?

The category $HopfAlg_{\mathbb{K}}$ is not protomodular, even though something like the Split Short Five Lemma holds.

- ▶ What about a categorical framework which captures all situations simultaneously?
 - The Split Short Five Lemma "for normal epis" looks like an instance of relative protomodularity in the sense of [T. Janelidze, 2006].
 - However, this doesn't seem to take into account the "twist" which happens between commutative and cocommutative Hopf algebras.
- The commutative case is not sufficiently well understood:
 - Do the protomodular objects characterise the Hopf algebras?
 - What about regularity or Barr-exactness?

